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Abstract: In this research, random censoring is employed as a methodology for parameter estimation
within the context of an exponential distribution. These parameter estimations are conducted using
both the Bayesian and maximum likelihood approaches. In the Bayesian framework, Lindley’s
approximation method is applied to derive estimates, which are subsequently assessed under three
distinct balanced loss functions. To gauge the efficacy of different estimation techniques, simulation-
based investigations are conducted. Additionally, a real-world data analysis is executed to illustrate
the practical applicability of these methodologies. The findings consistently underscore the superi-
ority of Bayesian parameter estimates in comparison with their maximum likelihood counterparts
across all analyzed methodologies.

Keywords: randomly censored; exponential distribution; maximum likelihood estimation; Bayesian
estimation; Lindley’s approximation
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1. Introduction

The exponential distribution (EXPD) stands as a foundational form of probability
distribution, employed to illustrate the duration of events occurring at a consistent and
uniform pace. This continuous probability distribution finds extensive application across
various domains to depict situations encompassing intervals of waiting, lifespans, or time
frames. Owing to its unchanging failure rate and memoryless property, the EXPD holds
significant importance in survival analysis, particularly within the realm of cure rate mod-
eling. Approaches for computing cure fractions make use of this distribution to integrate
insights from ailments such as cancer, thus furnishing a comprehensive understanding of
survival probabilities. The CDF of the EXPD can be formulated as follows:

F(x) = 1− e−µx, µ > 0, x > 0. (1)

Additionally, its corresponding PDF is defined as

f (x) = µe−µx, µ > 0, x > 0. (2)

The qth quantile function of the EXPD can be expressed as

xq =
− ln(1− u)

µ
. (3)
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Numerous academics have paid close attention to the lifetime distribution modeled by
the EXPD. Through a multiple type-II censoring method, Kang and Park [1] investigated
estimating the exponentiated EXPD. Within the context of a multiple type-II censoring
scheme, Singh and Kumar [2] produced Bayes estimators for the exponential parameter.
Using a type-II hybrid censoring approach, Ganguly et al. [3] concentrated on exact infer-
ence regarding the two-parameter EXPD. Childs et al. [4] looked at the exact distribution
of MLEs for the two-parameter EXPD’s parameters and quantiles while taking the hybrid
censoring scheme into account. Using several type-II censored samples, Kang et al. [5]
investigated entropy estimation for a double EXPD. When dealing with lower record val-
ues in the data, Kang et al. [6] generated MLEs and approximations for the unknown
parameters of the generalized EXPD. Chan et al. [7] focused on type-II progressive hybrid
censoring and statistical inference for the two-parameter EXPD. In the context of a general-
ized progressive hybrid censoring scheme, Cho et al. [8] examined the exact distribution of
MLEs and the confidence intervals for EXPD parameters. Ahmed [9] explored Bayesian
estimation methods for the EXPD using interval-censored data featuring a cure fraction.

Figure 1 shows different curves of the PDF for the EXPD with varying values of µ.

Figure 1. Plot of the PDF of the EXPD.

In life testing scenarios, the researcher may encounter limitations in observing the
lifetimes of all the tested items due to constraints such as time, cost, and data collection
logistics. To mitigate the challenges associated with time and cost, censored observations
are often employed. Life testing models encompass a range of censoring approaches,
among which conventional type-I and type-II censoring and progressive, hybrid, and
random censoring schemes are frequently utilized. Within this paper, our focus is on
situations where an item is lost or exits the testing experiment in an arbitrary manner before
experiencing failure or completing the full test duration. This type of scheme is termed
random censoring. Such censored observations are notably prevalent in medical studies,
particularly in clinical trials. In these trials, patients might discontinue treatment before
reaching the intended endpoint. Consequently, the precise survival times for these subjects
remain unknown, classifying them as randomly censored observations.

Gilbert [10] brought the idea of randomly censored data into the literature. Then,
in the setting of random censorship, Breslow and Crowley [11] carried out an extensive
investigation that involved large sample analysis of life table and product limit estimates.
Csorgo and Horvath [12] contributed to this field by presenting the Koziol–Green model,
which was designed specifically to address random censorship scenarios. Additionally,
Kim [13] devised chi-square goodness of fit tests, which are tailored for datasets subject to
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random censorship. Further contributions were made by Ghitany and Al-Awadhi [14], who
delved into the subject of maximum likelihood estimation for the parameters of the Burr XII
distribution under the influence of random censoring. Saleem and Aslam [15] concentrated
on the Rayleigh distribution within the context of a random censoring time. Under the
constraints of random censoring, Danish and Aslam [16,17] investigated Bayesian estimation
for the generalized exponential and Weibull distributions, respectively. Furthermore, when
dealing with randomly censored data, Krishna et al. [18] generated estimates for the
Maxwell distribution. The randomly censored generalized inverted EXPD was examined
by Garg et al. [19]. The development of the maximum likelihood and Bayesian estimate
methods for the randomly censored geometric distribution was pioneered by Krishna and
Goel [20].

Building on this, Krishna and Goel [21] broadened their investigation to consider
both conventional and Bayesian conclusions in the context of the two-parameter EXPD
with randomly censored data. Using data that had been randomly censored, Kumar
and Kumar [22] looked at estimates inside the inverse Weibull distribution. Recently,
Garg et al. [23] focused on the parameter and reliability characteristic estimates in the
Lindley distribution when presented with randomly censored data. Objective Bayesian
analysis for the Weibull distribution was the topic of discussion for Ajmal et al. [24],
who then applied their findings to the field of random censorship modeling. Goel and
Krishna [25] investigated several methods for estimating the parameters within the two-
parameter Geometric distribution when confronted with randomly censored data in a
parallel line of research.

