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Abstract: Images taken in various real-world scenarios meet the symmetrical goal of simultaneously
removing foreground rain-induced occlusions and restoring the background details. This inspires
us to remember the principle of symmetry; real-world rain is a mixture of rain streaks and rainy
haze and degrades the visual quality of the background. Current efforts formulate image rain streak
removal and rainy haze removal as separate models, which disrupts the symmetrical characteristics
of real-world rain and background, leading to significant performance degradation. To achieve
this symmetrical balance, we propose a novel semisupervised coarse-to-fine guided generative
adversarial network (Semi-RainGAN) for the mixture of rain removal. Beyond existing wisdom,
Semi-RainGAN is a joint learning paradigm of the mixture of rain removal and attention and depth
estimation. Additionally, it introduces a coarse-to-fine guidance mechanism that effectively fuses
estimated image, attention, and depth features. This mechanism enables us to achieve symmetrically
high-quality rain removal while preserving fine-grained details. To bridge the gap between synthetic
and real-world rain, Semi-RainGAN makes full use of unpaired real-world rainy and clean images,
enhancing its generalization to real-world scenarios. Extensive experiments on both synthetic and
real-world rain datasets demonstrate clear visual and numerical improvements of Semi-RainGAN
over sixteen state-of-the-art models.

Keywords: mixture of rain removal; semisupervised learning; coarse-to-fine guidance mechanism

1. Introduction

Rain is one of the most common weather phenomena that often brings a series of
visibility impairments, including blurred background scenes, occlusion of perceived objects,
and distortion of image color. These impairments inevitably hamper the performance of
various computer vision tasks, such as self-driving [1], traffic surveillance [2], and road
sign recognition [3]. Therefore, rain removal from images has emerged as a crucial task in
the computer vision community.

Rain removal from images aims to restore a high-quality rain-free image from its
intricate entanglement with rain. To resolve such an ill-posed and challenging problem,
early image rain removal wisdom employs a range of hand-crafted priors, such as sparse
coding [4], the Gaussian mixture model [5], and low-rank representation [6,7], to separate
the rain layer from the background layer. However, these prior-based approaches have
limited ability in terms of rain streak representation when dealing with complex rainy
scenes, such as rain streaks with various densities, directions, and sizes.

Recently, convolutional neural networks (CNNs) have enabled significant advance-
ments in the task of removing rain from images [8–10], owing to their powerful represen-
tation capabilities. Despite the potential of these deep-learning-based approaches, they
often face degraded performance when dealing with real-world rainy scenes, mainly due
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to three factors. First, it is observed that real-world rain is a mixture of rain streaks and
rainy haze. Mathematically, a rainy image (O(x)) at pixel x can be modeled as

O(x) = B(x)(1− R(x)− A(x)) + R(x) + αA(x) (1)

where B(x), R(x), and A(x) denote the clean background image, rain streak layer, and
rainy haze layer, respectively, and α signifies the global atmospheric light. However, most
existing learning-based approaches tend to disregard the mixture of rain by focusing only
on either rain streak removal or rainy haze removal (as shown in Figure 1b–e,g). Second,
these approaches employ no guidance mechanisms or coarse guidance mechanisms
to focus on local rain regions with limited receptive fields, leading to suboptimal rain
removal performance and loss of image details (as shown in Figure 1b–g). Third, models
are only trained on paired synthetic data, which cannot adequately capture the intricate
characteristics of real-world rain. The distribution shift between synthetic and real-
world rainy images leads to poor generalization of real-world rain removal (as shown in
Figure 1b,c,f,g).

(a) Rainy image (b) MSPFN (c) MPRNet (d) Syn2Real

(f) DGNL-Net (g) SPA-Net (h) Ours(e) JRGR

Figure 1. Results of removal of rain a real-world rainy image. (a) Real-world rainy image; (b,c) the
supervised learning results of MSPFN [11] and MPRNet [12]; (d,e) the semisupervised learning results
of Syn2Real [13] and JRGR [14]; (f) the depth-guided results of DGNL-Net [15]; (g) the attention-
guided results of SPA-Net [8]; (h) the results of our Semi-RainGAN. Notably, Semi-RainGAN excels
in preserving background details and effectively removing the mixture of rain.

To deal with these issues, we propose a novel semisupervised coarse-to-fine guided
generative adversarial network (Semi-RainGAN) for the removal of the mixture of rain,
which achieves a symmetrical balance between rain removal and detail restoration. We
observe that recent approaches attempt to generate promising results with the guid-
ance of an attention map [8,11] or depth map [15,16]. The former, focusing on diverse
characteristics of rain streaks (e.g., shapes, directions, densities, etc.), fails to remove
thick rainy haze (as shown in Figure 1g), whereas the latter, focusing on different rainy
haze densities based on corresponding scene depths, struggles to remove multiscale rain
streaks (as shown in Figure 1f). This motivates us to raise an intriguing question: Can we
combine both a coarse attention-guided manner and a depth-guided manner to build
a coarse-to-fine guidance mechanism? To answer this question, Semi-RainGAN em-
ploys three subnetworks to jointly predict the attention and depth maps, then effectively
fuse the predicted image, attention, and depth features to remove the mixture of rain in a
coarse-to-fine guided manner. Furthermore, it leverages both synthetic and real-world
rainy images to capture the intricate properties of real-world rain, thus improving the
generalization ability in real-world rainy scenes. Extensive experiments demonstrate
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that Semi-RainGAN outperforms sixteen state-of-the-art models on both synthetic and
real-world rainy images.

The main contributions of this paper can be summarized as follows:

• We propose a novel semisupervised coarse-to-fine guided generative adversarial
network, dubbed Semi-RainGAN, to remove the mixture of rain. Semi-RainGAN
leverages both synthetic (paired) and real-world (unpaired) rainy images for training,
boosting the generalization ability on real-world rainy images.

• We propose two parallel subnetworks, i.e., a multiscale attention prediction network
(MAPN) to fully exploit complementary multiscale information for attention map
prediction and a global depth prediction network (GDPN) for accurate depth map
prediction. These predicted attention and depth maps guide Semi-RainGAN to remove
entangled rain streaks and rainy haze.

