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Abstract: To accurately model user preference information and ensure the symmetry or similarity
between real user preference and the estimated value in product optimization design, an interactive
estimation of a distribution algorithm integrated with surrogate-assisted fitness evaluation (SAF-
IEDA) is proposed in this paper. Firstly, taking the evaluation information of a few individuals as
training data, a similarity evaluation method between decision variables is proposed. Following that,
a preference probability model is built to estimate the distribution probability of decision variables.
Then, the preference utility function of individuals is defined based on the similarity of decision
variables. Finally, the surrogate-assisted fitness evaluation is realized by optimizing the weight
of the decision variables’ similarities. The above strategies are incorporated into the interactive
estimation of the distribution algorithm framework and applied to address the optimal product
design problem and the indoor lighting optimization problem. The experimental results demonstrate
that the proposed method outperforms the comparative method in terms of search efficiency and
fitness prediction accuracy.

Keywords: evolutionary algorithm; estimation of distribution algorithm; interactive; fitness
prediction

1. Introduction

Product optimization design (or optimal product design, OPD) refers to the opti-
mization of product recommendation, market share, and product line configuration by
collecting user preference information for product concepts [1]. This problem is prevalent
in various domains, including product design [2,3], the supply chain [4], and personalized
recommendations [5]. Among these, the collection of user preference information is a
key factor in solving this problem and has a direct influence on the optimization results.
Employing interactive techniques to collect user preference information is the most direct
and widespread method. However, facing an extensive space solution, excessive interaction
can lead to user fatigue. Therefore, how to help users quickly find satisfactory solutions in
a vast sea of information has become the focus of much research.

The evolutionary algorithm-based Top-N algorithm is a representative approach for
solving this problem [6]. The distinguishing feature of such algorithms is that users only
need to evaluate N-out-of-M individuals in the population, while the remaining individuals
are evaluated using surrogate models. The most commonly used surrogate models include
polynomial regression [7], support vector machines [8], radial basis function (RBF) [9],
neural networks [10], Kriging [11,12], and so on. These surrogate models are all statistical
methods, and their learning and predictive performance are highly dependent on the size of
the training set. If the training set is relatively small, the accuracy of learning and prediction
tends to decrease.
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Generally, a user evaluation result shows high uncertainty within interactive evolu-
tionary algorithms. A user’s evaluation result on the same individual may not be consistent
across different evolutionary generations, while different users may assign the same evalua-
tion value to different individuals in different evolutionary generations. This will seriously
affect the convergence accuracy of an algorithm, causing the population to oscillate back
and forth near the optimal solution. In other words, the algorithm’s global optimization
results are not a singular point but rather a neighborhood. In response to this characteristic,
using probability distributions to describe user preference information can more objectively
represent the relationships and distribution information among the variables within the
search space, directly depicting the evolutionary trends of the overall population distribu-
tion. The estimation of the distribution algorithm (EDA) can utilize the global information
of the solution space and the historical information during the evolution process. Through
statistical learning, EDA predicts feasible regions and generates excellent new individuals
by randomly sampling from probability models. EDA combines the characteristics of both
genetic algorithms and statistical learning, possessing stronger evolution guidance, chain-
ing learning ability, and global search capability. It was applied to optimization problems
such as supermarket scheduling [13], path planning [14], and crane scheduling [15].

With the robust search performance of EDA, the involvement of decision makers
in EDA (IEDA) can more efficiently utilize preference information to guide evolution,
demonstrating superior search capabilities in personalized searches [16]. The core of IEDA
lies in the surrogate-assisted fitness evaluation strategy. In [13], a differential evolution
strategy and an adaptive learning rate mechanism were incorporated into EDA. In [17] it
was indicated that using probability models to predict fitness has the advantage of being
insensitive to the size of the training set and achieving higher learning and prediction
accuracy. Currently, there is some utilization of user preferences as prior knowledge in
IEDA to address personalized search problems [18,19]. However, research on integrating
knowledge into probabilistic models remains limited. Among a few related studies, [14]
introduced a probability model with Mallows distribution. In [15], a probability model
was introduced using a distance-based ranking model and the moth–flame algorithm.
In [20], utility functions were introduced to characterize preferences and apply them to
multi-objective optimization. However, the utility function in this method focuses only
on the optimization functions and overlooks the probabilistic relationship between the
decision variables and the preferences. In [21], a novel hybrid approach was introduced
that enhanced the structure of EDA through the inclusion of a lottery procedure, an elitism
strategy, and a neighborhood search. However, this method did not use utility functions.
Table 1 provides a summary of the mentioned literature on the EDA probability model and
the surrogate-assisted fitness evaluation.

Clearly, if we can establish the probabilistic relationship between decision variables
and preferences, and subsequently utilize utility functions for fitness prediction, this has the
potential to enhance the surrogate-assisted fitness evaluation capability in IEDA. However,
few studies to date have integrated probability models with utility functions in the context
of EDA. In fact, employing machine learning methods to analyze data and guide searches
has become a research direction for designing new EDA algorithms. Nevertheless, the
introduction of machine learning and statistical learning also brings high time and space
costs to evolutionary computation. As a result, achieving a balance between machine
learning and evolutionary searches becomes crucial to efficiently and accurately address
real-world optimization problems.

