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Abstract: This article concerns new analytical wave solutions of the Kuralay-II equations (K-IIAE
and K-IIBE) with exploration of a new definition of the derivative. This model is used in various
fields, like nonlinear optics, ferromagnetic materials and optical fibers. For this purpose, the exp,
function, the extended sinh-Gordon equation expansion scheme, and the generalized Kudryashov
schemes were utilized. The resulting solutions are dark, bright, dark-bright, periodic, singular and
other kinds of solitons. These results are obtained and also verified by the Mathematica tool. Some
of the solutions are explained with 2-D, 3-D and contour plots using the Mathematica tool. The
solutions obtained succede the present solutions in the literature. For the first time, the effect of the
fractional derivative on the solutions is also shown graphically for this model. The analytical wave
solutions are highly desirable as they offer insights into the underlying physics or mathematics of a
system and provide a framework for further analysis. The results obtained can also be fruitful for the
development of models in the future. The schemes used in this research are effective, easy to apply,
and reliably handle other fractional non-linear partial differential equations.

Keywords: space-time fractional Kuralay-II equations; exp, function scheme; extended sinh-Gordon
equation expansion scheme; generalized Kudryashov scheme; new analytical wave solutions

1. Introduction

Fractional partial differential equations (FPDEs) play an important role in many
areas, including biology, applied physics, chemistry, economics, etc. Naturally occur-
ring phenomena can be represented in the form of non-linear PDEs, i.e., the extended
Zakharov-Kuzetsov equation [1], the fifth order Lax equation [2], the Fokas equation [3],
the Clannish Random Walker’s Parabolic equation [4], the Oskolkov equation [5], the
Schrodinger dynamical system [6], the generalized unstable Schrodinger equation [7], the
generalized Kadomtsev—Petviashvili modified equal-width dynamical equation [8], the
dispersive long-wave equation [9], etc. There are many different schemes used to find
the distinct types of exact solitons, including the improved generalized Riccati equation
mapping method [10], Lie symmetry analysis [11], the generalized Jacobi elliptic function
method [12], the exp-function method [13], the Khater method [14], the new modified sim-
plest equation method [15], the new mapping method [16], the extended simplest equation
method [17], the first integral method [18], the (¢ — ¢)-expansion method [19], etc.

Three further simple, straightforward and reliable schemes are the exp, function
scheme, the extended sinh-Gordon equation expansion scheme, and the generalized
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Kudryashov scheme. The general exp, function scheme was first proposed by Ahmed
T. Ali and Ezzat R. Hassan in 2010 [20]. C. Yan first proposed the extended sinh-Gordon
equation expansion method in 1996 [21]. Nikolay A. Kudryashov proposed the general-
ized Kudryashov scheme. These are three different techniques used for solving nonlinear
partial differential equations. These methods seek to determine the vast categories of exact
wave solutions. These schemes have many applications that are reported in the literature,
including new optical soliton solutions of two nonlinear Schrodinger equations which
are obtained by utilizing the exp, function scheme [22]. New kinds of analytical wave
solutions of three coupled nonlinear Maccari’s system were obtained by the use of the
extended sinh-Gordon equation expansion scheme [23]. Similarly, different types of exact
soliton solutions of the fractional Sharma-Tasso—Olver (STO) equation and the fractional
Bogoyavlenskii’s breaking soliton equations were found using a generalized Kudryashov
method in [24], optical and other types of solitons for different partial differential equations
were obtained using this method in [25], some new kinds of exact wave solutions of the
Burgers-type fractional space-time differential equations were calculated with the use of a
generalized Kudryashov technique in [26], the bell, anti-bell, dark, kink, flat kink and other
wave solutions of Fokas—Lenelles were obtained by applying a generalized Kudryashov
technique in [27], and exact solitons of the Kudryashov-Burger model were obtained in [28].

Our study model is the M-fractional Kuralay-II equation. This model is used to obtain
the gauge equivalence between different models. There are two forms of this equation:
the Kuralay-IIA equation (K-IIAE) and the Kuralay-1IB equation (K-IIBE). Different kinds
of study of this model are reported in the literature. The simplest soliton solutions of
this model were obtained by utilizing the Hirota bilinear scheme [29]. Analytical solitary
wave solutions were obtained by applying the new auxiliary equation method [30]. Optical
solitons were obtained by utilizing a modified F-expansion and the new extended auxiliary
equation methods in [31], etc.

The fundamental purpose of this work is to explore new analytical wave solutions
to the space-time fractional Kuralay-II equations (K-IIAE and K-IIBE) with a truncated
M-fractional derivative based on the exp, function, the extended sinh-Gordon equation
expansion, and the generalized Kudryashov schemes.

The motivation of this paper is to explain the effect of the M-fractional derivative on
the solutions of the space-time fractional Kuralay-IIA equation (K-IIAE) and the Kuralay-
IIB equation (K-IIBE) that are obtained with the use of the exp, function, the extended
sinh-Gordon equation expansion, and the generalized Kudryashov schemes, and this is
achieved for the first time in the literature. The significance of the M-fractional derivative is
that it fulfils the properties of both integer- and fractional-order derivatives. The fractional-
or non-integer-order calculus adds information to the classical calculus, providing a more
accurate description of certain natural phenomena. It can be applied in several areas
of knowledge, such as physics, chemistry, engineering technology, etc. It is observed
that mathematical models obtained by using various fractional derivatives show better
overlapping with experimental data. For the truncated M-fractional derivative, the lower
fractional orders show the magnitude of the truncated M-fractional derivative to be greater,
whereas, for increasing fractional orders, the magnitude remains the same. Fractional
differential models successfully explain memory and hereditary effects. By using the
extended sinh-Gordon equation expansion scheme, we can obtain the sech, csch, tanh
and coth functions involving the solutions. Using these schemes, we can observe some
elementary relationships between FNLPDEs and other simple NLODE:s. It has been found
that, with the use of simple schemes and solvable ODEs, different type of exact solutions of
some complicated FNLPDEs can be easily obtained. The solutions obtained supercede the
existing solutions in the literature. This model is used in various fields, like nonlinear optics,
ferromagnetic materials and optical fibers. Soliton solutions have many advantages: i. the
quality of the soliton wave is more efficient as it does not breakup, spread out or become
weak over long distances; ii. dispersions are reduced; iii. the speed of transmission over
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long distances can be increased; iv. it creates the potential for ultrahigh speed highways
that are very cost efficient.