• We propose a coarse-to-fine guided rain removal network (CFRN) to integrate the
predicted image features with estimated depth and attention features. This subnetwork
is connected with the first two subnetworks in a cascaded way and provides sufficient
and robust feature fusion to generate high-quality derained images.

2. Related Work
2.1. Rain Streaks Removal

The removal of rain from images has drawn considerable attention within the low-
level computer vision community. Several schemes have been proposed to address this
problem [7,11,13,17], including rain removal methods for videos [18,19] and single-image
rain removal methods [20,21]. Comparatively, single-image rain removal is more challeng-
ing than video rain removal due to the lack of temporal information. We mainly focus on
single-image rain removal in this work.

Traditional Methods: Early approaches [4,6,7,22,23] exploit various hand-crafted pri-
ors for single-image rain removal based on low-level image statistics. Kang et al. [22] first
proposed the problem of single-image rain removal. They decomposed the rainy image
into low- and high-frequency layers and performed dictionary learning and sparse coding
on the high-frequency layer to eliminate the rain streaks. However, this may inadvertently
eliminate certain portions of the non-rain elements that share similar gradient directions
with the rain component. Chen [6] introduced a single-objective function designed for
decomposition of the background and rain streak layers. While the concept of formulating
the problem as an objective function is compelling, it is worth noting that the applied
constraints may not be robust enough to fully address the issue. Later, Luo et al. [4] intro-
duced a non-linear screen blend model to model rain images and adopted discriminative
sparse coding to separate the rain layer. Unlike the above methods, Li et al. [5] employed
the Gaussian mixture model to effectively capture the distribution of rain streaks and
distinguish them from the background layer. However, these approaches utilize uniform
model types to describe both the background and rain streak components, leading to a
requirement for external data to train distinct dictionaries or Gaussian mixture models
(GMMs) for these individual layers. More recently, Gu et al. [23] combined analysis of
sparse representation and synthesis of sparse representation to remove more rain streaks
and maintain details in the background layer. Despite their successes, these prior-based
methods are limited in their ability to model complex rain streak characteristics, rendering
them ineffective in handling intricate rainy scenes.

Deep-Learning-based Methods: Driven by the surge of deep neural networks, sev-
eral deep-learning-based methods [10,14,21,24] have been proposed for single-image rain
removal. Fu et al. [25] first introduced a deep learning network for rain removal, which was
further improved by reducing the mapping range [9]. Many rain removal approaches have
since been proposed in an attempt to devise advanced networks to improve rain removal
performance, such as dense blocks [26,27], residual blocks [11,15], recurrent networks [28],
and generative adversarial networks [29]. However, these approaches heavily rely on paired
rainy/clean images, which limits their ability to generalize to real-world rain removal.
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To rectify this weakness, Wei et al. [30] first proposed a semisupervised transfer learning
framework to solve the problem of single-image rain removal. They employed a likelihood
term imposed on the Gaussian mixture model and Kullback–Leibler divergence to optimize
the unsupervised learning branch. More semisupervised approaches [13,14,21,31] have
since been proposed for real-world removal of rain from images. Specifically, Syn2Real [13]
utilizes a Gaussian process to model the intermediate latent space of rain and creates
pseudolabels to supervise the unlabeled data. Huang et al. [21] presented a self-supervised
memory module and a self-training mechanism to improve the semisupervised image
deraining. Wei et al. [31] proposed a semisupervised single-image rain removal network
based on CycleGAN [32], which has impressive generalization power in real scenes. De-
spite the strong performance exhibited by these semisupervised approaches in specific
real-world rainy images, they tend to focus on removing rain streaks while neglecting the
generated rainy haze, leading to degraded performance when confronted with real-world
rainy images containing a mixture of rain.

2.2. Rain Streaks and Rainy Haze Removal

Efforts towards rainy haze removal [33,34] were originally separate from rain streak
removal until Li et al. [35] observed that rain accumulation can produce haze effects and
result in deeper scenes appearing increasingly blurry. To remove both rain streaks and
rainy haze, they decomposed the rainy image into high-frequency and low-frequency
components, which allows for the estimation of rain streaks, transmission maps, and
atmospheric light. They also used a depth-guided GAN to recover the background details.
Additional approaches [15,16,36,37] have been proposed to address the mixture of rain.
For instance, Wang et al. [36] observed that rain streaks and rainy haze are intricately
connected, while current rain image generation models fails to accurately model this
property. Thus, they rethought rain image formation by formulating both rain streaks and
rainy haze as a transmission medium to better eliminate the mixture of rain. Hu et al. [15,16]
developed a rain imaging process based on the visual effects of rain in relation to scene
depth and presented a depth-guided network to generate a rain-free image. Later, MBA-
RainGAN [37], a multibranch attention generative adversarial network, was proposed to
remove entangled rain streaks, rainy haze, and raindrops. However, these methods are
only trained on synthetic rainy images and fall short in predicting an accurate depth map,
thereby limiting their performance on real-world rainy images.

3. Proposed Method

Beyond previous wisdom, we propose an effective semisupervised coarse-to-fine
guided generative adversarial network (Semi-RainGAN) for removal of the mixture of
rain, as illustrated in Figure 2. Semi-RainGAN consists of a supervised branch and an
unsupervised branch, following [31,38], both of which share the weights during training.
Semi-RainGAN comprises three generators (GL, GU , and G′U) and two discriminators (DL
and DU). GL and GU are responsible for mapping synthetic and real-world rainy images to
rain-free images, respectively. Conversely, G′U is used to reconstruct rainy images from rain-
free images. To make the final derained images more realistic, we use two discriminators
(DL and DU) to ensure that the generated images have feature distributions similar to those
of the target domain. Since the structures of GL and DL are identical to those of GU and G′U
and DU , respectively, we only present the structures of GL and DL (as shown in Figure 3
and Figure 4, respectively).
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Labeled Dataset

Unlabeled Dataset

𝐺𝐺𝑈𝑈

𝐺𝐺𝐿𝐿

Rainy 

Rainy Derained Reconstructed

𝐺𝐺𝑈𝑈’