The subsequent sections of this article are structured as follows. Section 2 presents the
mathematical framework for randomly censored data, where both the failure and censoring
times adhere to the EXPD. In Section 3, the focus is on the MLE for the parameters that are
not known. Moving on to Section 4, Bayes estimators are developed within the context of
three balanced loss functions, utilizing Lindley’s approximation method. Section 5 offers
an illustrative example using numerical data. Section 6 encompasses the simulation study.
Finally, Section 7 provides the concluding remarks.

2. Randomly Censored Exponential Distribution

Let us consider an experimental set-up involving n units, each with lifetimes denoted
as X1, . . . , Xn. These lifetimes are characterized as independent and identically distributed
(iid) random variables with the CDF FX(x) and PDF fX(x). Additionally, we have another
sequence T1, . . . , Tn representing the iid random censoring times for these units, described
by the CDF FT(t) and PDF fT(t). Assuming mutual independence between Xi and Ti, we
can observe iid random pairs (Z1, D1), . . . , (Zn, Dn), where Zi = min(Xi, Ti), i = 1, . . . , n.
Additionally, we define Di as

Di =

{
1 if Xi ≤ Ti,
0 if Xi ≥ Ti.

It becomes apparent that the joint PDF of Zi and Di is

fZ,D(z, d) =
(

fX(z)(1− FT(z))
)d( fT(z)(1− FX(z))

)1−d,

z ≥ 0, d = 0, 1.
(4)

Additionally, the random variables X and T adhere to the proportional hazards model
governed by the proportionality constant λ > 0, given by(

1− FT(t)
)
=
(
1− FX(t)

)λ. (5)

When λ equals zero, Equation (5) describes a scenario without censoring. By combin-
ing Equations (4) and (5), we arrive at the joint PDF of Zi and Di:

fZ,D(z, d) = fX(z)
(
1− FX(z)

)λ
λ1−d, z ≥ 0, d = 0, 1. (6)
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By further employing Equations (4) and (5), the joint PDF in Equation (6) assumes the
following expression:

fZ,D(z, d; µ, λ) = µe−µze−µλzλ1−d. (7)

3. Maximum Likelihood Estimators

In this section, we initiate our inquiry by utilizing a randomly censored sample
represented by (z, d) = (zi, di) for i = 1, 2, . . . , n. Our emphasis is on examining the
MLE procedure to ascertain the values of the unspecified parameters. From Equation (7),
the likelihood function connected with the provided sample can be articulated in the
subsequent manner:

L(z, d; µ, λ) =
n

∏
i=1

µe−µze−µλzλ1−d. (8)

L(z, d; µ, λ) = µne−µ(1−λ)∑n
i=1 zi λn−∑n

i=1 di . (9)

The logarithmic likelihood function connected with the EXPD, denoted by Equation (9),
can be expressed as

`(µ, λ) = n ln µ− µ(1− λ)
n

∑
i=1

zi −
(
n−

n

∑
i=1

di
)

ln λ. (10)

Thus, to obtain the MLEs for µ and λ, we compute the initial derivatives of the natural
logarithm of the likelihood function Equation (10) with respect to µ and λ. By equating
these derivatives to zero, we derive the subsequent system of three equations:

n
µ
− (1− λ)

n

∑
i=1

zi = 0, (11)

µ
n

∑
i=1

zi +
n−∑n

i=1 di

λ
= 0. (12)

Using Equations (11) and (12), we determine the MLEs for µ̂ and λ̂, respectively, to be

µ̂ =
n

(1− λ)∑n
i=1 zi

, (13)

λ̂ = −n−∑n
i=1 di

µ ∑n
i=1 zi

. (14)

The inverted Fisher information matrix is as follows:

I−1(µ, λ) =

 − ∂2`
∂µ2 − ∂2`

∂µ∂λ

− ∂2`
∂λ∂µ − ∂2`

∂λ2

−1

↓(µ,λ)=(µ̂,λ̂)

=

(
v̂ar(µ̂) cov(µ̂, λ̂)

cov(λ̂, µ̂) v̂ar(λ̂)

)
.

The diagonal elements represent the variances of the MLEs for the parameters. By
substituting the MLEs of the parameters µ and λ, we obtain the estimated variances for
MLEs µ̂ and λ̂.

4. Bayesian Inference

This section involves a discussion of the Bayes estimators for the undisclosed parame-
ters of the model defined in Equation (7), utilizing randomly censored data. During this
analysis, we employ three distinct balanced loss functions, specifically BSE, BLINEX, and
BGE. Within this framework, we make an assumption about the independent gamma priors
for the parameters µ and λ as follows:
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π1(µ) ∝ µd1−1e−d2µ, µ > 0.

π2(λ) ∝ λd3−1e−d4λ, λ > 0.

The joint prior distribution of µ and λ can be expressed as follows:

π(µ, λ) ∝ µd1−1λd3−1e−d2µ−d4λ, λ > 0.

The joint posterior distribution of µ and λ is as follows:

π∗(µ, λ) = µd1 e−µλy−µy−d2µ−d4λλd3−d. (15)

In Bayesian estimation, we employ both symmetrical and asymmetrical balanced loss
functions. This approach is elucidated in the following description.