Given this context, this paper proposes a novel preference probability model and
surrogate-assisted fitness evaluation method, aiming to achieve an interactive evolutionary
solution for OPD within the EDA framework. Firstly, the Top-N algorithm is employed to
collect user evaluation information on the Top-Nc individuals. Taking this information as
the training samples, a preference probability model based on the similarity of decision
variables is then established. Next, individual utility functions are calculated using the
similarity of the decision variable, and these utility functions are then used to estimate
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fitness values for new individuals. Finally, the sampling frequency is updated using the
preference probability model, and new individuals are generated through the sampling
method in the EDA. Specifically, the main contributions of this paper are as follows:

(1) Introducing a probabilistic model to EDA. Unlike machine learning methods, the
proposed method is particularly well-suited for small training data and boosts the
efficiency of EDA significantly;

(2) Presenting a fitness estimation approach that markedly improves the precision of
fitness prediction;

(3) Proposing a novel interactive distribution estimation algorithm that enhances the
quality of the interactive evolutionary algorithm.

Table 1. Literature on the EDA probability model and surrogate-assisted fitness evaluation.

References Algorithms Problems

Zhou, et al. [13] DE/AEDA Differential evolution strategy and adaptive
learning rate mechanism are integrated into EDA

Pérez-Rodríguez, et al. [14] HMEDA Mallows distribution probability model

Pérez-Rodríguez [15] QCEDA Probability model uses a distance-based ranking
model and the moth–flame algorithm.

Chen Yang, et al. [16] RBF-IEDA Surrogate-assisted fitness evaluation-based RBF

Wang Leuohong, et al. [17] APL-IEC Algorithmic probability IEC

Chen Yang, et al. [18] LMIEDA Language model-based IEDA

Bao Lin, et al. [19] RBM-EDA Surrogate-assisted fitness evaluation-based RBM

Dewancker, I. et al. [20] Active Utility Function Preference Learning Utility function learning

Amalia Utamima [21] AEDA EDA plus a lottery procedure, an elitism strategy,
and a neighborhood search

2. The Proposed Method

Considering the following OPD problem:

max f (X) = f̃ (X), X = x1x2 . . . xc, xi ∈ S ⊆ Rc

where f̃ (X) is an optimization performance indicator that cannot be expressed as a well-
defined function; xi represents the i-th decision variable of the solution X, and S is its range
of values. f̃ (X) reflects the qualitative expression of user preferences for X, embodying the
mapping from solution space to psychological space. To implement the method presented
in this paper, three main problems need to be addressed: preference probability model,
surrogate-assisted fitness evaluation, and EDA algorithm design.

2.1. Preference Probability Model

When employing evolutionary algorithms to solve the OPD problem, products or
commodities are typically regarded as individuals formed by combining different attribute
values of decision variables (attributes). Let the population size be N, and the individuals
in the population be denoted as Xi, where i = 1, 2, . . . , N. Each Xi is composed of c deci-
sion variables, i.e., Xi = (x1, x2, . . . , xc), where each decision variable xi, i = 1, 2, . . . , c,
encompasses m distinct attribute values, i.e., xi = (xi,i1 , xi,i2 , . . . , xi,im). Hence, solving
the OPD problem can be conceptualized as the process of searching for good combina-
tions of attribute values within each decision variable that satisfy user preferences. Let
P =

{
x1,1h , x2,2h , . . . , xc,ch

∣∣ 1 ≤ h ≤ m
}

represent the set of all individual attribute values,
we utilize the utility function U(p), ∀p ∈ P to express the degree of user preference for
an individual Xi; therefore, the attribute combination that satisfies the user, X∗, is defined
as the specific individual for which U(X∗) = U(p∗) ≥ U(p), ∃p∗ ∈ P,∀p ∈ P, p 6= p∗.
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Clearly, if the algorithm is effective, the distribution probabilities of P should align with
user preferences. The subsequent sections will determine the probabilities of P based on
the user-evaluated information. Section 2.3 will then use these probabilities to calculate
U(p) and estimate the fitness f̃ (Xi) of an individual Xi.

During the process of interactive evolutionary optimization, let the Top-Nc individuals
in the population be X1, X2, . . . , XNc, and their user evaluation values be f̃ (X1), f̃ (X2), . . . ,
f̃ (XNc). These values can serve as training samples for fitness prediction. Due to cognitive
fuzziness, the preference characteristics of unevaluated individuals in the population can
be reflected through the phenotypic similarity of variables. To comprehensively utilize
evaluation information, the phenotypic similarity of decision variables is described using a
Gaussian function and weighted aggregation:

µ(xi = xi,ih) =

Nc
∑

j=1
f̃ (Xj)e

−(
(xi,ih

−xi,ij
)

t(Xj)
)

2

Nc
∑

j=1
f̃ (Xj)

(1)

where xi,ih represents the h-th value of the decision variable xi ∈ XK, i = 1, 2, . . . , c, xi,ij

means the j-th value of decision variable xi for the evaluated individual Xj, and t(Xj)
denotes the evaluation time of individual Xj. Based on the equation above, a matrix of
decision variable similarity pim can be established:

pim =


µ(x1 = x1,1) µ(x1 = x1,2) . . . µ(x1 = x1,mi )
µ(x2 = x2,1) µ(x2 = x2,2) . . . µ(x2 = x2,mi )

...
...