The paper is organized as follows: In Section 2, we briefly review some well-known
results for the Kuralay-II equations. Some definitions and properties of the M-fractional
derivative are presented in Section 3. A description of the methodologies is given in
Section 4. Next, in Section 5, we discuss the model description. In Section 6, the mathe-
matical treatment of the model is considered. In Section 7, the analytical wave solutions of
K-ITAE are presented. Some analytical wave solutions of K-IIBE are given in Section 8. In
Section 9, we explain some solutions graphically. We present the conclusions in the last
Section 10.

2. Classical Kuralay-II Equations

In this section, we briefly review the classical Kuralay-II equations. As we mentioned
in the Introduction, there are two forms of the Kuralay-II equation: the Kuralay-IIA equation
(K-IIAE) and the Kuralay-IIB equation (K-IIBE).

2.1. Kuralay-IIA Equation
The Kuralay-IIA equation (K-IIAE) has the form

iqr + kqxt —vq =0, @
iry —kry +or =0, (2
vy —2k(rq): =0, 3)

where g, r are complex functions, v is a real function, and k is some constant. This K-IIAE is
integrable. The corresponding Lax representation reads as

®, = Uy D, 4)
O, = V| D, ®)
where
Uy = —iros + Q, ©®)
1
Here
o5 = (0 _1), Q= (r g), B = —0.5iv03 + iko3Qy. ®)

Hence, the compatibility condition
Uyt — Vix + [Uy, V1] = 0. 9)
is equivalent to the K-IIAE. Note that there are two particular cases: k = 1 and k = i.

Casek =1
In the case k = 1, the K-ITAE takes the form

iqr +qxt —0q =0, (10)
iry —ryq +or =0, (11)
vy —2(rq); =0, (12)



Symmetry 2023, 15, 1862

4 0f29

where r = €7, € = £1. While § is the complex conjugate of g . Let us now consider the case
k = i. In this case, the K-ITAE reads as

qt + qxt +ivg =0, (13)
e — 1yt —10r =0, (14)
vy —2i(rq)r =0, (15)
or
qt + qxt —wq =0, (16)
re—ry+wr =0, (17)
wy —2(rq); =0, (18)
where w = —ivandr = ejorr = eg with e = £1.

2.2. Kuralay-1IB Equation
The Kuralay-IIB equation (K-IIBE) has the form

iqx + kqxt —vq =0, (19)
iry —kry+or =0, (20)
v —2k(rq)x =0, (21)

where g, are complex functions, v is a real function, and k is some constant. This K-1IBE is
integrable as is the previous K-IIAE. The Lax representation of the K-IIBE looks like

O; = U, (22)
Oy = Vo, (23)
where
U, = —iAos + Q, (24)
1
Vo = mB, (25)
Here,
1 0 0 . .

o5 = <0 _1), Q= <r g) B = —0.5iv03 + iko3 Q. (26)

The compatibility condition
Uy — Vor + [UQ, Vz] =0. (27)

gives the K-IIBE. As for the K-IIAE, the K-IIBE admits two particular cases: k = 1 and
=1

221.Casek =1
In the case k = 1, the K-IIBE takes the form

iqx + qxt —vq =0, (28)
iry —ry+or=0, (29)
v —2(rq)x =0, (30)

wherer = €7, € = £1.
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222 Casek =i
Consider the case k = i. In this case, the K-1IBE is given by

gx + qxt +1ivq =0, (31)
ry— 1ty —ivor =0, (32)
vy —2i(rq)x =0, (33)
or
x + Gzt —wq =0, (34)
Ty =ty +wr =0, (35)
wy —2(rq)x =0, (36)
where w = —iv. In this case, we have two different models: r = ej or r = eq. For

convenience, let us present these models.
(a) Case r = €j. In this instance, the K-1IBE reads as

Gx +gxt —wqg =0, (37)
ry —ry +wr =0, (38)
wi —2¢(|9/*)x =0, (39)

(b) Case r = €q. In this instance, the K-IIBE looks like

Gx + gt —wq =0, (40)
Ty — Yyt +wr =0, (41)
wi —4eqqy =0, (42)

where v = eg. Note that, in this last case, the functions g and w are complex and/or real
valued functions.

3. Truncated M-Fractional Derivative and Its Properties

In this section, we present the main definitions and some properties of the truncated
M-fractional derivative.

Definition 1. Let u(0):[0,00) — R, then the truncated M-derivative of u of order w is shown
in [32]:

,0<a<1,Y>0, (43)

WY o u (0 Ey(10'%) — u(6)
Do) = i 1

where Evy (.) represents the truncated Mittag—Leffler function of one parameter that is given as [33]:
i 2

Property 1. Consider « € (0,1],Y > 0,r,s € R, and g, f a—to be differentiable at a point 6 > 0,
then, by [32]:

Dy (rg(0) +s£(0)) = rDjy;8(6) + sDy £(6). (45)
Dio(8(£).£(6)) = g(6) D7 f (6) + £(6) D8 (6). (46)

wy g(0) . F(O)DY58(0) — g(6)Dyyf (6)
Dy (S20) =

£(6) (7(6)? ' @
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D?@%(A) = 0, where A is a constant.

)
w,Y _ 8
Dhios®) = Fayy ae

4. Methodologies
4.1. exp, Function Scheme

Here, we provide a complete account of this scheme.
Assuming the non-linear partial differential equation (PDE);

G(9,9%qt, 9, Gt Gxx, Gat, - - - ) = 0.

Equation (50) is transformed in the non-linear partial differential equation:

AQ,Q,Q",...,)=0.

By using the following transformations:

qg(x, y, t) = Q(0),{ = ax +rt.

where a2 and r are the parameters.
Considering the root of Equation (51), which is shown in [34,35]:

g+ aqd® + -+ ad™
= , d#0,1.
() Bot i 4 i 17

(48)

(49)

(50)

(51)

(52)

(53)

where, «; and B;(0 < i < m) are undetermined. The positive integral value of m is

calculated by applying a homogeneous balance technique to Equation (51).
Inserting Equation (53) into Equation (51), gives

o(d) = o + yd + - - + £,d'C = 0.

(54)

Taking ¢; (0 < i < t) in Equation (54) to be equal to 0, a set of algebraic equations is

obtained, given as
l; =0, where i =0,...,t.

By using the roots obtained, we obtain the analytical results for Equation (55).