4.1. Symmetric Balanced Loss Functions
The BSE Loss Function

Jozani et al. [26] introduced a generalized balanced loss function, denoted as

Lρ,v,ψ0(ψ, ψ̂) = vρ(ψ̂, ψ̂0) + (1−v)ρ(ψ, ψ̂), (16)

where v (with 0 ≤ v ≤ 1) is a weight parameter and ρ represents a user-defined loss
function. The target estimator ψ̂0 is often obtained through the ML or least squares methods.
For the BSE loss function, we choose ρ(ψ, ψ̂) = (ψ̂− ψ)2, leading to the following form:

L(ψ, ψ̂) = v(ψ̂0 − ψ̂)2 + (1−v)(ψ̂− ψ)2. (17)

The Bayes estimate for the unknown parameter ψ is then given by

ψ̂(y) = vψ̂0 + (1−v)E(ψ|y). (18)

In this equation, 0 ≤ v ≤ 1 represents a weight parameter, and ρ is a user-defined
loss function. The estimator ψ̂0 serves as a general “target” estimator for ψ, often obtained
through methods like ML, least squares, or unbiasedness. This balanced loss function can
be customized to various loss functions, including absolute value, squared error, LINEX,
and general entropy loss functions. By selecting the loss function ρ(ψ, ψ̂) = (ψ̂ − ψ)2,
Equation (16) simplifies to the BSE loss function. in the following form:

L(ψ, ψ̂) = v(ψ̂0 − ψ̂)2 + (1−v)(ψ̂− ψ)2, (19)

The corresponding Bayes estimate for the unknown parameter ψ is then determined
as follows:

ψ̂(y) = vψ̂0 + (1−v)E(ψ|y). (20)

4.2. Asymmetric Balanced Loss Functions
4.2.1. The BLINEX Loss Function

The BLINEX loss function with a shape parameter a (where a 6= 0) is derived by
defining ρ(ψ, ψ̂) = ea(ψ̂−ψ) − a(ψ̂− ψ)− 1, as discussed by Zellner [27]. As a result, the
Bayes estimation of ψ using the BLINEX function is given by

ψ̂(y) =
−1
a

ln[ve−aψ̂0 + (1−v)E(e−aψ|y)]. (21)



Symmetry 2023, 15, 1854 6 of 14

4.2.2. The BGE Loss Function

The BGE loss function, determined by the shape parameter a, is defined as

ρ(ψ, ψ̂) = ( ψ̂
ψ )

a − a ln( ψ̂
ψ ) − 1. Consequently, the Bayes estimation of ψ using the BGE

loss function is expressed as follows:

ψ̂(y) =

[
v(ψ̂0)

−a + (1−v)E(ψ−a|y)
]−1

a

. (22)

The versatility of the balanced loss functions is evident as they encompass various
special cases, including the ML estimate and both the symmetric and asymmetric Bayes
estimates. For example, under the BSE loss function in Equation (20), the Bayes estimate
reduces to the ML estimate when v = 1, while for v = 0, it becomes the Bayes estimate
relative to the SE loss function.

Likewise, the Bayes estimator under the BLINEX loss function, as shown in Equation (21),
reduces to the ML estimate when v = 1, and when v = 0, it corresponds to the case of the
LINEX loss function, which is asymmetric.

Similarly, under the BGE loss function in Equation (22), the Bayes estimator reduces to
the ML estimate when v = 1, and when v = 0, it corresponds to the GE loss function.

4.3. Lindley’s Approximation

In this section, we apply Lindley’s approximation method to calculate the values of µ
and φ based on random censoring using BSE, BLINEX, and BGE loss functions (refer to
Lindley [28]). The ratio of integrals that arises in Bayesian analysis is expressed as follows:

Q̂B(µ, λ) = E[Q(µ, λ)|x] =

∫
µ

∫
λ Q(µ, λ)e`(x|µ,λ)+ρ(µ,λ)dµdλ∫

µ

∫
λ e`(x|µ,λ)+ρ(µ,λ)dµdλ

. (23)

To obtain an asymptotic approximation of Lindley’s procedure, we utilize a Taylor
series expansion for ρ(µ, λ) = ln[π(µ, λ)] and `(µ, λ) in Equation (23), centered around the
MLE of (µ, λ):

Q̂B(µ, λ) = E[Q(µ, λ)|x] =Q(µ̂, λ̂) +
1
2

m

∑
i,j

[
Qij(µ̂, λ̂) + 2Qi(µ̂, λ̂)ρj(µ̂, λ̂)

]
ϕ̂ij

+
1
2

m

∑
i,j,s,k

ˆ̀ ijsQ̂k(µ̂, λ̂)ϕ̂ij ϕ̂sk,
(24)

where i, j, s, k = 1, 2, . . . , m, and then

Q̂B(µ, λ) =Q(µ̂, λ̂) +
1
2

[
(Q̂µµ + 2Q̂µρ̂µ)ϕ̂µµ + (Q̂λµ + 2Q̂λρ̂µ)ϕ̂λµ + (Q̂µλ + 2Q̂µρ̂λ)ϕ̂µλ

+ (Q̂λλ + 2Q̂λρ̂λ)ϕ̂λλ

]
+

1
2

[
(Q̂µ ϕ̂µµ + Q̂λ ϕ̂µλ)( ˆ̀

µµµ ϕ̂µµ + ˆ̀
µλµ ϕ̂µλ + ˆ̀

λµµ ϕ̂λµ

+ ˆ̀
λλµ ϕ̂λλ) + (Q̂µ ϕ̂λµ + Q̂λ ϕ̂λλ)( ˆ̀

λµµ ϕ̂µµ + ˆ̀
µλλ ϕ̂µλ + ˆ̀

λµλ ϕ̂λµ + ˆ̀
λλλ ϕ̂λλ)

]
,

(25)

where

ˆ̀ht =
∂h+t`

∂µh∂λt , ρ = ln π(µ, λ), ρµ =
∂ρ

∂µ
, ρλ =

∂ρ

∂λ
, Qµλ =

∂2Q
∂µ∂λ

, Qλµ =
∂2Q

∂λ∂µ
,

Qµ =
∂Q
∂µ

, Qµµ =
∂2Q
∂µ2 , Qλ =

∂Q
∂λ

, and Qλλ =
∂2Q
∂λ2 .
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The variables h and t can each take on values of zero, one, two, or three, with the
condition that their sum, h + t, equals three. In this particular context, the function `(., .)
represents the log-likelihood function of the observed data, and π(µ, λ) denotes the joint
prior density function for (µ, λ). Furthermore, ϕij refers to the (i, j)th element of the inverse
FIM. Lastly, µ̂ and λ̂ represent the ML estimators for µ and λ, respectively.