...
...

µ(xc = xc,1) µ(xc = xc,2) . . . µ(xc = xc,mi )

 (2)

In Equation (2), the larger the value of µ(xi = xi,ih) is, the higher attribute value the
decision variable xi has, and the higher the probability of retaining the attribute value xi,ih
in the search space. Therefore, pim can be used to establish a preference probability model
about P. Furthermore, we normalize each column of pim to yield the normalized preference
probability model pim’.

pim’ =


µ′(x1 = x1,1) µ′(x1 = x1,2) . . . µ′(x1 = x1,mi )
µ′(x2 = x2,1) µ′(x2 = x2,2) . . . µ′(x2 = x2,mi )

...
...

...
...

µ′(xc = xc,1) µ′(xc = xc,2) . . . µ′(xc = xc,mi )

 (3)

Utilizing user preference information as input, pim’ can dynamically depict the proba-
bility distribution of attribute values satisfied by customers, thereby providing a basis for
determining U(p). The variable annotations mentioned above are shown in Table 2.

Table 2. The meanings of variables.

N Population size

Xi Individual i in the population

xi The i-th decision variable of individual X

c Number of decision variables

xi,im The im-th attribute value of decision variable xi
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Table 2. Cont.

m Number of attribute values

P Set of individual attribute values

X∗ Optimal individual (specific individual)

U(p) Utility function of attribute p

Nc Number of user evaluations of individuals

f̃ (Xi) Fitness value of individual Xi

t(Xj) Evaluation time for individual Xj

µ(xi = xi,ih
)

Phenotypic similarity when the value of
decision variable xi is xi,ih

2.2. Surrogate-Assisted Fitness Evaluation

The essence of surrogate-assisted fitness evaluation is to predict the fitness of unevalu-
ated individuals by using information from evaluated ones. If the evaluated individual
information reflects preferences, the surrogate-assisted fitness evaluation is equivalent
to predicting the utility function for the unevaluated individuals. In other words, the
utility function should maximize the reflection of preference levels to the greatest extent
possible. For the unevaluated individual Xoi, i = 1, 2, . . . N − Nc in the population, since
the similarity of each decision variable of Xoi reflects user preference, an additive utility
function is chosen to express the user preference for Xoi:

U(Xoi) =
c

∑
i=1

ωoiµ(xi = xi,ih) (4)

In Equation (4), the decision variables x1, x2, . . . , xc are assumed to be independent.
ωoi represents the weights of decision variable similarity and ∑c

i=1 ωoi = 1. The larger the
value of U(Xoi), the higher the preference level for Xoi. Thus, the fitness of Xoi is given by:

f̃ (Xoi) = U(Xoi) · f̃max =
c

∑
i=1

ωoiµ(xi = xi,ih) f̃max (5)

where f̃max represents the maximum user evaluation value and the weight ωoi is determined
by minimizing the distance between Xoi and the reference point [X1, X2, . . . , XNc]

T .

min

{
Nc
∑

j=1

∣∣∣∣ c
∑

i=1
ωoiµ(xi = xi,ih) f̃max − f̃ (Xj)

∣∣∣∣λ
}1/λ

s.t. Xj ∈ G

(6)

where λ is a real number greater than 1, and G represents the solution space. The determina-
tion of weights through Equation (6) ensures that U(Xoi) maximally reflects the preferences.
It can be observed that with the update of pim, both U(Xoi) and f̃ (Xoi) will be updated.
Since there is no need for population clustering, the surrogate-assisted fitness evaluation
strategy incurs lower computational complexity.

2.3. Interactive Estimation of the Distribution Algorithm

The proposed method described in this paper is implemented within the framework
of EDA. Firstly, an initial population is generated randomly and then the frequency of
attribute values within the population is calculated. A higher frequency indicates that the
corresponding attribute value aligns more with the user preferences. The attribute value
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with the highest frequency is then chosen as the initial preference probability vector p0
for IEDA:

p0 = (p0
1, p0

2, . . . p0
c )

= argmax
[
P(x1

∣∣XK), P(x2
∣∣XK), . . . , P(xc

∣∣XK)
] (7)

Subsequently, the individuals in the population are ranked based on their Pareto
dominance considering the frequency of the attribute values. The Top-Nc individuals are
then recommended to the user for evaluation. These Nc individuals form the elite individual
set, which is used to update p0. The updating process includes the update of the preference
probability model and the surrogate-assisted fitness evaluation. Finally, the updated
preference probability vector p = (p1, p2, . . . pc) is used to sample and generate offspring
individuals, and excellent individuals will be recommended to users for evaluation. This
process is iterated until the algorithm has found satisfactory solutions according to user
preferences, or the maximum number of generations is reached. The algorithm’s structure
is depicted in Figure 1.
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Figure 1. The framework of SAF-IEDA. 
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Figure 1. The framework of SAF-IEDA.