4.2. Extended Sinh—Gordon Equation Expansion Scheme (EShGEES)

Here, we describe the main steps of this technique:
Step 1:
Let a non-linear partial differential equation be given as:

Z(f, D%/IP,{th/fzfx/fy/fyy,fxx,fxy,fxt,. ..) =0,

where f = f(x,y,t) denotes the wave function.
Assuming the travelling wave transformation:

T(1+Y)

flx,y,t)=F(¢), ¢=x—vy+ (xt).

(55)

(56)

(57)

where, ¢ and « are the nonzero parameters. Inserting Equation (57) into Equation (56), we

obtain the nonlinear ODE given as:

"

Z(F(&), FA(&)F (&), F'(2),...) =0.

(58)
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Step 2:
Assuming the solution of Equation (59) in the given form:

F(p) = ao + Y (B; sinh(p) + a;cosh(p))', (59)
i=1

where, g, ;, B; (i =1,2,3,..., m) are unknowns. Consider a function p of ¢ that satisfies
the given equation:

b _ sinh(p). (60)

The natural number m can be obtained by the use of a homogenous balance approach.
Equation (58) is derived from the sinh—Gordon equation, shown as:

gxt = Kk sinh(v). (61)
According to [36], one can gain the solutions of Equation (60) given below:
sinh p(¢) = £ csch(§) or coshp(é) = £ coth({), (62)

and

sinh p(&) = £t sech({) or cosh p(&) = £ tanh(§), (63)

where 2 = —1.

Step 3:

Applying Equation (59) with Equation (60) to Equation (58), we obtain the algebraic
equations involving p’*(¢) sinh! p(&) cosh™ p(Z) (k=0,1; [ =0,1; m = 0,1,2,...). Taking
every coefficient of p’*(7) sinh! p(Z) cosh™ p(Z) to be equal to 0, to obtain the system of
algebraic equations having v, k, a9, &; and B;(i = 1,2,3,...,m).

Step 4:

By solving the obtained system of algebraic equations, one may obtain the value of
v, k, &, &; and B;.

Step 5:

Using the obtained solutions for Equations (62) and (63), we obtain the wave solitons
of Equation (56), shown as:

3

F(2) = a0+ ) (£picsch(d) £ a; coth(&))". (64)

i=1

and

m .
F(Z) = ag+ y_(£:Bisech(€) + a; tanh(Z))". (65)
i=1
4.3. Generalized Kudryashov Scheme

In this part, we briefly describe the basic steps involved in the generalized Kudryashov
scheme [25,26]:

Step 1:

Let us assume the non-linear PDE given as:

Y(q’ q2q'yr q6,960, GyyrG+0s - - - ) =0. (66)

where g is a wave profile and depends on ¢y and 6.
Now, assume the transformations below:

q(v,0) =Q(n), n =~ —ve. (67)
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Here, v is a parameter. By inserting Equation (67) into Equation (66), we obtain the
following non-linear ODE, as below:

F(Q,Q,Q%Q,Q",Q*Q,...)=0. (68)

where F is the function of Q.
Step 2:
Suppose the solutions of the Equation (68) have the structure:

—a0+z 1+¢ e (69)

where xg and «y, (r =1,2,3,..., m) are unknown parameters that are found later and ¢ is
anew function of 7 that is a solution of the general Riccati equation, given as follow:

(1) = p + () + wp (). (70)
where, p, 0 and w are constants.
The solutions of the Equation (70) are shown for the following cases [37]:
Case 1: If all of p, o and w are nonzero, then (1) is given by

() = 210 (\/4pw Uztan<1 dpw — ( d0+17>

4ow > 0>, (71)

=0 ! , dow > o2 (72)

)
)

( 4pw—02cot<l 4pw — ?( d0+17>+¢7
1 1 )
4 —aztanh 4pw—(72 (do+7n) | +0), 4pw < 0. (73)

)
21 4pw—02coth( 4pw — o2( d0+17)+0),4pw<(72. (74)
¥(n) = _;1 <dol+77 + (27) dpw = o™ (75)
Case 2: If p = 0 and w # 0, then
¥(y) = 2; (atanh(g (do+1)) +7), & >0. (76)
¥(y) = z_—ci(acoth(%(do +17)) +0>, o2 > 0. (77)
w(n) = 2;( —0? tan( ;Uz(do +17)> a), 0% < 0. (78)
¥(n) = ; <\/—702c0t< ;Uz(do +17)> +a>, o2 < 0. (79)
0= ot Ty~ T %0

Y0 = —, 0 =0. (81)
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Case 3: If o = 0 and w # 0, then

900 = Y2 an( ypw(dy + 1)), pw > 0. )
90 = Y2 cot( gt + 1)), pw > 0. 89)
Y(n) = —@tanh(w/—pw(do +1)), pw < 0. (84)
Y(n) = —\/ziwcoth(\/—pw(do +1)), pw < 0. (85)

—1
P(n) = wloxm P 0. (86)

Case 4: If w = 0 and 0 # 0, then

p(7) = ~(exp(e(do + 1)) —p). 7)

Step 3: Inserting Equation (69) into Equation (68) and summing the coefficients of the
same power of {(17). Now, taking the coefficient of each power equal to zero, we obtain
a system of algebraic equations involving g and &y, (p = 1,2,3,..., m) and the other
parameters. By solving this system with the help of the Mathematica software, we obtain
the values of the unknowns.

Step 4: Now, by inserting the values of g and ap, (p = 1,2,3,..., m) into Equation (69),
and using the suitable cases of the general Riccati equation given from Equations (71)-(87),
we obtain the solutions for Equation (66).

5. Model Description
Consider the M-fractional Kuralay-II equation, given as [29]:

[D%u + D;‘;Ifx(D;’(gu) —ou =0. (88)
Dyv — 2e Dy [ul* = 0. (89)

where, u = u(x, t) is a complex valued function, while v = v(x, t) is a real valued function.
The conjugate of the complex valued function u is u*, € = £1, where x and ¢ are the
spatio-temporal real variables. There are two forms of the Kuralay equation.

5.1. Kuralay-1IA Equation (K-1IAE)
Let us assume the following form of the Kuralay-II equation (K-IIE), given as

tD?/'E{tu — D?‘V’E{x(D?‘V’E{tu) —ou=0. (90)
le/’P;T + Dﬁ{x(D}"\;ﬁ{tr) +or =0. (91)
Diy¥v + 242 Diy’ (ru) = 0. (92)

this is called the K-IIAE. It is integrable.
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5.2. Kuralay-1IB Equation (K-1IBE)

Let us assume the second form of the Kuralay-II equation (K-IIE), given as

WD+ D (D) — ou = 0. .
iDiir = Dy (D) +or = 0. oY
Diyo = 2D () = 0. o)

This is called the K-IIBE. This also integrable.