The Bayes estimates for various parameters using the BSE, BLINEX, and BGE loss
functions are given by the following equations, where ψ̂ =

[
µ̂, λ̂

]
:

(1) The case of the BSE loss function

If Q(µ̂, λ̂) = ψ̂, then the Bayes estimate is given by

ψ̂BSE =vψ̂ML + (1−v)

[
ψ̂ML +

1
2

[
(Q̂µµ + 2Q̂µρ̂µ)ϕ̂µµ + (Q̂λµ + 2Q̂λρ̂µ)ϕ̂λµ + (Q̂µλ

+ 2Q̂µρ̂λ)ϕ̂µλ + (Q̂λλ + 2Q̂λρ̂λ)ϕ̂λλ

]
+

1
2

[
(Q̂µ ϕ̂µµ + Q̂λ ϕ̂µλ)( ˆ̀

µµµ ϕ̂µµ + ˆ̀
µλµ ϕ̂µλ

+ ˆ̀
λµµ ϕ̂λµ + ˆ̀

λλµ ϕ̂λλ) + (Q̂µ ϕ̂λµ + Q̂λ ϕ̂λλ)( ˆ̀
λµµ ϕ̂µµ + ˆ̀

µλλ ϕ̂µλ + ˆ̀
λµλ ϕ̂λµ

+ ˆ̀
λλλ ϕ̂λλ)

]]
.

(26)

(2) The case of the BLINEX loss function

If Q(µ̂, λ̂) = e−aψ̂, then the Bayes estimate is given by

ψ̂BLINEX =
−1
a

ln

[
v e−aψ̂ML + (1−v)

{
e−aψ̂ML +

1
2

[
(Q̂µµ + 2Q̂µρ̂µ)ϕ̂µµ + (Q̂λµ + 2Q̂λρ̂µ)

× ϕ̂λµ + (Q̂µλ + 2Q̂µρ̂λ)ϕ̂µλ + (Q̂λλ + 2Q̂λρ̂λ)ϕ̂λλ

]
+

1
2

[
(Q̂µ ϕ̂µµ + Q̂λ ϕ̂µλ)( ˆ̀

µµµ ϕ̂µµ

+ ˆ̀
µλµ ϕ̂µλ + ˆ̀

λµµ ϕ̂λµ + ˆ̀
λλµ ϕ̂λλ) + (Q̂µ ϕ̂λµ + Q̂λ ϕ̂λλ)( ˆ̀

λµµ ϕ̂µµ + ˆ̀
µλλ ϕ̂µλ

+ ˆ̀
λµλ ϕ̂λµ + ˆ̀

λλλ ϕ̂λλ)
]}]

.

(27)

(3) The case of the BGE loss function

If Q(µ̂, λ̂) =
[
ψ̂
]−a, then the Bayes estimate is given by

ψ̂BGE =

[
v [ψ̂ML]

−a + (1−v)
{
[ψ̂ML]

−a +
1
2

[
(Q̂µµ + 2Q̂µρ̂µ)ϕ̂µµ + (Q̂λµ + 2Q̂λρ̂µ)ϕ̂λµ

+ (Q̂µλ + 2Q̂µρ̂λ)ϕ̂µλ + (Q̂λλ + 2Q̂λρ̂λ)ϕ̂λλ

]
+

1
2

[
(Q̂µ ϕ̂µµ + Q̂λ ϕ̂µλ)( ˆ̀

µµµ ϕ̂µµ

+ ˆ̀
µλµ ϕ̂µλ + ˆ̀

λµµ ϕ̂λµ + ˆ̀
λλµ ϕ̂λλ) + (Q̂µ ϕ̂λµ + Q̂λ ϕ̂λλ)( ˆ̀

λµµ ϕ̂µµ + ˆ̀
µλλ ϕ̂µλ

+ ˆ̀
λµλ ϕ̂λµ + ˆ̀

λλλ ϕ̂λλ)
]}]−1

a

.

(28)

5. Clinical Applications

To exemplify the proposed methodologies, we scrutinize the numerical data provided
by Ghitany and Al-Awadhi [14]. The subsequent datasets pertain to 101 patients diagnosed
with advanced acute myelogenous leukemia, as documented in the International Bone
Marrow Transplant Registry. Among these patients, 50 underwent an allogeneic bone
marrow transplant, utilizing marrow from a histocompatibility leukocyte antigen (HLA)-
matched sibling to restore their immune systems. The remaining 51 patients received an
autologous bone marrow transplant, wherein their own marrow was reintroduced after
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substantial chemotherapy doses with the intention of rejuvenating their compromised
immune systems. The recorded durations of leukemia-free survival (measured in months)
for the 50 allogeneic transplant patients (denoted by “asterisks” to indicate instances of
random censorship) are as follows: 0.030, 0.493, 0.855*, 1.184, 1.283*, 1.480, 1.776, 2.138,
2.500*, 2.763, 2.993*, 3.224, 3.421, 4.178*, 4.441, 5.691, 5.855*, 6.941, 6.941, 7.993, 8.882, 8.882,
9.145*, 11.480, 11.513, 12.105, 12.796, 12.993*, 13.849, 16.612*, 17.138*, 20.066, 20.329*, 22.368,
26.776*, 28.717, 28.717*, 32.928, 33.783*, 34.221, 34.770*, 39.539, 41.118*, 45.033, 46.053,
46.941*, 48.289, 57.401*, 58.322, and 60.625.