The computational complexity of SAF-IEDA is determined by the preference prob-
ability model and the surrogate-assisted fitness evaluation. If the number of evaluated
individuals is Nc, the number of decision variables is c, and the number of attribute
values is m, then the computational complexity for updating the preference probability
model is O(Nc). For the surrogate-assisted fitness evaluation, this requires calculating
c utility functions for N − Nc unevaluated individuals and Nc evaluated individuals,
and the corresponding computational complexity is O((N − Nc)× Nc). Therefore, SAF-
IEDA can complete one search and recommendation with a computational complexity of
O(Nc + (N − Nc)× Nc) . Since (N−Nc)×Nc >> Nc, the computational complexity can
be simplified to O((N − Nc)× Nc).

3. Experimental Study
3.1. Experimental Setup

To validate the effectiveness of SAF-IEDA, this paper selects the RGB color one-max
optimization problem [22] as a test case. The one-max optimization problem is a specific
type of binary function; its objective is to maximize the number of gene positions containing
a gene value of 1 within the binary string. The RGB color attributes are from 0 to 255,
and its chromosome is encoded as a 24-bit binary string. The first eight bits represent the
red attribute (R), the middle eight bits represent the green attribute (G), and the last eight
bits represent the blue attribute (B). Each color attribute corresponds to a binary encoding
range from 00000000 to 11111111. Clearly, the goal of the RGB color one-max optimization
problem is to achieve white color, with attribute values of (255, 255, 255). When solving
this problem using interactive evolutionary algorithms, higher user satisfaction implies
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individuals are closer to the target, making it a typical OPD problem. In this case, there are
three decision variables (c = 3) and 256 attribute values (m = 256).

The evolutionary optimization system was developed using Visual Basic 6.0 and
executed in the environment with an Intel(R) Xeon(R) E5-2660 V3 CPU at 2.60 GHz and
48 GB RAM. The interactive interface of SAF-IEDA is shown in Figure 2. The interface
presents users with 12 color blocks, i.e., Nc = 12. Below each color block, an input textbox
for fitness values is provided. Moreover, the system employs slider bars below each color
block to record user evaluation time for calculating t(Xj). Given that the RGB color space
is visually non-uniform, the Munsell color space is introduced to measure the similarity
between two colors. The color components are represented by Hue (H), Lightness (L),
and Chroma (C). If the National Bureau of Standards unit (NBS) distance of an HLC color
pair is less than 3.0, human vision perceives them as similar; if the NBS distance is greater
than 6.0, they are regarded as significantly different [22]. Assuming two HLC color pairs,
X = (H1, L1, C1) and Y = (H2, L2, C2), their NBS distance (DNBS) is defined as follows:

DNBS(X, Y) = 1.2 ·

√
2C1C2

[
1− cos

(
2π

100
∆H
)]

+ (∆C)2 + (4∆L)2 (8)

where ∆H = |H1 − H2|, ∆L = |L1 − L2|, ∆C = |C1 − C2|. The process of converting from
the RGB color space to the HLC color space is as follows. Firstly, the transformation from
the RGB space to the xyz space is carried out [22]:

x = 0.608R + 0.174G + 0.200B
y = 0.299R + 0.587G + 0.144B
z = 0.000R + 0.066G + 1.112B

(9)
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Subsequently, the transformation from the xyz space to the p′q′ space is performed:

p′ = f (x)− f (y), q′ = 0.4[ f (z)− f (y)] (10)

where f (x) = 11.6x1/3 − 1.6. Further, the transformation is performed to convert the p′q′

space to the s′t′ space:

s′ = (a + b cos θ)p, t′ = (c + d sin θ)q (11)

where θ = arctan(p′/q′), a = 8.880, b = 0.966, c = 8.025, d = 2.558. Finally, the resulting
transformation is:

H = arctan(s′/t′), L = f (y), C =
√

s′2 + t′2 (12)
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In the experiments, if DNBS ≤ 3.0, we believe two colors are similar. A smaller DNBS
value indicates a higher similarity between the two color pairs. Thus, this value can also
measure the prediction accuracy. A target color block is set on the periphery of each color
block, displaying the similarity distance value. The user clicks the “Start” button, and the
system generates an initial population randomly. The user evaluates the attributes of the
Top-Nc individuals, which forms the initial preference probability vector p0 for EDA. Then,
by clicking the “Next” button, the system establishes a preference probability model pim’

based on the Top-Nc individuals and their evaluations according to Equation (3) in the
background and estimates the fitness values for other unevaluated individuals based on
Equation (5). Finally, a new population is generated by sampling according to pim’. For
this new population, frequencies of attribute values are calculated, and Pareto dominance
sorting is performed based on these frequencies. The Top-Nc individuals are recommended
as excellent individuals for further evaluation by the user and will serve as a dominant
set used to update the EDA preference probability vector. The cycle continues until the
termination condition is satisfied, upon which the “End” button can be clicked to end the
evolution. The termination conditions for the algorithm are as follows: (1) DNBS ≤ 3.0,
which indicates two colors are within the minimum just-noticeable difference, and the
population has produced colors that are very close to the target color or (2) the user has
discovered a satisfactory individual, or half of the individuals to be evaluated by users are
the same, or the user feels fatigued.