Fake Label

Supervised Learning Branch
Unsupervised Learning Branch

x

y yd y′ yg

Sharing Weight

GAN

𝓛𝓛cyc

𝓛𝓛tv

𝓛𝓛adv-unsup

Derained Label

xd xg

𝓛𝓛multi + 𝓛𝓛adv_sup

Figure 2. The pipeline of Semi-RainGAN. Semi-RainGAN consists of a supervised branch and an
unsupervised branch. Concretely, x and y are synthetic and real-world rainy images, respectively; xd
and yd are derained images from GL and GU , respectively; xg is the corresponding ground truth of
x; y′ is a reconstructed rainy image from the generator (G′U); and yg is an unpaired rain-free image
randomly selected from synthetic datasets as the fake label of y.
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Figure 3. The overall architecture of the generator. It consists of three subnetworks for removal of
rain from images, i.e., a multiscale attention prediction network (MAPN), global depth prediction
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3.1. Generator

The generator takes in the rainy image and produces a clear image using three subnet-
works: (1) a multiscale attention prediction network (MAPN) for attention map estimation,
(2) a global depth prediction network (GDPN) for depth map estimation, and (3) a coarse-
to-fine guided rain removal network (CFRN), which reconstructs a clean and rain-free
image generated using the predicted attention map and depth map as guidance. Figure 3
provides the comprehensive architecture of the generator.

3.1.1. Multiscale Attention Prediction Network

In real-world rainy scenarios, multiscale rain streaks are randomly distributed across
the image. However, existing approaches usually neglect this scale-specific knowledge,
failing to capture the correlations of rain across different scales. To tackle this issue, we
construct a multiscale attention prediction network (MAPN) to estimate attention maps.
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Our developed multiscale spatial attention module (MSAM) allows MAPN to excavate
the inherent multiscale correlation of rain streaks. As illustrated in Figure 3, the MAPN first
leverages three standard residual blocks (RB) [39] to extract features. Then, the extracted
features are passed through the MSAM to obtain the final attention map, which successfully
models the distribution of multiscale rain.

Multiscale spatial attention module. Capturing multiscale complementary rain in-
formation contributes to more powerful feature representations, which can ameliorate the
performance of single-image rain removal. In light of this, we incorporate pyramid pooling
into our MSAM, which is commonly applied to acquire relationships from multiscale
features across many computer vision tasks [40].

As depicted in Figure 5, we start by adopting an average pooling operation to the
input, which downsamples it into four feature maps of different scales. To model rain
characteristics across various scales, we incorporate a spatial attention module (SAM) to
capture long-range contextual information from the entire feature map. Specifically, we
integrate a two-round, four-directional IRNN into our SAM. Figure 6 shows the process
of gathering global contextual information using a two-round, four-directional IRNN.
Specifically, the first IRNN creates an intermediate feature map that summarizes the spatial
contexts along the four principal directions. The second IRNN then produces a global
feature map by collecting non-local contextual information. hi,j denotes the feature located
at pixel (i, j), and the IRNN operation to the right (as well as for the other directions) at
(i, j) can be computed as:

hi,j = max(αrighthi,j−1 + hi,j, 0) (2)

where αright is the weight parameter in the recurrent convolution layer for the right direction.
αright and weights for the other directions are initialized as a learned identity matrix. We
repeat the IRNN operation n times each round, where n corresponds to the width of
the input feature map. Moreover, we observe that the low-resolution map may lose the
high-level information in the pyramid pooling module. To address this, we introduce an
additional branch to explore the complementary spatial information.

Input 
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Figure 5. The structure of MSAM. We first apply an average pooling operation to downsample the
input into multiscale representations. Then, we use four spatial attention modules (SAM) to generate
multiscale attention maps, followed by an upsampling operation to obtain the same size as the input.
Another branch leverages the convolution layers and non-linear functions to extract complementary
features. We fuse the multiscale attention maps and complementary features through a concatenation
layer, and the fused feature representation is fed into a convolution layer to obtain the final attention
map. The SAM consists of five convolution layers, two rectified linear units, a sigmoid function, and
two identity matrix recurrent neural networks for attention regression.
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Input 
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Intermediate Output

1
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Figure 6. The process of gathering global contextual information with a two-round, four-directional
IRNN. In the first round, we adopt four-directional recurrent convolutional layers for each position
in the input feature map to capture horizontal and vertical neighborhood information. In the second
round, we acquire the global contextual information of the input feature map by repeating the
previous operations.

3.1.2. Global Depth Prediction Network

Images captured in real-world rainy scenes are often obscured by a mixture of rain
streaks and rainy haze. The transformation from rain streaks into rainy haze depends on
the scene depth. Based on this fact, it is reasonable to provide additional depth estimation
to guide the rain removal model to remove the mixture of rain. To this end, we propose
a global depth prediction network (GDPN) for depth map estimation. We incorporate a
position attention module [41] (PAM) into the GDPN to aggregate the global contextual
information. This module enhances the representation capability of the predicted depth
map because it focuses more on informative pixels, such as thick hazy regions.

As depicted in Figure 3, GDPN is an encoder–decoder network with skip connections
designed to generate a depth map. Concretely, GDPN consists of eight blocks for feature
extraction, each including a convolutional layer, a batch normalization, and a rectified
linear unit. We then input the extracted features into a convolutional layer and a sigmoid
function layer to generate the final depth map. Moreover, we adopt a PAM between
the encoder and decoder to aggregate features at each position, which helps to regress a
more accurate depth map. Figure 7 shows the detailed structure of the position attention
module. It takes the feature (FE) extracted from the encoder as an input and feeds it into
the convolutional layers to generate the query (Q), the key (K), and the value (V), where
Q, K, V ∈ RH×W×C. The output of the position attention module can be computed by the
following formula:

Pout = αSV + FE (3)

S = so f tmax(QKT) (4)

where S ∈ R(H×W)×(H×W) is the spatial attention map, which measures the similarity
between any two positions of the feature (FE); α is a weight parameter that gradually
increases from 0 to a higher value during the learning process; and Pout ∈ RH×W×C is the
weighted sum of the spatial attention map and the original features, thereby selectively
aggregating contexts across all positions to obtain an accurate depth prediction. With the
help of the PAM, our GDPN provides a more accurate depth map compared to DGNL-
Net [15], as shown in Figure 8.
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(a) Rainy image (b) DGNL-Net (c) Ours (d) GT

Figure 8. Visualization of the estimated depth maps from DGNL-Net [15], Semi-RainGAN, and
ground truth.