6. Mathematical Treatment of the Model

6.1. K-IIAE
Consider the truncated M-fractional K-IIA equation for d = 1, r = eu*, given

as follows:
1D — Dy (D) — ou = 0. (96)
D”I(;E{xv — ZGD%\;(WF) = 0. (97)

Let us consider the following travelling wave transformations:

u(x, ) = U(Q) x exp(l(@(’wf“ +ut"))), v(x,t) =v(g), = @

where, T, 4, (Y and A are the parameters. By inserting Equation (98) into Equations (96) and
(97), we obtain the real and imaginary parts, given as: real part:

(Qx® + AtY). (98)

2AURe — UQ(u(t — 1) —¢) + AQ*U" = 0. (99)

imaginary part:
(A —TA —uQ)U' = 0. (100)
From Equation (100), we obtain the speed of the soliton, given as:

_pQ
T 1-T

(101)

By using the homogeneous balance technique into Equation (99), we obtain m = 1.

6.2. K-1IBE

Consider the truncated M-fractional K-IIB equation for r = eu*, given as:

1Dyt + Digl (Dypu) —ou = 0. (102)
Do + 2Dy (Jul?) = 0. (103)

Let us consider the following travelling wave transformations:

u(x, t) = U(Q) x exp(t(@(m“ +ut*))), v(x,t) =v(g), = @

By inserting Equation (104) into Equations (102) and (103), we obtain the real and
imaginary parts, given as: real part:

(Qx® + AY). (104)

2UPQe — AU (u(t+1) — ¢) + A2QU" = 0. (105)
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u(x, t) = —

u(x,t) =

imaginary part:
(A+TA+u)U" =0. (106)

From Equation (106), we obtain the speed of the soliton, given as:

uQl

A:71+T‘

(107)

By inserting the homogeneous balance technique into Equation (105), we obtain m = 1.

7. Analytical Wave Solutions of K-IIAE
7.1. By exp, Function Scheme

Equation (68) changes into the following for m = 1:

o + Déldg
Bo + Brd

Inserting Equations (53) into Equation (99), a system of equations is achieved. By
solving the system, we obtain different solution sets, given as follows:

u(g) = (108)

Set 1:
__ipeQlog(d)  ip1Qlog(d)  2c—AQlog*(d)
{“0— 2\/E SH1 = 2\/E M= Z(T—].) . (109)
iQlog(d) [ po—prd = @) TA+Y), o .
X exp(t(————=(tx" +ut"))). 110
N (Wﬁld( S, | X P (o ) (110)
where y is given in Equation (109).
Set 2:
_ipoQlog(d)  ip1Qlog(d)  2c—AQlog’(d)
{“0 2\/* — Q= /X1 = 2\/E U= 2(,.[,7 1) . (111)
- — g @ ()
iQlog(d) [ fo ‘Bld : X exp(l(M(Tx"‘ + ut"))). (112)
2¢/€ Bo + B1d +H({5)1) «

where y is given in Equation (111).

7.2. By the Extended Sinh-Gordon Equation Expansion Scheme
For m = 1, Equations (59), (62) and (63) become:

U(C) = g £ B1 csch(Q) £ aq coth(]). (113)
U(Z) = ag £ 1Brsech() £ aq tanh (). (114)
U({) = o + B1sinh(p) + a1 cosh(p). (115)

where, xp, 21 and B; are undetermined. Inserting Equation (115) into Equation (99), we
obtain algebraic equations containing &g, &1, 1 and the other parameters. By using the
Mathematica tool, we obtain different solution sets, given as:

Set 1:

Q) c—2A0)
{ucO:O,oq:ﬁ,ﬁl:O,y: — } (116)
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(%, 1) —¢i2coth(r(1:Y) (x4 (ML L)) Xexp(l(r(lljy) (T2 4 ). (117)

1-—
uy(x,t) = ﬂFi?E ’canh(r(1 +Y) (Qx* + (%)t"‘)) X exp(t(r(lz_w (Tx* + ut"))). (118)
where y is given in Equation (116).
Set 2:
i) —2A0)
{06020,0(1:1/5,‘81:0,}{:(:_{_1 } (119)
(%, 1) = iij)g coth(FEHY) (. (1”Q ) x exp(l(r(lljy) (Tx% + ut*))). (120)
iy (2, ) = iij)g tanh (LY (e 4 (L5 ))) x exp(l(r(1;Y> (T2 + ut))). (121)
where y is given in Equation (119).
Set 3:
iQ) iQ) 2c — AQ)
{060:0,0(1:2\/5/,31:2\/51,”:2(1__1)}~ (122)
Q 14+Y (@) raa+y Q)
w(x, ) = 55 7=(coth B (g (2 4 cson( T (e 4 (L))
X exp(z(w(rx“ +ut"))). (123)

HQ |
2)1))

T(1+Y)

uy(x,t) = :inf/)g(tsech(r(lzy) (Ox* + (%)t"‘)) + tanh(r(lz_y) (Ox* + (1

x exp(1( (Tx* +ut"))). (124)

where p is given in Equation (122).
Set 4:

(125)

w0y = 1L g Q20
O_/l_z\/gl 1— 2\/5,11_2("['—1) .

uy (x,8) = ;%($Csch(r(1:Y) (O + (%)t“)) icoth(mT*Y)(Qx'x + (%)t“)))
« exp(l(m:Y) (Tx* + ut))). (126)
uz(x,t)—zf}(:ptsech( ) (4 (L)) tann(FEY) +E)))

T(1+Y)
@

x exp(¢( (tx® + ut"))). (127)
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where y is given in Equation (125).
Set 5:

iQ) 2c — AQ)
{D‘O =001 = 2\/ ﬁl 2\[/# = Z(T— 1)} (128)

w1 (x,1) = Zi\%(icsch(r(lz_Y) (O + (%)t“)) - coth(m:Y) (Qx* + (%)t“)))

T(1+Y)

x exp(1( (Tx® +ut"))). (129)

1Q) ra+y Q ra+y Q
1y (x, 1) = ;—\/E(itsech( ( : ) ¢ (££55)1)) F tanh( ( : )+ (£5)m)
X exp(t(r(lz_Y) (Tx® + ut"))). (130)
where y is given in Equation (128).
Set 6:
i) 2c — A0

(2, 1) = i—(coth( “:Y)(qu(”—Qr)t“))ﬂsch(r(l:“(mu(%)t“)))

X exp(z(r(1 +Y) (Tx* 4+ ut*))). (132)
o, £) = :I:zif/)z(tsech(r(lz_\() (@ + () +tanh(r(1:Y> (@ + (1))
X exp(t(r(lz_Y) (Tx® + ut"))). (133)

where y is given in Equation (131).
Set 7:

iQ) C+/\Q}

{060_0,061_0,181_—\/5,]/{_1__1 (134)

(%, 1) ::Fi?gcsch(r(ltj Y (st +(1"Q )#) xexp(z(r(1:Y> (T2 + ut))). (135)

_ .0 r1+Yy) uQ |, ra+y), . N
uy(x,t) = j:\/gsech( " (Qx* + (1 )t )) < exp(i( . (x4 ut"))). (136)
where y is given in Equation (134).