The K-S test was employed to ascertain whether a given sample adhered to a specific
distribution. In this context, our aim was to employ the K-S test in order to verify if the
observed durations of leukemia-free survival among the allogeneic transplant patients
conformed to an EXPD. Upon performing the Kolmogorov–Smirnov test for the EXPD,
the resulting value was computed to be 0.0915978. Notably, this value is lower than the
corresponding critical value at the 5% significance level, which stands at 0.1884 at n = 50.
Additionally, the associated p value was found to be 0.761215.

As the p value surpasses the threshold significance level of 0.05, it can be deduced
that the data align with an EXPD. Furthermore, we generated a graphical representation
of the empirical CDF of the dataset along with the CDF of the EXPD, depicted in Figure 2.
The visual representation indicates a remarkable proximity between the two CDFs, thereby
offering supplementary support to the conclusion that the EXPD adequately characterizes
this dataset.

Figure 2. Plot of the fitted functions and a PP plot of the EXPD.

In order to obtain the estimations, we employed both the maximum likelihood method
and the Lindley method. For the latter, non-informative gamma priors were utilized
for both µ and λ. In this specific context, the hyperparameters were designated as zero
(a1 = a2 = a3 = a4 = 0). Subsequently, an exploration was conducted to assess the
influence of diverse loss functions, specifically BSE loss, BLINEX loss, and BGE loss. This
investigation encompassed varying values for the shape parameter “a” within the BLINEX
and BGE loss functions. Furthermore, the analysis encompassed different magnitudes
of “v” for the parameters µ = 0.02 and λ = 2.0. The comprehensive outcomes of this
investigation are meticulously detailed in Table 1.
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Table 1. Estimation of µ and φ using MLE and Lindley method.

Parameter MLE v BSEL
BLINEX BGE

a = −6 a = 0.2 a = 6 a = −6 a = 0.2 a = 6

µ 0.01797 0.0 0.01908 0.01914 0.01908 0.01902 0.02072 0.01838 0.01600
0.3 0.01875 0.01879 0.01875 0.01871 0.02008 0.01826 0.01644
0.7 0.01841 0.01844 0.01841 0.01839 0.01931 0.01813 0.01699
0.9 0.01808 0.01809 0.01808 0.01807 0.01835 0.01801 0.01768

φ 1.99998 0.0 2.01858 2.35617 2.35617 1.64824 2.34372 1.89903 1.65700
0.3 2.01300 2.30495 1.98439 1.69925 2.26555 1.92866 1.72085
0.7 2.00742 2.23061 1.99107 1.77312 2.17097 1.95885 1.80725
0.9 2.00184 2.09301 1.99775 1.90909 2.04977 1.98960 1.93766

6. Simulation Study

In this subsection, a concise simulation study is conducted to illustrate the effectiveness
of both the ML estimators and Lindley’s approximation for the EXPD. The dataset was
generated from the EXPD using the quantile function outlined in Equation (3). Subsequently,
estimates and MSE values were computed. The following formula was employed to
determine the MSE values:

MSE(ψ̂) =
1000

∑
i=1

(ψ̂i − ψ)2

1000
, where i = 1, 2, and (ψ1, ψ2) = (µ, φ). (29)

For the simulation design, the parameter values were set to µ = 1.50 and φ = 1.90.
Additionally, the chosen sample sizes were n = 10, 20, 30, 40, 50 60, 70, 80, 90, and 100.
Lindley’s approximation method involved employing informative gamma priors for both
µ and φ. In this particular scenario, the hyperparameters were set to (a1 = a3 = 0.4,
a2 = a4 = 0.6). Subsequently, an exploration was carried out to evaluate the impact of vari-
ous loss functions, specifically the BSE loss, BLINEX loss, and BGE loss. This investigation
covered the manipulation of different values for the shape parameter “a” within the BLINEX
and BGE loss functions. Furthermore, the analysis encompassed varying magnitudes of
“v” for the parameters µ and λ. The simulation results are presented in Tables 2 and 3,
encompassing the true values, parameter estimates, and corresponding MSE values.

Table 2. Estimation of µ and corresponding MSEs using MLE and Lindley method.

n MLE v BSEL
BLINEX BGE

a = −6 a = 0.2 a = 6 a = −6 a = 0.2 a = 6

10 1.1276 0.0 0.78831 1.37152 0.77303 0.78073 1.33457 0.74674 0.80524
0.56951 0.5303 0.07065 0.55025 0.53323 0.07259 0.54242 0.49591

0.3 0.8901 1.32864 0.87619 0.83085 1.28832 0.83994 0.84649
0.39157 0.08125 0.40751 0.46418 0.08667 0.45142 0.4418

0.7 0.99188 1.27035 0.98202 0.90309 1.23186 0.94944 0.90947
0.27898 0.10057 0.28817 0.37389 0.10976 0.32173 0.36599

0.9 1.09367 1.17763 1.09071 1.03576 1.15834 1.07908 1.0355
0.19252 0.14213 0.19455 0.23794 0.14958 0.20352 0.23955

20 1.14933 0.0 0.88925 1.32387 0.87887 0.85798 1.26691 0.85457 0.87257
0.52439 0.39053 0.06472 0.40235 0.42363 0.07927 0.42992 0.40382