3.1.3. Coarse-to-Fine Guided Rain Removal Network

In order to enhance the quality of rain removal by effectively merging image features
with predicted attention and depth, we introduce a coarse-to-fine guided rain removal
network (CFRN) as shown in Figure 3. Unlike previous approaches, CFRN combines
two coarse guidance mechanisms (attention-guided and depth-guided) to generate clean,
rain-free images in a coarse-to-fine manner.

As depicted in Figure 3, the first two convolutional layers are used to reduce the
resolution of the feature map and increase its number of channels. Then, CFRN employs five
dilated residual concatenation blocks (DRCBs) to acquire long-range contextual information.
Each DRCB consists of three branches, each of which contains a dilated residual block with
dilation rates of 1, 3, and 5, respectively. The outputs of these branches are concatenated,
and a 1 × 1 convolution layer is used to reduce the feature dimensions. Moreover, we
present an attention-guided channel fusion module (AGCM) and a depth-guided crisscross
fusion module (DGCM) to integrate the attention map and depth map, respectively. Finally,
the last two convolution layers upsample the feature map to the size of the input image
and obtain the final rain-free image.

Attention-guided channel fusion module. To handle multiscale rain streaks, we
propose an attention-guided channel fusion module (AGCM) to fuse the feature map with
the estimated attention map, which contains multiscale rain characteristic information.
With the help of AGCM, we can improve the discriminative learning ability of the model
via typical scale-specific knowledge. As depicted in Figure 7, AGCM takes the attention
map and feature map (F ∈ RH×W×C) as inputs. We first input the attention map into a
convolutional layer to generate A ∈ RH×W×C. We compute the fused features using the
following formula:
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Fcoarse = βFX + F (5)

X = so f tmax(AT F) (6)

where X ∈ RC×C computes the correlation between the attention map and the feature
map. The weight (β) gradually learns from 0 to balance the original feature and the fused
feature. The output (Fcoarse ∈ RH×W×C) successfully integrates the attention map into the
feature map.

Depth-guided crisscross fusion module. Although previous studies [8] have verified
the efficacy of the attention-guided manner for rain streak removal, they failed to handle
the mixture of rain, especially thick rainy haze. Therefore, in accordance with the trans-
formation process from rain streaks to rainy haze, we designed a depth-guided crisscross
fusion module (DGCM) to further fuse the coarse fused image features with the depth map
for better rain removal. Motivated by [42], we extend the crisscross attention module to
our DGCM, which globally correlates the depth map and coarse fused feature map for
enhanced fusion.

The detailed structure of the DGCM is illustrated in Figure 7. Concretely, the DGCM
takes the depth map (D ∈ RH×W×1) and feature map (Fcoarse ∈ RH×W×C) as inputs.
We adopt the affinity operation and softmax normalization to generate the relation map
(RD ∈ R(H+W−1)×(H×W)) between each pixel in the same row or column pixel over the depth
map (D). Meanwhile, we measure the feature relation map between each position in the same
row or column one. Specifically, we apply two 1 × 1 convolution layers to the input (F) to
reduce the computation and memory overhead. Then, we obtain two feature maps (Q and K,
where Q, K ∈ RH×W×C′ and C′ is less than C). For each position (m) in the spatial dimension
of Q, we obtain a vector (Qm ∈ RC′ , where m ∈ {1 . . . H ×W}). Correspondingly, by extract-
ing feature vectors from K that are in the same row or column as location m, we can obtain the
set Θm ∈ R(H+W−1)×C′ . Θm consists of the vector Θi,m ∈ RC′ , where i ∈ {1 . . . H + W − 1}.
For any i ∈ {1 . . . H + W − 1}, we compute the degree of correlation between features Qm
and Θi,m as RFi,m via the affinity operation and softmax normalization:

RFi,m = so f tmax(QmΘT
i,m) (7)

where RFi,m ∈ RF, and RF ∈ R(H+W−1)×(H×W). Then, we utilize element-wise multiplica-
tion and a softmax layer to model the inter-relationship R between the spatial locations of
RF and RD.

R = so f tmax(RF � RD) (8)

where � denotes pixel-wise multiplication and R ∈ R(H+W−1)×(H×W).
In another branch, a 1× 1 convolution layer is used on Fcoarse to generate V ∈ RW×H×C

for feature adaptation. For each position (m) in the spatial dimension of V, we can obtain a
vector (Vm ∈ RC) and a set (Φm ∈ R(H+W−1)×C, where m ∈ {1 . . . H×W}). Set Φm consists
of feature vectors (Φi,m) in the same row or column as position m. Then, we employ an
aggregation operation on R and Φm to collect contextual information, which is added to
the original coarse feature (Fcoarse) to obtain the final fine fused features (Ff ine).

Fm
f ine =

H+W−1

∑
i=0

Ri,mΦi,m + Fm
coarse (9)

where Ri,m is a scalar value at channel i and position m in R, and Fm
f ine and Fm

coarse are

feature vectors at position m in Ff ine ∈ RH×W×C and Fcoarse ∈ RH×W×C, respectively.
Since the single crisscross module can only obtain information in horizontal and vertical
directions, we simply repeat two depth-guided crisscross fusion modules to capture the
dense contextual information from all pixels. The second DGCM takes the depth map
(D ∈ RH×W×1) and Ff ine ∈ RH×W×C as inputs.
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3.2. Discriminators

The discriminators [43], namely DL and DU , serve to distinguish whether the accepted
images are real rain-free images or faked. As illustrated in Figure 4, the discriminator
comprises five convolution layers, three instance normalization layers, and four parametric
rectified linear units, which guide the generator to generate more realistic rain-free images.