Set 8:

e} c+ AQ) } (137)

{0&0 :0,061 :0,,31 = %,ﬂ: ﬁ
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L0 TAEY) FA+Y), o,
uy(x,t) = :I:\/Ecsch( (Qx* + (1 — T)t )) x exp(i( " (x4 ut*))). (138)
(0, 8) = F-Lsech( DY) (4 (H2 L)) w exp(i(F0FY) (e 1)), (139)

Ve 1- o
where y is given in Equation (137).
7.3. By the Generalized Kudryashov Scheme
For m =1, Equation (69) reduces to:
U(y) = g+ —L — (140)
TR T T ey

where, &9 and a; are unknown constants. By inserting Equation (140) into Equation (99) with
Equation (70) and collecting all the coefficients of the same order of ¢ (1), we obtain the algebraic
equation involving «g, &1 and the other parameters. Now, using the Wolfram Mathematica aid,
we obtain the solution set below:

Set 1:
. . . . c_ 2 4ow
{“0 _ _z()(;r\/;w),‘x1 _ _i0(p \/(ET+W)fV _ 2 )\2(()1—((7_ 1)4p ) } (141)
Case 1:
u(xt)——ﬂ(a_szr p—0+w )
' Ve 2 1—|—(%( 4pw—02tan(%\/m(d + (1+Y)(Qx“+(%)t“))) —0))
xexp(l(w&x“—i—yt”‘))). (142)
u<xt)__@(0—2w+ p—0+w )
’ Vel 21 (2 (Vapw —oZeot(§y/Epw — o2 (do + L (e + ($2)m)) ) + 7))
y exp(l(%—m(fx“ Fut)). (143)
u(xt):—@(a_zw—i— p—0+w )
’ Ve 2 + (5 (V0w = P tanh (1 v/Apw = o (do + " (O + ($2)1) ) ) +0))
X exp(t(r(le(Tx“ +ut"))). (144)
u(xt):—ﬂ(a_zw—i— p—0+w )
’ Ve 2 14 (3 (Vapw — o coth (3 /30w — o7 (do + TR (O + ($2)1) ) ) + o))
< exp(e( M e ). 185)
u(x,t) = —2("‘22“’ o pootw ) X exp(l(@(rx“ S+ ut)). (146)

w(do+ T (O (J L))y 20

where y is given in Equation (141).
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Case 2:
_ 0 0-2w —0+tw
unt) = \@( 2 +1+(2_—£<Utanh<%(d + (HY)(Qx“ (1”—) ))>+0’)))
X exp(t(r(le(Tx“ +ut"))). (147)
u(xt)——ﬂ(a_zw —0+w )
' Ve 2 1+(2%(acoth(g(d + T (e 4 (442 )))+a))
X eXp(l(F(lth) (Tx® + ut"))). (148)
u(xt)__Q(U—Zw —0+w )
’ Ve 21 (b (V=etan (Y57 (do + M (x4 (£2)1))) — o))
X exp(z(@(fx“ +ut"))). (149)
u(xt):—ﬁ(aizw—l— —0+w )
Ve 2 (Ve ot (58 (do + T (0w + ($2))) ) +0))
X exp(t(@(rx“ + ut*))). (150)
iQ o—2w —0+w ra+y), . »
)= ——= exp(t t . 151
u(x, t) \/E( 5 +1+<Vexp( — (HY)(wam)m))w))x p((———(rx" +put"))) (151)
wherey:%.
u(x :—ﬂ —w w X ll"(l—}—Y) ol c a
( /t) ﬁ( : 1+( r(1+Y) _1<(r£l))0 )) e p(( o (T ! (T_l)t ))) (12
w(Z G (Ot +(—7=—)t)
Case 3:
u(x,t) = _Qa —w prw
(oh) == e + (22 tan (/o (do + T (O 4 (2 e )))))
X exp(t(r(lz—Y) (Tx®* + ut"))). (153)
:_Q B p+w
uint) = - w+1+(f@c:ot(\/p7(d + IO (x4 (#4224 )))))
« exp(l(m:Y) (Tx* + ut))). (154)
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u(x, t) = —ﬂ(—w+ N p+w(1+Y) Q )
Ve 1+(—%tanh(\/%<d + (Qx"‘—i—({‘_—T)t“))))
w exp(i(FFY) (e gy,
__Q . ptw
T o ot (v (o + T e 1 ()
< exp(( (Y (e 1 sy
where y = zcjé/\_?’;w
u(x, ) = —i%(—w—i— — ©_ m:Y) (o4 ¢ il)t“))).
g+ T (O (T )
Case 4
i o p—0
u(x,t) =——=(=
(&) ﬁ(2+1+(},(exp( o(do + (HY)(Qx"‘—i-(f_QT)t“)))—p)))
< exp(e( MY ().
where y = 2(_TA—01()72
Set 2
Qe -2w)  iQp-octw)  2c—AQ(0% —4pw)
T T T e T T e
Case 1
u(x t):ﬂ(0_2w+ p—0+w )
Ve 2 (G (Vaew — Pran (Ve — 0 (do + LU (0 - ($2)) ) ) - )
X exp(t(r(lz—Y) (Tx* 4 ut*))).
u(x,t)—ﬁ(a_zw—k p—0+w )
Vel 2 1t (3 (Vapw — a2 eot(3y/Apw — 02 (do + T (O + (£2)1)) ) + 7))
x exp(i(EEEY) (e 4 )
w(x, £) = i o—2w 0—0+w )

x exp(i(

LD

_7( +
Vel 2 1 (5 (Vapw — o tanh (§ /Apw — o (do + TR (O - (4 )

T(1+Y)
o

(Tx* 4 ut*))).