0.3 0.96728 1.28837 0.95817 0.90484 1.2373 0.93102 0.9136
0.29874 0.0766 0.30796 0.36604 0.09264 0.33687 0.35504

0.7 1.0453 1.24283 1.03901 0.97054 1.20357 1.01702 0.97381
0.2220 0.09497 0.22736 0.29301 0.11008 0.24753 0.28971

0.9 1.12333 1.17862 1.12147 1.08248 1.16416 1.11416 1.08256
0.16031 0.12657 0.16155 0.19018 0.13346 0.16685 0.19093
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Table 2. Cont.

n MLE v BSEL
BLINEX BGE

a = −6 a = 0.2 a = 6 a = −6 a = 0.2 a = 6

30 1.14299 0.0 0.92128 1.27407 0.91356 0.88668 1.2138 0.89356 0.89727
0.50454 0.3511 0.07994 0.35936 0.38677 0.10281 0.38086 0.37306

0.3 0.98779 1.24489 0.98104 0.93073 1.19498 0.95972 0.93674
0.27647 0.09212 0.2830 0.33506 0.1130 0.30463 0.32795

0.7 1.05431 1.20911 1.04966 0.99115 1.17431 1.03287 0.99311
0.21294 0.10899 0.21682 0.27076 0.12516 0.23176 0.26908

0.9 1.12082 1.16247 1.11946 1.08905 1.1513 1.11399 1.08899
0.1605 0.13405 0.16143 0.18362 0.13987 0.16541 0.18432

40 1.15909 0.0 0.95866 1.26744 0.95218 0.92223 1.20418 0.93452 0.93026
0.49236 0.30829 0.07902 0.31478 0.34393 0.10514 0.33252 0.33399

0.3 1.01879 1.24211 1.01313 0.96456 1.19205 0.9949 0.96905
0.24469 0.08979 0.24985 0.29711 0.11178 0.26721 0.29208

0.7 1.07892 1.21189 1.07503 1.02181 1.17881 1.06095 1.02335
0.19036 0.10402 0.19344 0.23975 0.11961 0.20528 0.23857

0.9 1.13905 1.17417 1.1379 1.11173 1.16427 1.13338 1.1119
0.14531 0.12383 0.14606 0.16423 0.12889 0.1492 0.16464

50 1.04347 0.0 0.83702 1.10906 0.83293 0.8203 1.06071 0.82227 0.83214
0.4787 0.45382 0.16908 0.45869 0.46948 0.20483 0.47044 0.45279

0.3 0.89895 1.0926 0.89494 0.86133 1.05686 0.881 0.86736
0.37193 0.18068 0.37655 0.41543 0.20724 0.39276 0.40743

0.7 0.96089 1.07378 0.95792 0.91626 1.05186 0.94587 0.91696
0.29977 0.19465 0.30288 0.34849 0.21118 0.31589 0.34776

0.9 1.02283 1.05175 1.02191 1.00057 1.04576 1.01777 0.99894
0.23736 0.21195 0.23819 0.25829 0.21658 0.24209 0.26021

60 1.15653 0.0 0.98525 1.22918 0.98042 0.94941 1.16945 0.96626 0.95536
0.44641 0.27552 0.0861 0.28017 0.30885 0.11901 0.29364 0.3020

0.3 1.03663 1.2109 1.03243 0.9887 1.16662 1.01825 0.99192
0.22278 0.09526 0.22654 0.26719 0.11999 0.23952 0.26383

0.7 1.08802 1.19004 1.08513 1.04063 1.16286 1.0744 1.04166
0.1769 0.10652 0.1792 0.21702 0.12208 0.18807 0.21625

0.9 1.1394 1.16567 1.13856 1.11833 1.15825 1.13516 1.11837
0.13789 0.12076 0.13846 0.15283 0.12517 0.14086 0.15302

70 1.16338 0.0 1.01023 1.22857 1.0056 0.96925 1.17302 0.99122 0.97413
0.41015 0.24821 0.08331 0.25254 0.28637 0.11438 0.266 0.28105

0.3 1.05617 1.2118 1.05228 1.00713 1.17096 1.03878 1.00976
0.20344 0.09199 0.20682 0.24764 0.11515 0.21877 0.24507

0.7 1.10212 1.19294 1.09951 1.05663 1.16815 1.0897 1.05752
0.16411 0.10241 0.16614 0.2015 0.11679 0.17399 0.20089

0.9 1.14806 1.17134 1.14731 1.12895 1.16468 1.14429 1.12904
0.13023 0.1152 0.13073 0.14353 0.11919 0.13282 0.14363

80 1.15634 0.0 1.02797 1.21426 1.02367 0.98119 1.16645 1.00934 0.98479
0.38418 0.22931 0.08987 0.23322 0.27308 0.11756 0.24643 0.26927

0.3 1.06648 1.19913 1.06299 1.01673 1.16424 1.0504 1.01851
0.19313 0.09816 0.19609 0.23753 0.11857 0.20704 0.23586

0.7 1.10499 1.18229 1.10272 1.06236 1.16127 1.09398 1.06281
0.16093 0.10795 0.16268 0.19575 0.1205 0.16962 0.19551

0.9 1.14351 1.16327 1.14287 1.12682 1.15767 1.14027 1.12683
0.1327 0.11971 0.13314 0.14442 0.12315 0.13495 0.14456

90 1.14176 0.0 1.02324 1.18964 1.01935 0.97738 1.14726 1.00595 0.98066
0.35236 0.23299 0.10184 0.23658 0.27626 0.12926 0.24907 0.27275