3.3. Comprehensive Loss Function

We undertake a comprehensive consideration of both supervised and unsupervised
loss functions to enhance the performance of the mixture of rain removal. The overall
loss function comprises multitask loss, adversarial loss, cycle consistency loss, and total
variation loss, which can be expressed as follows:

Ltotal = λ1Lmulti + λ2Ladv_sup + λ3Ladv_unsup + λ4Lcyc + λ5Ltv (10)

Multitask loss. The multitask loss function is used to jointly optimize the process
of rain removal and depth prediction. Specifically, we minimize the `1 distance between
the derained image and depth map and their corresponding ground truth. This can be
computed as follows:

Lmulti =
∥∥GL(x)− xg

∥∥
1 +

∥∥D(x)− dg
∥∥

1 (11)

where x refers to synthetic rainy images, GL(x) denotes the derained images generated by the
generator (GL), and D(x) represents the depth maps predicted by the GDPN. Furthermore,
xg and dg are ground-truth rain-free images and ground truth depth maps, respectively.

Adversarial loss. We develop two discriminators to enhance the clarity and real-
ism of the final derained images (GL(x) and GU(y)). In this work, a least squares GAN
(LSGAN) [44] is utilized to compute the adversarial loss, which can be expressed as:

Ladv_sup(GL) = EGL(x)∼Pf ake
[(DL(GL(x))− 1)2] (12)

Ladv_sup(DL) = Exg∼Preal [(DL(xg)− 1)2] + EGL(x)∼Pf ake
[(DL(GL(x)))2] (13)

Ladv_unsup(GU) = EGU(y)∼Pf ake
[(DU(GU(y))− 1)2] (14)

Ladv_unsup(DU) = Eyg∼Preal [(DU(yg)− 1)2] + EGU(y)∼Pf ake
[(DU(GU(y)))2] (15)

where x and xg represent synthetic rainy images and corresponding ground truth, respec-
tively, and y refers to real-world rainy images. In the unsupervised branch, the real-world
rainy images have no corresponding rain-free images as labels for training. Thus, following
the protocol described in [31], we select clean images from synthetic datasets as fake labels
to constrain the training of the unsupervised branch.

Cycle consistency loss. The cycle consistency loss [32] aims to ensure that the feature
distributions of derained images approximate those of the clean real-world images. We
adopt it in the unsupervised branch to promote similarity between the reconstructed rainy
images and the corresponding original rainy images:

Lcyc =‖ G′U(yd)− y ‖1 (16)

where y and yd represent the original real-world rainy images and corresponding derained
images, respectively, and G′U(yd) denotes the reconstructed rainy images.

Total variation loss. The total variation loss [45] is an `1 regularization gradient prior
that is employed in the unsupervised branch to maintain structures and details of the
derained images:
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Ltv = ‖∇h(GU(y)) +∇v(GU(y))) ‖1 (17)

where∇h and∇v refer to the horizontal and vertical differential operation matrices, respectively.

4. Experimental Results and Analysis
4.1. Experimental Settings
4.1.1. Datasets

We conducted extensive experiments on both synthetic and real-world datasets to
evaluate our method.

Synthetic datasets: We consider three paired synthetic benchmark datasets: (1) the
Rain200L dataset [46], which contains 1800 synthetic images for training and 200 synthetic
images for testing, with a single type of rain streak; (2) the Rain200H dataset [46], which
also includes 1800 training images and 200 testing images but with rain streaks that vary
in orientation, scale, and shape; and (3) the RainCityscapes dataset [15], which comprises
9432 training images and 1188 testing images and leverages the camera parameters and scene
depth information to synthesize rain and fog based on the Cityscapes dataset [47].

Real-world datasets: Furthermore, we constructed a new dataset, Mix200, by collect-
ing real-world images that contain a mixture of rain from [29,30,46] and a Google search
using the term “rain and haze image”. Mix200 comprises 400 real-world rainy images
divided into 200 training images and 200 testing images. This dataset helps our paradigm
to learn the characteristics of a mixture of rain in real scenarios.

4.1.2. Training Details

Semi-RainGAN is implemented using the Pytorch framework and trained on an
NVIDIA GeForce RTX 3090 GPU. To optimize the model, we utilize the Adam opti-
mizer [48], with a momentum value of 0.9 and weight decay of 0. The learning rates
of generators and discriminators are initially set to 5×10−4 and 1×10−5, respectively. For
the hyperparameters of the loss setting, we empirically set λ1, λ2, λ3, λ4, and λ5 to 1.0, 0.5,
0.5, 1.0, and 0.1, respectively. In the experiments, we resize the image patch to 512 × 1024
to train the Semi-RainGAN on the RainCityscapes dataset with a batch size of four. For
training on the Rain200L and Rain200H datasets, the image patch size is 256 × 256. Ad-
ditionally, we resize the images from the Mix200 dataset to match the image sizes of the
synthetic datasets.

4.1.3. Evaluation Metrics

We evaluate the rain removal results using quantitative and qualitative measures. For
quantitative evaluation, we employ the SSIM (structural similarity index) and PSNR (peak
signal-to-noise ratio) metrics, which are commonly used as criteria to assess image quality
in rain removal tasks. In specific terms, SSIM is utilized to assess the similarity between
corresponding images in relation to aspects such as illumination, structure, and contrast.
Meanwhile, PSNR calculates the peak signal-to-noise ratio in decibels between two images.
In general, higher SSIM and PSNR values signify better rain removal results. Qualitative
evaluations are conducted based on the visual rain removal results, such as the degree of
removal of rain streaks and rainy haze, the level of detail restoration, and the extent of
color distortion.