In this study, four representative algorithms are selected as comparison algorithms to
validate the effectiveness of SAF-IEDA. These algorithms include:

(1) The traditional interactive genetic algorithm (IGA);
(2) The Kano-integrated interactive genetic algorithm (Kano-IGA), proposed in [23];
(3) The interactive genetic algorithm with BP neural network-based user cognitive surro-

gate model (BP-IGA), proposed in [24];
(4) An interactive estimation of the distribution algorithm with RBF neural network-

based fitness evaluation (RBF-IEDA), proposed in [16].

To perform the comparison, five male and five female university students without
visual impairments are chosen as test users, labeled as User 1 to User 10. The optimization
system is applied, and SAF-IEDA along with the comparison methods is run separately
20 times. The average results are calculated for each run and subjected to comparative
analysis.

In all methods, the population size is set to be N = 200 and the maximum number
of generations is set to be T = 10. For SAF-IEDA, the user’s fitness evaluation range is
set as integers from 1 to 99. IGA adopts the k-means clustering strategy, the roulette
wheel selection, the single-point crossover with a probability of 0.85, and the mutation
with a probability of 0.05. BP-IGA takes a three-layer BP network with a configuration of
12-2-7 as the learning model for surrogate-assisted fitness evaluation and uses the same
single-point crossover and mutation as IGA. Kano-IGA utilizes the Kano model to calculate
preference values for individual attributes and recommends individuals that align with
user satisfaction. This is a relatively new interactive evolutionary algorithm, and its single-
point crossover and mutation probabilities are set as 1 and 0.05, respectively. RBF-IEDA
constructs a preference surrogate-assisted model by using an RBF network and implements
evolutionary optimization based on IEDA, according to the suggestions in reference [14].

3.2. Results and Analysis
3.2.1. The Parameter λ

The parameter λ in Equation (6) directly impacts the computation of the utility function.
Thus, it is essential to investigate the influence of λ on SAF-IEDA performance. Figure 3a,b
show the NOS (the number of optimal solutions) and NG (the number of generations)
values obtained using SAF-IEDA under different λ (1.3, 1.8, 2.3, 2.8, and 3.3). We can see that
both excessively small and large λ lead to a decrease in NOS and an increase in the number
of generations. The fitness values of the Top-Nc individuals are analyzed statistically, as
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shown in Figure 3c. A high value indicates better quality for the recommended individuals.
From Figure 3c, it can be observed that excessively small or large λ lead to a decline
in the quality of recommended individuals. Figure 3d illustrates the variations of DNBS
under different λ. As the evolution progresses, DNBS gradually decreases. Based on the
comprehensive experimental results, λ = 2.3 is selected as the optimal value. Table 3
provides the algorithm’s metric values, including means and standard deviations (STD).
The success rate (SR) is defined as the number of successful experiments divided by the
total number of experiments. As seen in Table 1, NOS for all users is greater than 160, and
the SR is higher than 95%. This indicates that SAF-IEDA effectively solves the RGB color
one-max optimization problem.
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Table 3. The metric values obtained using SAF-IEDA when λ = 2.3.

Users Evolutionary
Generation

Fitness of
Top-Nc DNBS Runtime (s) NOS SR (%)

Use 1 7.7 (1.033) 95.70 (3.561) 4.33 (0.687) 181.30 (20.548) 167 (11.253) 96.24 (0.405)
Use 2 7.3 (0.816) 94.56 (2.351) 5.71 (0.592) 188.56 (22.562) 162 (13.052) 95.62 (0.561)
Use 3 7.0 (0.876) 95.21 (2.803) 4.04 (0.754) 179.63 (19.554) 165 (12.455) 96.53 (0.684)
Use 4 7.4 (0.948) 96.89 (3.149) 4.31 (0.653) 168.37 (18.615) 182 (14.027) 96.37 (0.515)
Use 5 7.0 (0.994) 96.43 (3.153) 3.65 (0.626) 175.48 (18.327) 172 (13.587) 95.75 (0.632)
Use 6 7.6 (0.949) 95.82 (2.362) 4.28 (0.654) 187.56 (22.355) 166 (14.396) 95.83 (0.426)
Use 7 7.4 (0.843) 96.87 (3.257) 5.23 (0.735) 194.25 (22.452) 189 (12.473) 95.85 (0.654)
Use 8 7.5 (0.738) 97.02 (1.758) 3.36 (0.593) 186.56 (20.354) 192 (12.951) 96.58 (0.488)
Use 9 7.7 (0.865) 96.26 (2.354) 4.56 (0.827) 179.19 (24.228) 176 (11.558) 95.51 (0.584)