0.3 1.05879 1.17691 1.05567 1.01154 1.14639 1.04408 1.01301
0.1989 0.10944 0.20161 0.24166 0.12924 0.21188 0.24024

0.7 1.09435 1.16291 1.09233 1.05493 1.14479 1.08437 1.05509
0.16815 0.11824 0.16977 0.20118 0.13013 0.17627 0.20114

0.9 1.12991 1.14736 1.12935 1.11497 1.1426 1.127 1.11479
0.14075 0.12853 0.14116 0.15177 0.1317 0.14287 0.15199

100 1.04110 0.0 0.89263 1.05957 0.88974 0.86698 1.0236 0.8802 0.87312
0.34724 0.32031 0.20518 0.33353 0.3470 0.2374 0.30389 0.30899

0.3 0.93717 1.05527 0.93456 0.90245 1.03077 0.92446 0.90485
0.32558 0.20728 0.28841 0.30342 0.22849 0.32946 0.31036

0.7 0.98171 1.0499 0.97987 0.94796 1.03599 0.97201 0.94732
0.27583 0.21072 0.27769 0.31096 0.22254 0.28585 0.31175

0.9 1.02625 1.04348 1.0257 1.01201 1.03998 1.02317 1.01074
0.23105 0.21539 0.23156 0.24446 0.21835 0.23395 0.24584
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Table 3. Estimation of λ and corresponding MSEs using MLE and Lindley method.

n MLE v BSEL
BLINEX BGE

a = −6 a = 0.2 a = 6 a = −6 a = 0.2 a = 6

10 1.45133 0.0 2.01527 1.92692 1.92692 1.04771 2.08437 1.71507 1.05876
0.31143 0.28443 0.15966 0.2576 0.29469 0.2627 0.22204 0.27467

0.3 1.84609 1.87225 1.80146 1.09966 1.98038 1.62729 1.11165
0.23733 0.15836 0.19794 0.21012 0.21282 0.22469 0.29323

0.7 1.67691 1.79016 1.64744 1.17611 1.83849 1.54736 1.19143
0.20326 0.16631 0.20743 0.5967 0.18125 0.25121 0.5815

0.9 1.50773 1.61857 1.49943 1.32658 1.60014 1.4743 1.34571
0.27222 0.21866 0.27654 0.4146 0.22329 0.29432 0.40359

20 1.53751 0.0 1.99922 1.97301 1.97301 1.17838 2.09339 1.79772 1.19854
0.18733 0.14528 0.08094 0.13354 0.16117 0.14368 0.11749 0.13286

0.3 1.8607 1.91921 1.82822 1.2291 1.99484 1.71221 1.25236
0.10217 0.07563 0.10002 0.19073 0.10514 0.1167 0.16219

0.7 1.72219 1.83911 1.70097 1.30262 1.86316 1.6334 1.32971
0.10682 0.07774 0.11124 0.19836 0.08453 0.13696 0.17099

0.9 1.58368 1.67724 1.57774 1.43982 1.65417 1.56057 1.46243
0.15924 0.11722 0.16224 01584 0.1248 0.15272 0.14322

30 1.53687 0.0 1.94685 1.93865 1.93865 1.21814 2.03502 1.79429 1.24396
0.18289 0.12683 0.07319 0.12136 0.10104 0.11608 0.11595 0.16869

0.3 1.82385 1.88614 1.79869 1.26657 1.94306 1.70979 1.29509
0.09874 0.0712 0.0991 0.13774 0.09009 0.11471 0.10594

0.7 1.70086 1.8088 1.68428 1.33552 1.82181 1.63183 1.36606
0.10915 0.07748 0.11339 0.15643 0.08208 0.13408 0.32777

0.9 1.57787 1.65751 1.57319 1.45795 1.63544 1.55971 1.47906
0.15804 0.12041 0.16048 0.13877 0.12856 0.1687 0.12499

40 1.57821 0.0 1.95327 1.96138 1.96138 1.28026 2.04333 1.82672 1.31303
0.17735 0.09491 0.04912 0.0916 0.11101 0.0850 0.08688 0.17277

0.3 1.84075 1.90951 1.81907 1.32763 1.95458 1.74535 1.36269
0.06927 0.04525 0.06999 0.15445 0.06086 0.08104 0.11768

0.7 1.72823 1.83361 1.71393 1.3943 1.83894 1.6701 1.42962
0.07652 0.0487 0.08004 0.15286 0.05326 0.09544 0.15139

0.9 1.61571 1.68819 1.61168 1.50892 1.66596 1.60034 1.53021
0.11666 0.08481 0.11863 0.18262 0.09295 0.1249 0.16913

50 1.79817 0.0 2.29519 2.22199 2.22199 1.46437 2.34594 2.17244 1.51533
0.14212 0.13177 0.12668 0.12694 0.1148 0.12778 0.10083 0.13432

0.3 2.14608 2.16851 2.12175 1.51401 2.2426 2.04736 1.5702
0.14309 0.11507 0.13067 0.12386 0.12846 0.09767 0.11589

0.7 1.99698 2.08916 1.97964 1.58521 2.10738 1.93389 1.64302
0.06165 0.07818 0.05689 0.12414 0.09407 0.04861 0.09435

0.9 1.84788 1.93059 1.84273 1.7137 1.90322 1.83057 1.74923
0.03746 0.03945 0.03761 0.06213 0.03718 0.0387 0.05323

60 1.59147 0.0 1.92307 1.94338 1.94338 1.33141 2.00559 1.82799 1.37234
0.12707 0.06772 0.03181 0.06718 0.11201 0.05496 0.06738 0.19819