4.2. Comparison with State-of-the-Art
4.2.1. Baselines

We compare our Semi-RainGAN with sixteen rain removal methods, including rain
streak removal methods and rain streaks and rainy haze removal methods. The rain
streak removal methods comprise two traditional methods (DSC [4] and GMM [5]), with
eight supervised learning methods (UMRL [49], SPA-Net [8], PreNet [28], DCSFN [50],
MSPFN [11], MPRNet [12], DerainRLNet [51], and CCN [52]) and three semisupervised
learning methods (SIRR [30], Syn2Real [13], and JRGR [14]). The rain streak and rainy
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haze removal methods comprise DAF-Net [16], DGNL-Net [15], and MBA-RainGAN [37].
Additionally, we compare our method with these rain streaks removal method combined
with the FFA-Net dehazing method [53]. We take the images generated by these rain streaks
removal methods as inputs and further use the pretrained FFA-Net for haze removal. To
ensure fair comparisons, we retrain all the supervised methods on synthetic datasets, and
semisupervised methods are trained on both synthetic and real-world datasets. Since the
depth maps of Rain200L and Rain200H are not available, we follow [16] and assume a
constant depth value of 0.5 on the whole image.

4.2.2. Results on the RainCityscapes Dataset

We compare Semi-RainGAN with other rain removal methods on the RainCityscapes
testing set. As demonstrated in Table 1, Semi-RainGAN achieves the best performance in
terms of both PSNR and SSIM. Notably, compared with the second-best rain streak removal
results achieved using MPRNet [12], our method achieves 4.76 dB and 0.038 gains in terms of
PSNR and SSIM, respectively. Compared with depth-guided DGNL-Net [15] and attention-
guided SPA-Net [8], Semi-RainGAN obtains 1.61 dB and 12.92 dB PSNR gains, respectively.
We also compare our method with the semisupervised SIRR method [30] and Syn2Real [13],
achieving 5.08 dB and 5.16 dB gains, respectively. Furthermore, we compare our method with
rain streak removal methods [11–14] combined with the FFA-Net dehazing method [53]; the
results demonstrate that our method performs better in handling the mixture of rain. Overall,
our method achieves superior performance over both supervised methods and semisupervised
methods. Additionally, we compare the average running time of Semi-RainGAN against that
of different models on an 512× 1024 image patch. It is observed that Semi-RainGAN achieves
promising rain removal results with a low time cost. Figure 9 shows visual comparisons on
the RainCityscapes testing set. It is observed that most of the compared methods only focus on
rain streaks, failing to remove the mixture of rain, distorting the details. Although DGNL-Net
can handle both rain streaks and rainy haze, some large rain streaks or artifacts remain in
the generated rain-free images. Comparatively, Semi-RainGAN obtains the cleanest rain-free
images with rich details.

(a) Rainy image (e) SPA-Net(b) MSPFN (d) DGNL-Net(c) JRGR (f) Ours (g) GT

Figure 9. Results of the removal of rain removal from images on the RainCityscapes dataset. (a) Rainy
images. Rain removal results of (b) MSPFN [11], (c) JRGR [14], (d) DGNL-Net [15], (e) SPA-Net [8],
(f) our model, and (g) the ground truth.
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Table 1. Quantitative results of different methods on the RainCityscapes, Rain200L, and Rain200H
testing sets.

Method
RainCityscapes Rain200L Rain200H

Time(s)
PSNR SSIM PSNR SSIM PSNR SSIM

Rain Streak Removal

DSC [4] 16.41 0.771 25.68 0.875 15.29 0.423 199.5
GMM [5] 18.39 0.819 27.16 0.898 14.54 0.548 600.4

UMRL [49] 27.97 0.912 31.24 0.954 27.27 0.898 1.349
SPA-Net [8] 20.90 0.862 31.59 0.965 23.85 0.852 0.154
PReNet [28] 26.83 0.910 36.76 0.980 28.08 0.887 0.262
DCSFN [50] 26.37 0.872 38.21 0.982 28.26 0.899 1.524
MSPFN [11] 25.51 0.903 32.98 0.969 27.38 0.869 3.863
MPRNet [12] 29.06 0.918 37.32 0.981 28.32 0.916 3.668
DerainRLNet [51] 27.39 0.881 37.38 0.980 28.87 0.895 0.925
CCN [52] 29.34 0.950 37.01 0.982 29.12 0.921 0.518

SIRR [30] 28.74 0.920 35.32 0.968 26.21 0.813 0.281
Syn2Real [13] 28.66 0.919 34.26 0.946 25.19 0.806 1.241
JRGR [14] 23.85 0.877 30.15 0.934 22.19 0.801 0.401

Rain Streak Removal + Rainy Haze Removal

MSPFN [11] + FFA [53] 25.56 0.906 32.98 0.969 27.40 0.869 3.927
MPRNet [12] + FFA [53] 29.10 0.920 37.33 0.981 28.33 0.917 3.733
Syn2Real [13] + FFA [53] 28.72 0.922 34.27 0.947 25.21 0.807 1.304
JRGR [14] + FFA [53] 23.89 0.879 30.14 0.934 22.21 0.802 0.465

Rain Streak Removal + Rainy Haze Removal

DAF-Net [16] 30.66 0.924 34.07 0.964 24.65 0.860 0.209
DGNL-Net [15] 32.21 0.936 36.42 0.979 27.79 0.886 0.332
MBA-RainGAN [37] 29.51 0.917 33.51 0.948 23.73 0.854 0.377
Ours 33.82 0.956 38.41 0.985 29.17 0.917 0.346

4.2.3. Results on the Rain200L and Rain200H Datasets

We also compare Semi-RainGAN with sixteen state-of-the-art methods on the Rain200L
and Rain200H testing sets. As shown in Table 1, Semi-RainGAN still outperforms other
approaches on these two synthetic datasets. Specifically, when compared with the JRGR
semisupervised method [14], our method achieves 8.26 dB and 6.98 dB PSNR gains on the
testing sets of Rain200L and Rain200H, respectively. Furthermore, Semi-RainGAN still achieves
superior performance when compared with supervised approaches. For example, Semi-
RainGAN obtains 1.99 dB and 1.38 dB PSNR improvements relative to DGNL-Net [15] on
the testing sets of the Rain200L and Rain200H datasets, respectively. The qualitative results
obtained on the testing sets of the Rain200L and Rain200H datasets are shown in Figure 10. We
observe that other existing methods fail to handle large rain streaks, whereas Semi-RainGAN
can remove rain streaks across various scales, better preserving texture details.