Use 10 7.3 (0.952) 97.28 (12.528) 4.27 (0.774) 167.63 (15.736) 187 (13.825) 96.46 (0.752)

3.2.2. The Result Analyses of SAF-IEDA with the Comparison Methods

Figure 4 shows the comparison results between SAF-IEDA with the four comparative
methods on the six metrics. Here, the circle “o” represents exception values. These six met-
rics include the number of generations, the highest fitness value, the color space distance,
the runtime, NOS, and SR. We can see that SAF-IEDA displays the fewest generations, the
highest fitness value, the smallest color space distance, the shortest runtime, as well as
the highest NOS and SR values, highlighting the superiority of our method. The reason
is that the fitness prediction model based on the preference probability model adopted
in this paper is more accurate compared to other methods. Additionally, compared to
GA, the EDA-based search engine used in SAF-IEDA has better search performance. In
Figure 4c, it is evident that SAF-IEDA demonstrates the highest fitness prediction accuracy.
This can be attributed to the insensitivity of SAF-IEDA to the number of training samples,
compared with Kano, BP, RBF, etc. During the initial stages of evolution, the low number
of training samples for Kano, BP, and RBF leads to poorer fitness prediction accuracy. In
contrast, SAF-IEDA retains good predictive performance with fewer training samples. As
the number of iterations increases, the number of training samples also increases; therefore,
the predictive accuracy of all methods gradually improves.

Using the Wilcoxon signed-rank test, the results are shown in Table 4. By observing
the positive or negative nature of the t-values, we can see that SAF-IEDA outperforms
the comparison methods in terms of all metrics. On a two-sided significance indicator,
although SAF-IEDA does not exhibit significant differences from BP-IGA and RBF-IEDA in
terms of the number of generations, there are significant differences between SAF-IEDA
and the comparative methods.

Table 4. The results of Wilcoxon signed-rank test.

Algorithms Evolutionary
Generation

Fitness of
Top-Nc DNBS Runtime (s) NOS SR (%)

IGA vs. SAF-IEDA + + + + + +

Kano-IGA vs. SAF-IEDA + + + + + +

BP-IGA vs. SAF-IEDA + + + + + +

RBF-IEDA vs. SAF-IEDA + + + + + +

SAF-IEDA can achieve high-quality solutions with the lowest errors under the same
number of iterations, compared with BP-IGA and RBF-IEDA. This further validates the
superiority of SAF-IEDA. Although Kano-IGA also updates the population based on
individual attribute preference values dynamically, its metric values are less than SAF-
IEDA, suggesting that SAF-IEDA is more accurate in characterizing attribute preferences,
and the quality of recommended individuals is higher.
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Figure 5 illustrates the convergence curves of the five methods. It is evident that all
methods are able to converge, but SAF-IEDA achieves the highest fitness values and shows
better convergence.
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3.2.3. Application to the Indoor Lighting Optimization

To further validate the effectiveness of SAF-IEDA, SAF-IEDA is applied to optimize
the indoor lighting problem. In this scenario, an individual represents a combination of
three LED color lights, each comprising three color channels: red (R), green (G), and blue
(B). The optimization objective is to create the most favorable light and shadow effects by
combining these three-color lights. The RGB variables collectively form a chromosome
with a total of nine color attributes. Each RGB variable can take on values in the range of
0 to 255, and these attribute values are encoded using 8-bit binary code. Consequently, a
chromosome comprises 72 bits of binary code. Refer to Figure 6 for a visual representation
of the chromosome encoding process. It is important to note that the indoor lighting
optimization problem involves a multitude of individual attributes and attribute values,
rendering it a complex problem suited for resolution using our method.
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Ten users are tasked with optimizing indoor lighting schemes to achieve a ‘warm’
style. These users are not constrained by a maximum number of evolution generations.
Comparative methods are run independently ten times, and the results of independent
sample analyses for different evolution indicators are presented in Table 5. The Levene’s
test results for each indicator indicate that there are no significant differences in variances
among the samples, as all p-values were greater than 0.05. However, there is a notable
significant difference in the number of evolution generations required and the running
time between SAF-IEDA and the comparative methods. This suggests that when there
is no restriction on the maximum number of evolution generations, Kano-IGA, BP-IGA,
and RBF-IEDA require more evolution generations and more time to achieve high-quality
satisfactory solutions, likely due to the high training costs associated with their models.
IGA performs the worst and requires more evolution generations to obtain satisfactory
solutions. There is a significant difference in terms of the highest fitness value, color space
distance, and optimal solution quantity between SAF-IEDA and the comparative methods,
indicating that it is suitable for personalized optimization objectives. Therefore, SAF-IEDA
can achieve higher-quality solutions and better interactivity.

Table 5. Analysis of evolutionary indicators using different methods.