(155)

(156)

(157)

(158)

(159)

(160)

(161)

(162)
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u(x t)_ﬂ(a—2w+ p—0+w )

Ve 2 (2 (Vapw — oZcoth (3y/Apw — o2 (do + LD (et + (£2)1)) ) + 0 )
y exp(l(@(rx“ +ut)). (163)
u(x, t) = E(U—Zw pootw ) X exp(t(r(1 +Y) (tx™ + ut"))). (164)

\/E 2 14+ (—1 1 + o )
do+ LAHY) (1+Y) (Qx“+( uQ )t”‘) 2
where y is given in Equation (159).
Case 2:
u(x,t)zﬁ o —2w —0+w )

VA 1+ (5} (e tanh (§ (do + "L (Ot + ($5)1)) ) + )

X exp(z(r(lT—i_Y)(Tx“ +ut"))). (165)
u(x,t):ﬁ(a_zw —+w )
Ve 2 1+(%(0coth(%(d + (1+Y)(Q "‘+(1“—) ))) +(7>)
xexp(L(F(li—Y) (Tx® +ut"))). (166)
u(x t)zﬂ((f—zij —r+tw )
Ve 2 g G (VeoTan (Y5 (do + B (0 4 (#2))) ) — o))
X exp(z(r(lz—Y) (x4 ut*))). (167)
_ Q02w —+tw
el = 1+ (2 (V=2 cot (Y52 (do + ML (O 4 (#2)1) ) ) +a)))
x exp(¢( (1+Y)(Tx“+,ut"‘))). (168)
iQ 02w —r+w TA+Y) o
u(x,t) = —( + ) x exp(«( (Tx* + ut"))). (169)
ver 2 T+ (Uexp( o (do+ 1LY (qu(ﬁ)tu)))w) :
where y = %
0 w ra+y), ., c N
u(x,t) —%(—w—i— T — )) x exp (1( - (Tx* + (( — 1))1‘ )))- (170)
oM (e (T )
Case 3:
u(xt) = i?g(—aH— ptw ) exp(t( B (20 1)), a7

+ (2% tan (p@ (do + "L (O + (5)1)) ))
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i0 +w ra+y o w
e o en{ g+ e+ () ) ORUCL R ), 072
i + TA+Y), . .
o (i« T s )y W 07
0 + TA+Y), . .
u(x't):i/é(w+1+(—@coth(\/ pw(;) +w(”Y)(wa+(1”) ))))) Xexp([(%(” FHED- A7

where y = 726;(4/\_?33 <
u(x, t) = Z\%(—aH— 15 a)_l )) X exp(t(w(rx“ + (Til)t"‘))). (175)
(ot T (O 4 (%)
Case 4:
u(x :Q g p—c ex lw x“ “).
) = e oot s T () g P w079
where y = £ (T)‘Ql‘)T .

8. Solutions of K-IIBE
8.1. By the exp, Function Scheme

Equation (53) changes into the following for m = 1:

oo+ DéldC
Bo + B¢

Inserting Equation (177) into Equation (105), a system of equations is achieved. By
solving the system, we obtain different solution sets, given as follows:

ug) = a77)

Set 1:
__ipoAlog(d)  ipiAlog(d)  2c— AQlog’(d)
{‘XO - 2[ — = /X1 = 2\/E M= 2(T+1) (178)
+Y) a_ HQ
j — (Qx —17%t%))
u(x, t) = _Z/\gigfe(d) (20 21 = t”‘))) X exp(t(@(wc“ + ut"))). (179)
0+ pid i
where y is given in Equation (178).
Set 2:
iBoAlog(d)  ipyAlog(d)  2c—AQlog*(d)
{‘XO 2[ — = /1= 2\/5 U= 2(T+1) . (180)

u(x t) B l/\lOg(d) ﬁO_ﬁl F(HY)(Qxai{ﬂ'ta)) % ex (L(M<Tx“+ ta))> (181)
U7\ g pua Ty | T o

where y is given in Equation (180).
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up(x,t) = izijg(coth(r(lm(ﬂx“ - 1”_}_701_1%"‘)) + Csch(w
up(x,t) = izl\)/LE(lS h(r(le) (Qx* — %M)) +t h(r(le) %

8.2. By the Extended Sinh-Gordon Equation Expansion Scheme
For m = 1, Equations (59), (62) and (63) become:

U(l) = ao £ B1 esch(Q) £ aq coth(]).

U(Z) = ag £ 1B1sech() £+ a tanh(Q).

U() = ag + By sinh(p) + a1 cosh(p).

(182)

(183)

(184)

where, ag, &1 and B; are undetermined. Inserting Equation (184) into Equation (105), we
obtain algebraic equations containing &g, 41, 1 and the other parameters. By using the
Mathematica tool, we obtain different solution sets, given as:

Set 1:

{IXO = 0,0(1 =

iy (x, 1) = :F\i/AE coth(FLEY)
iA T(1+Y)

up(x,t) = ﬂp\ﬁtanh(

where y is given in Equation (185).
Set 2:

{0(0 = O,(Xl =

iA T(1+Y)

uy(x,t) = j:% coth(

up(x,t) = :t&tanh(M

Ve

where y is given in Equation (188).
Set 3:

iA
:OI :—7, =
{060 X Z\E B1

(Ox* —

(Ox* —

(Ox* —

ai

(Qx

uQl
14+71

uQ)
1+7

M
14+71

M
1+7

(e — 122

3 c2)\0}

iA
-, =0u=—""
ﬁﬁl ¥ T+1

£)) > exp(i(

(1

#)) x exp(i(

A 20— A0

F(1+Y)(

T2t T 2

b

(185)

. (186)

. (187)

(188)

. (189)

. (190)

(191)

(192)

(193)
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Set 4:

iA ZC}\Q}

{“0 =00 = 2{ R WL Ty (194)