4.2.4. Results on Real-World Rainy Images

To further verify the effectiveness of Semi-RainGAN in handling real-world scenes,
we compare our method with state-of-the-art methods on real-world rainy images from the
testing set of the Mix200 dataset. Figure 11 shows the results on real-world rain images.
Semi-RainGAN produces better visual effects than other methods. Rain streak removal
approaches, including supervised approaches [8,12] and semisupervised approaches [13],
can eliminate most small rain streaks but still leave large rain streaks and rainy haze in the
real-world rainy image. Moreover, the results obtained using MPRNet [12] + FFA-Net [53]
still contain abundant rainy haze. DGNL-Net [15] considers both rain streaks and rainy
haze removal; however, this model still fails to remove large rain steaks and thick haze.
Comparatively, Semi-RainGAN is capable of capturing the characteristics of the mixture of
rain to remove rainy haze and multiscale rain streaks while better preserving the structure
and details of the background. Figure 12 shows the results on real-world rainy images that
contain only rain streaks. Our method still achieves the best results, which demonstrates
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that Semi-RainGAN can effectively handle solely rain streaks in various real-world rainy
scenes and effectively preserve image details.

(a) Rainy image (b) SPA-Net (c) MSPFN (d) Syn2Real (e) JRGR (f) Ours (g) GT

Figure 10. Qualitative results of rain removal from images in the testing sets of the Rain200L and
Rain200H datasets. (a) Aainy images. Rain removal results of (b) SPA-Net [8], (c) MSPFN [11],
(d) Syn2Real [13], (e) JRGR [14], (f) our method, and (g) the ground truth. Note that the first two
rows are from the Rain200L dataset, and the last two rows are from the Rain200H dataset.

(a) Rainy image (f) DGNL-Net(b) SPA-Net (e) Syn2Real(c) MPRNet (d) MPRNet + FFA-Net (g) Ours

Figure 11. Qualitative results of rain removal from real-world rain images. (a) Rainy images. Rain
removal results of (b) SPA-Net [8], (c) MPRNet [12], (d) MPRNet [12] + FFA-Net [53], (e) Syn2Real [13],
(f) DGNL-Net [15], and (g) our method.

4.3. Ablation Study
4.3.1. Component Analysis

We conducted an ablation study on the testing set of RainCityscapes to evaluate the ef-
fectiveness of various components of Semi-RainGAN. These components are listed as follows:

• M1: A single rain removal network (baseline) is used for rain removal. It regresses the
final rain-free images directly, without guidance from the depth map and attention map.

• M2: The attention prediction network is utilized to predict an attention map but
without the multiscale attention module (MSAM). The attention-guided channel
fusion module (AGCM) is substituted with a simple fusion operation that entails
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matrix multiplication between the attention map and feature map, followed by the
addition of the original feature map.

• M3: Only one SAM is added, and the output of the SAM is concatenated directly with
another branch.

• M4: SAM is replaced with MSAM in the attention prediction network to construct the
complete multiscale attention prediction network (MAPN).

• M5: The simple fusion operation is replaced with the AGCM.
• M6: The depth prediction network is added to forecast a depth map as guidance but

without the position attention module (PAM). Two depth-guided crisscross fusion
modules (DGCM) are substituted with a dot product operation.

• M7: The PAM is included in the depth prediction network to build the complete global
depth prediction network (GDPN).

• M8: The dot product is replaced with two DGCMs.

(a) Rainy image (b) MSPFN (c) Syn2Real (d) DGNL-Net (e) Ours

Figure 12. Qualitative results of rain removal from real-world rainy images containing only rain
streaks. (a) Rainy images. Rain removal results of (b) MSPFN [11], (c) Syn2Real [13], (d) DGNL-
Net [15], and (e) our method.

As shown in Table 2, a single rain removal network can only make PSNR and SSIM
reach 30.65 dB and 0.910, respectively. After adding the attention map, the PSNR and
SSIM scores increase by 0.86 dB and 0.011, respectively. The results of M3 and M4 show
that the incorporation of MSAM yields superior results compared to a single SAM, which
demonstrates that four multiscale SAMs can further improve performance compared to
only one SAM. Adding the AGCM also results in improvements in quantitative measures,
which indicates its effectiveness. Furthermore, the PSNR and SSIM scores exhibit consider-
able improvements after the inclusion of the complete global depth prediction network,
which proves that the depth map can provide fine guidance for better rain removal perfor-
mance. Finally, the overall structure achieves the best performance, which illustrates the
effectiveness of DGCM.

4.3.2. Loss Function Analysis

Apart from the analysis of different components of Semi-RainGAN, we adopt different
loss function settings to verify their effectiveness. Table 3 shows the results of five loss
function settings, from which we can conclude that both the PSNR and SSIM of Semi-
RainGAN exhibit a gradual improvement as the loss functions are progressively integrated.
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Table 2. Quantitative results of component analysis on the testing set of RainCityscapes. Note: w/o
denotes “without”, and M1–M8 denote the eight model settings.

Model M1 M2 M3 M4 M5 M6 M7 M8

BL X X X X X X X X
ATT w/o X X X X X X X
SAM w/o w/o X X X X X X

MSAM w/o w/o w/o X X X X X
AGCM w/o w/o w/o w/o X X X X
DEPTH w/o w/o w/o w/o w/o X X X

PAM w/o w/o w/o w/o w/o w/o X X
DGCM w/o w/o w/o w/o w/o w/o w/o X

PSNR 30.65 31.51 31.54 31.77 31.94 32.87 33.38 33.82
SSIM 0.910 0.921 0.922 0.926 0.930 0.945 0.950 0.956

Table 3. Quantitative results of different loss function settings on the testing set of RainCityscapes.
Note: w/o denotes “without”, and L1–L5 denote the five loss function settings.