Independent Sample
Test p-Value
(Two-Sided)

Evolutionary
Generation Fitness of Top-Nc DNBS Runtime (s) NOS

SAF-IEDA SAF-IEDA SAF-IEDA SAF-IEDA SAF-IEDA

Kano-IGA 0.018 0.023 0.028 0.017 0.001
BP-IGA 0.037 0.033 0.020 0.003 0.012

RBF-IEDA 0.028 0.032 0.042 0.035 0.014
IGA 0.013 0.028 0.039 0.016 0.028

Levene test for equality
of variances

{0.352, 0.637,
0.256, 382}

{0.385, 0.417,
0.228, 0.673}

{0.753, 0.525,
0.257, 0.702}

{0259, 0.450,
0.441, 0.335}

{0.204, 0.198,
0.657, 0.284}

Based on the above analysis, it is evident that SAF-IEDA outperforms the comparative
methods for various optimization objectives. In all comparison indicators, SAF-IEDA
consistently delivers the most satisfactory optimization solutions. Therefore, it can be
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concluded that SAF-IEDA is superior to comparative methods in addressing the indoor
lighting optimization problem effectively.

4. Conclusions

This paper proposed a preference probability model and a surrogate-assisted fitness
evaluation strategy under the framework of an interactive distribution estimation algorithm.
In traditional EDA, individual fitness is an explicit function value, and new individuals
are generated using sampling based on the probability model of individual attributes. In
an interactive evolutionary environment, individual fitness needs to be set by the user,
and it reflects the user’s preferences. In this case, the distribution of individual attributes
is consistent with the preference distribution. User preferences depend on the similarity
of individual phenotypes, which can be described by Gaussian functions for decision
variables. In this way, a preference probability model can be established based on the
similarity of decision variables, and generating new individuals using this preference
probability model will better align with user preferences. On the other hand, in order to
alleviate fatigue, utility functions are used to express attribute preferences and weighted
estimates of fitness values to better reflect consistency between attributes and preference
distributions. The strategy proposed in this article is an extension of EDA applied in an
interactive evolutionary environment. This method is based on distribution estimation
algorithms, uses a preference probability model as sampling probabilities, and utilizes
Top-Nc individuals to construct a preference probability vector for evaluating fitness values
based on the utility function.

The experimental results on the RGB color one-max optimization problem and the
indoor lighting optimization problem show that users can obtain the most satisfactory
optimization solution using SAF-IEDA, compared with five existing comparison algorithms.
This paper only deals with single-objective optimal problems; in-depth research is needed
for cases with multiple objectives. In addition, applying the proposed method to more
practical optimal product design problems is also an open issue.

Author Contributions: Writing, conceptualization, Z.Q.; Software, conceptualization, supervision,
G.G.; Review and editing, Y.Z. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported by the National Key Research and Development Program of
China (No.2020YFB1708200).

Data Availability Statement: The datasets generated and analyzed during the current study are
available from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pantourakis, M.; Tsafarakis, S.; Zervoudakis, K.; Altsitsiadis, E.; Andronikidis, A.; Ntamadaki, V. Clonal selection algorithms for

optimal product line design: A comparative study. Eur. J. Oper. Res. 2022, 298, 585–595. [CrossRef]
2. Guido, M. Optimal Product Design: Implications for Competition and Growth under Declining Search Frictions. Natl. Bur. Econ.

Res. 2021, 91, 28638.
3. Zheng, R.; Zhang, Y.; Sun, X.; Wang, F.; Yang, L.; Peng, C.; Wang, Y. Multi-objective particle swarm optimization of complex

product change plan considering service performance. CAAI Trans. Intell. Technol. 2022, 8, 1058–1076. [CrossRef]
4. Xue, K.; Sun, G.; Wang, Y.; Niu, S. Optimal Pricing and Green Product Design Strategies in a Sustainable Supply Chain Considering

Government Subsidy and Different Channel Power Structures. Sustainability 2021, 13, 12446. [CrossRef]
5. Wang, R.; Jiang, Y.; Lou, J. Attention-based dynamic user preference modeling and nonlinear feature interaction learning for

collaborative filtering recommendation. Appl. Soft Comput. 2021, 110, 107652. [CrossRef]
6. Lee, J.; Hwang, W.S.; Parc, J.; Lee, Y.; Kim, S.-W.; Lee, D. Injection: Toward Effective Collaborative Filtering Using Uninteresting

Items. IEEE Trans. Knowl. Data Eng. 2019, 31, 3–16. [CrossRef]
7. Kim, T.; Han, W.S.; Piao, J.; Kang, P.K.; Shin, J. Predicting remediation efficiency of LNAPLs using surrogate polynomial chaos

expansion model and global sensitivity analysis. Adv. Water Resour. 2022, 163, 104179. [CrossRef]

https://doi.org/10.1016/j.ejor.2021.07.006
https://doi.org/10.1049/cit2.12176
https://doi.org/10.3390/su132212446
https://doi.org/10.1016/j.asoc.2021.107652
https://doi.org/10.1109/TKDE.2017.2698461
https://doi.org/10.1016/j.advwatres.2022.104179