0.3 1.82359 1.89301 1.80678 1.37603 1.9233 1.75079 1.41737
0.05188 0.02975 0.05359 0.11306 0.03933 0.06329 0.11292

0.7 1.72411 1.82022 1.71294 1.43738 1.81776 1.67919 1.47546
0.06231 0.03526 0.0655 0.03254 0.03927 0.07747 0.04563

0.9 1.62463 1.68566 1.62147 1.53694 1.66517 1.61263 1.55615
0.0990 0.07145 0.10058 0.11166 0.07964 0.10535 0.11954

70 1.60751 0.0 1.90443 1.94432 1.94432 1.3613 1.99575 1.81737 1.40473
0.11337 0.05385 0.0262 0.05397 0.10624 0.04461 0.05681 0.10219

0.3 1.81536 1.89469 1.79971 1.40479 1.91664 1.74958 1.44788
0.04434 0.0241 0.04639 0.06102 0.0316 0.05612 0.02135

0.7 1.72628 1.82344 1.71611 1.46402 1.81618 1.68611 1.50254
0.05572 0.02926 0.05873 0.00575 0.03325 0.06935 0.07506

0.9 1.6372 1.69423 1.63436 1.55793 1.67404 1.62655 1.57622
0.08798 0.06294 0.08935 0.0335 0.07091 0.09339 0.02236

80 1.59969 0.0 1.84859 1.91237 1.91237 1.37375 1.94808 1.77204 1.41611
0.10003 0.05081 0.02356 0.05271 0.09275 0.03571 0.06148 0.05105

0.3 1.77392 1.86412 1.7601 1.41535 1.87484 1.71682 1.4565
0.0501 0.02455 0.05304 0.05047 0.03027 0.06479 0.01361

0.7 1.69925 1.7957 1.69046 1.47114 1.7831 1.66472 1.50673
0.06464 0.03352 0.06771 0.09944 0.03868 0.0781 0.07168

0.9 1.62458 1.67558 1.62216 1.55663 1.65678 1.6155 1.57251
0.09442 0.07043 0.09565 0.03425 0.07851 0.09925 0.02458
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Table 3. Cont.

n MLE v BSEL
BLINEX BGE

a = −6 a = 0.2 a = 6 a = −6 a = 0.2 a = 6

90 1.5824 0.0 1.8167 1.88275 1.88275 1.37094 1.91243 1.74682 1.41318
0.09154 0.04581 0.01909 0.04869 0.0339 0.02674 0.0603 0.05168

0.3 1.74641 1.8353 1.7339 1.4111 1.84219 1.69427 1.45127
0.05102 0.02288 0.05454 0.05273 0.02691 0.06763 0.01592

0.7 1.67612 1.76844 1.66818 1.46431 1.75469 1.64458 1.49803
0.06967 0.0355 0.07293 0.00333 0.04105 0.08367 0.07606

0.9 1.60583 1.65303 1.60365 1.54378 1.63551 1.59753 1.55806
0.00176 0.07721 0.00297 0.04077 0.08568 0.00655 0.03143

100 1.8543 0.0 2.23049 2.22135 2.22135 1.58621 2.29787 2.15229 1.66284
0.08656 0.07366 0.02266 0.06452 0.01176 0.01740 0.03187 0.0706

0.3 2.11763 2.1701 2.10084 1.63163 2.20717 2.05483 1.70643
0.08295 0.07238 0.08089 0.08501 0.02322 0.06305 0.05178

0.7 2.00478 2.09554 1.99317 1.69445 2.09215 1.96461 1.75959
0.0353 0.05732 0.03248 0.05503 0.06016 0.02692 0.03401

0.9 1.89192 1.9553 1.88854 1.79741 1.9299 1.88088 1.82716
0.01573 0.02002 0.01568 0.02386 0.01732 0.01578 0.0197

7. Conclusions

This paper focused on the investigation of a parameterized EXPD utilizing randomly
censored data. The analysis encompassed various classical estimation techniques, notably
MLE. Moreover, Bayes estimators were explored using Lindley’s approximation method
within the framework of three balanced loss functions. These estimators were evaluated
under the assumption of both informative and non-informative priors for the parameters
applied for simulation and real data, respectively. The performances of both the classical
and Bayesian estimators were subjected to computational analysis via simulation studies.
The results from these simulations indicate that the performance of the Bayes estimates
outperformed that of the MLEs. Additionally, a practical application of the developed
methodology was demonstrated through real data analysis. The results obtained from the
simulation demonstrate the precise computation of parameters within the EXPD. Moreover,
it is evident from Tables 2 and 3 that as the sample sizes increased, the values of the MSEs
for the parameter estimates decreased. The performance of the Bayes estimates surpassed
that of the MLEs, given their smaller MSEs. Notably, the Bayes estimates using the BGE
approach exhibited superior performance compared with those using BLINEX and BSE,
as indicated by their smaller MSEs. Additionally, with an increase in “v,” there was a
corresponding decrease in the MSEs.

8. Future Work

In our forthcoming research, we plan to utilize random censoring within the context of
the Rayleigh distribution while considering various loss functions, such as LINEX, entropy,
and the unbalanced loss function. This will enable us to elucidate the pivotal role played
by the choice of the prior distribution type in influencing the quality of an estimation.
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Abbreviations
The following abbreviations are used in this manuscript:

EXPD Exponential distribution
BSE Balanced squared error loss function
BLINEX Balanced linear exponential loss function
BGE Balanced general entropy loss function
PDF Probability density function
CDF Cumulative distribution function
MLEs Maximum likelihood estimators
ML Maximum likelihood
FIM Fisher information matrix
MSEs Mean squared errors
K-S Kolmogorov–Smirnov
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