1y (x, 1) = 2i/>g(:chch(r(1:Y) (O — 1?‘%#)) 4 coth(r(lljy) (Ot — Ly

X exp(z(r(1 Y) (Tx* + ut*))). (195)
(%, 1) = 235 (sech(ZY) (e f‘%ta)) Tt tanh(r(le) (O — 1”%%)))
X exp(z(r(lT—i_Y)(Tx“ + ut"))). (196)
Set 5:
A 2c — AQ)
{=0m =5 leh = 5= drin ) w7
1y (x, 1) = 21\/>E(icsch( “:Y) (O — %t”‘)) :Fcoth(m:Y) (O — f‘f )
X exp(z(r(lT—i_Y)(Tx“ +ut"))). (198)
(%, 1) = 21\/>E(:I:Lsech(r(1:Y) (O — 1"%%)) T tanh(m:Y) (O — 1”%%)))
x exp(i( “:Y) (tx®* + ut"))). (199)
Set 6:
A 20—-AQ
{DCO = 0,0él Z\f ,31 2\/, 2(T+1) } (200)
iy (x, 1) = izi))g(coth(r(l ) (e — f‘TQTt“)) +csch(r(1:Y) (Ox® 1"%#)))
X exp(t(M(Tx“ +ut*))). (201)
up(x,t) = jzziég(tsech(r(lljw (Qx* — %t”‘)) + tanh(r(ll:_Y) (Qx” ﬁ%t“)))
w exp(e(FEY) (e 4 ey 20

where y is given in Equation (200).
Set 7:
iA c+ A0
{aOZO,M:O,IBl:—\/E,y:m}. (203)
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T(1+Y) (1

(Oxt — Py exp(z(%w(Tx“ + ut*))). (204)

iA
t) = F—=csch
uq(x,t) $\/Ecsc ( 111

_ i r(1+Y) a ‘LlQ ® r(1+Y) I ®
uy(x,t) = j:ﬁsech(i(()x 1< +rt ) X exp(t(im (Tx* + ut"))). (205)
where y is given in Equation (203).
Set 8:
iA c+AQ
{ao—orwl—ofﬁl—ﬁ/ﬂ—m}- (206)

T(1+Y) (1

(Oxt — P gy exp(z(%w(Tx“ + ut*))). (207)

iA
uy(x,t) = i%csch( 111

T(1+Y) (1

(Ot — MYy exp(l(T—'_Y)(Tx“ Fut®)). (208)

up(x,t) = $isech( 11z

Ve
where y is given in Equation (206).

8.3. By the Generalized Kudryashov Scheme
For m = 1, Equation (69) reduces to:

() = ao + (209)

S

1+9(0)
where, ap and «; are unknown constants. By inserting Equation (209) into Equation (105) with
Equation (70) and collecting all the coefficients of the same order of 1({), we obtain the algebraic
equation involving ag,«1 and the other parameters. Now, using the Wolfram Mathematica aid,
we obtain the solution set below:

Set 1:
_ iMe—2w)  iMp—otw) 20— AQ(0% —4pw)
{0‘0 - 2\/5 &1 = \/E U= 2(T+1) (210)
Case 1:
u(xt)——&(U_Zw—i— p—0+w )
' Ve 2 1+ (ﬁ( 4w — o2 tan(%\/m(do + IO (O — ﬁr—oft“))) — 0'))
ra+y
xexp(t(%(rx“—l—yt”‘))). (211)
u(xt)*—ﬂ(a_zw—l— p—0+w )
’ Ve 2 1 (5 (Varw — o7 cot(3/apw — 0 (do + TP (O — {514))) + 7))

N

(x4 ut"))). (212)

X exp(t(r(le



Symmetry 2023, 15, 1862

22 of 29

p—o+w

Y (22 (vapw = tanh (3 Apw — o2 (dg + TLY) (e — f210))) +a)>)
< exp(e( MY ().
u(x t):_&(U—Zw p—0+w )
’ Ve 2 14 (52 (Vapw — o coth (1 y/Aow — o7 (do + TEY (Qxt — 1)) ) +0)
X exp(t(r(lz—Y) (Tx* 4 ut*))).
u(x,t)__\z;\g(a—ZZw - p—0+w - )
1= (d +I0Y) (thﬁ—ﬂm) * 2)
< exp(t( T e )
where p is given in Equation (210).
Case 2:
u(xt):7&(a—2w —0+w )
' Ve 2 1+ (52 (Utanh(%(d + F(HY) (Qxx — ”TQTt"‘))) +0‘))
w exp(i (R (e 4 gy,
u<xt)__&(a—2w —0+w )
’ Ve 21 gk (wcoth(§ (do+ MEY (Qxt — 1)) +0))
< exp(e( MY ().
u(x t)i_ﬂ(a 2w —0+w )
' Ve 2 (%(\/jtan( (d + (HY) (Qxx — ”TQTt“))) —0))
X exp(z(r(1 +Y) (Tx® + ut"))).
u(x,t)__i(a—hu —0+w )
Ve 2 1+(2;1(\/7cot(‘/?(d + B (e — JO pa ))) +a))
< exp(e( M e )
) = (4 —— ) xplu(t ) ot o))

o exp(—o(do+ "EY (Qxe - L pa)))

2c—AQ0?
2(t+1)

where y =

(213)

(214)

(215)

(216)

(217)

(218)

(219)

(220)
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iA w r(1+Yy) c
u(x,t) = ——(—w+ — ) x exp(i( (Tx™ + ). (221)
\/E 1+( r(1+Y 1( )0 ) a (T+1)
w (;r )(QX’X— (7141_2 £
Case 3:
iA p+w
u(x,t) = ——(—w+ )
Ve 1+ (2 tan (y/pw (do + "L (e — $514)) )
X exp(t(@(rx“ +ut"))). (222)
iA pt+w
u(x ) = o (—w )
Ve 1+(—@cot(m(do+W(Qx“—{ﬂ%t“))))
x exp(z(@(rx“ Fut)). (223)
iA p+w
u(x,t) = ——=(-w+ )
Ve 1—|—(—@tamh(\/—pﬁ(do—}—w(ﬁx“—ﬁ—ﬂrt“))))
X exp(t(w(rx“ +ut"))). (224)
iA p+w
u( ) = o (—w+ )
Ve 1+(—@coth( —pw(d0+W(Qxﬂ(—{%tﬂ))))
w exp(e(FFY) (e 4 ey (225)
where y = CJF(ZT);%' s
_ i, w PO+Y), o
u(x,t) \E( w ~+ 1T ( — — )) x exp(1( " (Tx* + (T+1)t )))- (226)
a)(do—l—r(l;rY) (Qx?— (Tl+-%—1‘t)' )
Case 4:
iAo p—0 r Y)
u(x,t) = ———=(5 + ) < exp(i( (Tx* + ut"))). (227)
ve'z gy (L (exp(o(do + Llﬁ) (Quxx — {fTQTt“))) —p))
where i = 2;(_7101()72'
Set 2:

{ao _iMo—2w) - iMp—otw) 20— AQ(0? — dpw) } (228)

2ve T e 2(t+1)
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Case 1:

u(x t)_ii(a—zw p—0+w )
' Ve 2 1+ (i( 4w —U%an(%\/m(d + IO (e — f’%t“))) —a))
< exp(e MY (e gy,
u(xt)—i—A(U Zw+ p—0+w )
Ve 2 (B (Vapw — o2 cot(§/Apw — 02 (do + TEE (e — 140 ) ) o))
X exp(t(r(le(Tx“ + ut"))).
u(x t)_ﬁ(U—Zw p—0+w )
Ve 2 7 (V0w = ¥ tanh (3/30w — 02 (do + " (O — {40))) + 7))
< exp(e( M (e gy,
u(x t)_ii(a—zw p—0+w )
Ve 2 (2 (Vapw — o2 coth (3y/3pw — o2 (do + LD (Ot — f214))) 4 0))
< exp(e( MY ().
u(x ) = (T2 pootw )
ve 2 1+(1< ; +">)
w d0+r(1;'Y> (Qxa,{:rigrta) 2
x exp(u (Y (e e,
where y is given in Equation (228).
Case 2:
u(x t)_ii(U—Zw —0+w )
Ve 2 1+(%<atanh<% (d + IO (e — ﬁ—ﬂrt“))) +a))
w exp(t(ZEEY) (x4 ey,
u(x t)_i(U—Zw —0+w )
' Ve 2 1+(%(Ucoth(%(d + (HY) (Qx® — 1+ ”Q ))) +0’))
< exp(t( M (e gy,
u(x t)_ii(a—Zw —0+w )
Ve 2 2 (do + " (O — {24)) ) — o))

(%(ﬁtam(

X expl!

((F(lz—Y)

(tx® + pt"))).

(229)

(230)

(231)

(232)

(233)

(234)

(235)

(236)
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A o—2w —0+w

g)=—F=
ot =y 1+(g—1(\/—702cot( (d + (”Y)(Qx“—{ﬂt*)))Jra)))
y exp(l(r(lz—Y) (Tx 4 1Y), (237)
A 0 —2w —0+w
u(x,t):l—( + v )
\/E 2 1+(Uexp( o(do+ <1+Y)(Qx"‘fﬁ—ﬂ_[t"‘)))7w)
xexp(l(w&x“—i—yt”‘))). (238)
where y = ZC(T)ﬂ‘)’
iA w
o) =~ et = —
W) (e (T1++1.2 )
y exp(t(r(lz—Y) (tx% + (Til)t“))). (239)
Case 3
iA pt+w
) = = (—w+
) T T (e (a0 - T (e )
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2c—AQ0?

where 1 = erl)

9. Physical Description of Solutions

Here, we illustrate some of our obtained solutions using different kinds of graphs. The
effect of the fractional order is also shown by means of the graphs (Figures 1-3).

[u(x,t)]
0.4r ] 0.4f
- 0.3 0.3
X
02/ ] - gk
2 —t=0 02 — =06
—t=1 —a=0.8
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-4 -2 0 2 4 -4 -2 0 2 4
X X
(a)
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0.0t : ; : ; ‘
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Figure 1. Represents a wave function of |u(x, t)| shown in Equation (110) forc =0.2,Q =01,A = 1;
d=571=05pBy=01p =05e=1Y =1;(a) -5 < x <5in2-D for « = 1, blue curve drawn
for t = 0, orange curve drawn for t = 1, green curve drawn for t = 2, (b) —5 < x < 5in 2-D for
0 <t < 2, blue curve drawn for « = 0.6, orange curve drawn for & = 0.8, green curve drawn for
a=1,(c)in3-D fora = 0.8and 0 < ¢t < 2, and (d) in the contour fora = 0.8 and 0 < t < 2.
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Figure 2. Cont.
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(d)
Figure 2. Represents a wave function of |u(x, t)| shown in Equation (117) for ¢ = 0.03;Q = 0.6;
A=0171=05€e=1Y=1; (a) =4 < x < 4in 2-D for « = 1, blue curve drawn for t = 0, orange
curve drawn for t = 1, green curve drawn for t = 2, (b) —4 < x < 4in2-D for 0 < t < 2, blue
curve drawn for & = 0.6, orange curve drawn for « = 0.8, green curve drawn for & = 1, (c) in 3-D for
a«=08and 0 < t < 2, and (d) in the contour forx = 0.8 and 0 < ¢ < 2.
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5- =2 —a=1.0
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Figure 3. Represents a wave function of |u(x, t)| shown in Equation (142) for ¢ = 0.03;Q = 0.5;
A=051=05w=060=05p=05dy=Le=1Y=1; (a) =3 < x <3in2-Dfora =1, blue
curve drawn for t = 0, orange curve drawn for f = 1, green curve drawn for ¢ = 2, (b) —4 < x < 4in
2-D for 0 < t < 2, blue curve drawn for & = 0.6, orange curve drawn for & = 0.8, green curve drawn
fora =1, (c)in3-Dfora =0.8and 0 < t < 2, and (d) in the contour fora = 0.8 and 0 < ¢ < 2.
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10. Conclusions

In this article, we obtain new analytical wave solutions to the Kuralay-II equations
along the truncated M-fractional derivative by utilizing the exp, function, the extended
sinh-Gordon equation expansion, and the generalized Kudryashov schemes. These results
are also verified and explained with 2-D, 3-D and contour plots using the Mathematica tool
in Figures 1-3. The constraints on the parameters are considered to secure the existence of
the obtained solitons. This work could be expanded in the future to include optical couplers,
metamaterials, and fractional order integrable Kuralay Equations. Fractional derivatives,
specifically, the truncated M-fractional derivative, are used for the first time in this model.
The fractional-order derivative provides more accurate and appropriate solutions than
the classical-/integer- order derivatives. The solutions obtained through the truncated
M-fractional derivative are the closest to the approximate results/experimental results.
The analytical wave solutions are highly desirable as they offer insights into this model
for use in various fields, like nonlinear optics, ferromagnetic materials and optical fibers.
Finally, it is suggested that, for dealing with other non-linear PDEs, the exp, function, the
extended sinh-Gordon equation expansion, and the generalized Kudryashov schemes are
very helpful, reliable and straightforward to apply. The results obtained in this paper may
be useful for facilitating progress in the further analysis of this model applied to nonlinear
optics, ferromagnetic materials and optical fibers.
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