Symmetry 2023, 15, 1852 14 of 14

8. Mohammadi, Y.; Salarpour, A.; Leborgne, R.C. Comprehensive strategy for classification of voltage sags source location using
optimal feature selection applied to support vector machine and ensemble techniques. Int. J. Electr. Power Energy Syst. 2021, 124,
106363. [CrossRef]

9. Wang, W.Y.; Akhtar, T.; Shoemaker, C.A. Integrating ε-dominance and RBF surrogate optimization for solving computationally
expensive many-objective optimization problems. J. Glob. Optim. 2022, 82, 965–992. [CrossRef]

10. Stuckner, J.; Piekenbrock, M.; Arnold, S.M.; Ricks, T.M. Optimal experimental design with fast neural network surrogate models.
Comput. Mater. Sci. 2021, 200, 110747. [CrossRef]

11. Chao, R.; Younes, A.; Didier, L. Ensemble of surrogates combining Kriging and Artificial Neural Networks for reliability analysis
with local goodness measurement. Struct. Saf. 2022, 96, 102186.

12. Ji, X.; Zhang, Y.; Gong, D.; Sun, X.; Guo, Y. Multisurrogate-assisted multitasking particle swarm optimization for expensive
multimodal problems. IEEE Trans. Cybern. 2023, 53, 2516–2530. [CrossRef] [PubMed]

13. Zhou, B.H.; Tan, F. A self-adaptive estimation of distribution algorithm with differential evolution strategy for supermarket
location problem. Neural Comput. Appl. 2020, 32, 5791–5804. [CrossRef]

14. Pérez-Rodríguez, R.; Hernández-Aguirre, A. A hybrid estimation of distribution algorithm for the vehicle routing problem with
time windows. Comput. Ind. Eng. 2019, 130, 75–96. [CrossRef]

15. Pérez-Rodríguez, R. A hybrid estimation of distribution algorithm for the quay crane scheduling problem. Math. Comput. Appl.
2021, 26, 64. [CrossRef]

16. Chen, Y.; Sun, X.Y.; Gong, D.W.; Zhang, Y.; Choi, J.; Klasky, S. Personalized Search Inspired Fast Interactive Estimation of
Distribution Algorithm and Its Application. IEEE Trans. Evol. Comput. 2017, 21, 588–600. [CrossRef]

17. Wang, L.H.; Liao, J.D. An Interactive Evolutionary Computation Framework: A Case Study of the Optimal Product Design. J.
E-Bus. 2011, 13, 77–98.

18. Chen, Y.; Jin, Y.; Sun, X. Language model based interactive estimation of distribution algorithm. Knowl. Based Syst. 2020, 200,
105980. [CrossRef]

19. Bao, L.; Sun, X.; Chen, Y.; Man, G.; Shao, H. Restricted boltzmann machine-assisted estimation of distribution algorithm for
complex problems. Complexity 2018, 2018, 609014. [CrossRef]

20. Dewancker, I.; McCourt, M.; Ainsworth, S. Interactive Preference Learning of Utility Functions for Multi-Objective Optimization.
In Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016.

21. Utamima, A. A comparative study of hybrid estimation distribution algorithms in solving the facility layout problem. Egypt.
Inform. J. 2021, 22, 505–513. [CrossRef]

22. Gong, Y.H. Advancing Content-based Image Retrieval by Exploiting Image Color and Region Features. Multimed. Syst. 1999, 7,
449–457. [CrossRef]

23. Dou, R.; Zhang, Y.; Nan, G. Application of combined Kano model and interactive genetic algorithm for product customization. J.
Intell. Manuf. 2019, 30, 2587–2602. [CrossRef]

24. Lv, J.; Zhu, M.; Pan, W. Interactive Genetic Algorithm Oriented toward the Novel Design of Traditional Patterns. Information 2019,
10, 36. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijepes.2020.106363
https://doi.org/10.1007/s10898-021-01019-w
https://doi.org/10.1016/j.commatsci.2021.110747
https://doi.org/10.1109/TCYB.2021.3123625
https://www.ncbi.nlm.nih.gov/pubmed/34780343
https://doi.org/10.1007/s00521-019-04052-9
https://doi.org/10.1016/j.cie.2019.02.017
https://doi.org/10.3390/mca26030064
https://doi.org/10.1109/TEVC.2017.2657787
https://doi.org/10.1016/j.knosys.2020.105980
https://doi.org/10.1155/2018/2609014
https://doi.org/10.1016/j.eij.2021.04.002
https://doi.org/10.1007/s005300050145
https://doi.org/10.1007/s10845-016-1280-4
https://doi.org/10.3390/info10020036

	Introduction 
	The Proposed Method 
	Preference Probability Model 
	Surrogate-Assisted Fitness Evaluation 
	Interactive Estimation of the Distribution Algorithm 

	Experimental Study 
	Experimental Setup 
	Results and Analysis 
	The Parameter  
	The Result Analyses of SAF-IEDA with the Comparison Methods 
	Application to the Indoor Lighting Optimization 


	Conclusions 
	References