Loss L1 L2 L3 L4 L5

Lmulti X X X X X
Ladv_sup w/o X X X X

Ladv_unsup w/o w/o X X X
Lcyc w/o w/o w/o X X
Ltv w/o w/o w/o w/o X

PSNR 31.91 32.27 32.82 33.51 33.82
SSIM 0.939 0.942 0.947 0.951 0.956

4.3.3. Semisupervised Paradigm Analysis

We delve deeper into the effectiveness of the semi-supervised paradigm, that is, the
capacity of our method to leverage unlabeled data of varying quantities for network
training. Following the protocol proposed in [13,21], we denote the labeled synthetic
training set from the Rain200H dataset as DL and the unlabeled real-world training set
from the Mix200 dataset as DU . Specifically, we conduct a series of experiments, where
DL consists of 10%, 20%, 40%, 60%, and 100% paired synthetic images and the rest comes
from DU , which comprises the real-world rainy images without labels. Table 4 shows that
our semisupervised deraining paradigm effectively utilizes additional unlabeled data to
enhance the rain removal performance. Notably, our method employs only 60% labeled
images and additional unlabeled images that can achieve comparable performance to that
achieved using 100% labeled images. Compared to Syn2Real [13], our approach yields
better quantitative results in both supervised and unsupervised settings. Figure 13 shows
the visual results when using only 40% labeled rainy images and extra unpaired images,
demonstrating that the inclusion of additional unlabeled images helps to improve the rain
removal performance.

Table 4. Quantitative results of semisupervised learning analysis on the testing set of Rain200H. Note:
“-” denotes that DU is 0 or the gain is 0.

DL

Syn2Real Ours

PSNR SSIM PSNR SSIM

DL DL +DU Gain DL DL +DU Gain DL DL +DU Gain DL DL +DU Gain

10% 22.89 23.51 0.62 0.740 0.759 0.019 26.28 27.01 0.73 0.851 0.874 0.023
20% 23.15 23.87 0.72 0.752 0.774 0.022 27.11 27.76 0.65 0.869 0.886 0.017
40% 23.80 24.59 0.79 0.770 0.791 0.021 27.73 28.36 0.63 0.885 0.903 0.018
60% 24.51 25.16 0.65 0.785 0.804 0.019 28.35 28.97 0.62 0.901 0.916 0.015
100% 25.19 - - 0.806 - - 29.17 - - 0.917 - -
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Figure 13. Qualitative results on 40% labeled images from the Rain200H dataset. (a) Rainy images.
Rain removal results of (b) Syn2Real on DL, (c) Syn2Real on DL + DU , (d) ours method on DL, and
(e) our method on DL + DU .

4.4. Application

Images captured in rainy scenes inevitably suffer from poor visibility, which degrades
the performance of high-level computer vision tasks, such as object detection [54] and
semantic segmentation [40]. To assess the extent to which our approach contributes to
improved object detection accuracy in rainy scenarios, we compare the accuracy of object
detection in rainy images, images derained by DGNL-Net [15], and images derained by
Semi-RainGAN. We adopt YOLOx [54] for object detection and retrain it on the training set
of Cityscapes [47]. Specifically, we choose five categories of objects, i.e., person, bicycle, car,
bus, and motorbike, for training and evaluation. Figure 14 depicts the qualitative results
on the testing set of the RainCityscapes dataset. Moreover, we employ YOLOx for object
detection in real rainy images, which we select from the Mix200 dataset. Figure 15 shows
the qualitative results on real rainy images, which demonstrate that Semi-RainGAN can
effectively achieve object detection in real-world rainy images.

（a) Rainy Image （b) DGNL-Net （c) Our

Figure 14. Object detection results on the testing set of the RainCityscapes dataset. Object detection
results in (a) rainy images, (b) derained images from DGNL-Net [15], and (c) derained images from
Semi-RainGAN.
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（a) Rainy Image （b) DGNL-Net （c) Our

Figure 15. Object detection results on the testing set of the Mix200 dataset. Object detection results
in (a) the rainy images, (b) derained images from DGNL-Net [15], and (c) derained images from
Semi-RainGAN.

5. Discussion

The proposed Semi-RainGAN demonstrates promising performance in effectively
removing the mixture of rain in real-world scenarios. Notably, it achieves a balance be-
tween the simultaneous removal of foreground rain streaks and the restoration of intricate
background details. As discussed in the Experimental Results and Analysis section, the
collaborative efforts of the multiscale attention prediction network (MAPN), the global
depth prediction network (GDPN), and the coarse-to-fine guided rain removal network
(CFRN) result in the production of high-quality rain-free images. This achievement is
attributed to the effective fusion of image information, attention maps, and depth features.
However, like any methodology, there are areas that warrant further investigation and
improvement. When confronted with more challenging rainy scenarios, such as the in-
terplay of three rain forms (rain streaks, raindrops, and rainy haze) or heavy rain, our
approach may necessitate enhancement. In the future, we aim to expand our network to an
all-in-one network to handle multiple adverse weather removal tasks. Furthermore, we
are committed to integrating our approach with high-level computer vision techniques to
advance task performance in adverse weather scenarios.

6. Conclusions

In this paper, we propose a novel semisupervised approach that leverages a coarse-to-
fine guided generative adversarial network (Semi-RainGAN) for the removal of a mixture
of rain. Semi-RainGAN takes advantage of both synthetic and real-world rainy images
for training, which enables smooth generalization in real-world rainy scenes. One central
question we addressed in this study is whether it is feasible to combine a coarse attention-
guided approach and a depth-guided approach to establish a coarse-to-fine guidance
mechanism. Our research unequivocally answers this question in the affirmative. The
integration of these mechanisms not only boosts rain removal performance but also aligns
with the symmetrical goal of preserving image details—a unique achievement in this
domain. Semi-RainGAN comprises three pivotal subnetworks: a multiscale attention
prediction network (MAPN), global depth prediction network (GDPN), and coarse-to-fine
guided rain removal network (CFRN). These components work in concert to effectively
fuse image information, attention maps, and depth features, culminating in the production
of high-quality rain-free images. Extensive experiments demonstrate that Semi-RainGAN
outperforms existing rain removal models in both synthetic and real-world rainy images.
Despite the promising results achieved by our proposed Semi-RainGAN, there are several
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areas for further research. In the future, we aspire to broaden the scope of our network
to encompass a comprehensive, all-in-one framework capable of addressing multifaceted
adverse weather removal challenges. Moreover, we will strive to incorporate our approach
into high-level computer vision techniques, thereby propelling task performance within
the domain of adverse weather scenarios.
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