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Abstract: Developing low-cost and stable materials for converting solar energy into electricity is vital
in meeting the world’s energy demand. Metal-organic frameworks (MOFs) have gained attention for
solar cells due to their natural porous architectures and tunable chemical structures. They are built by
high-symmetry metal clusters as secondary building units and organic carboxylate/azolate ligands as
linkers. This review commences with an exploration of the synthetic methods of MOFs. Moreover, we
discuss the various roles of MOFs, including photoanodes and counter electrodes in dye-sensitized
solar cells and interfacial layers and charge carriers in perovskite solar cells. Additionally, studies
involving the application of MOFs for OSC were additionally presented. Ultimately, burdensome
tasks and possible directions for advancing MOFs-based nanomaterials are provided for solar cells.

Keywords: MOFs; hydrothermal method; sol-gel; porous materials; solar cells; photoanodes

1. Introduction

In recent years, melting ice, drought, and flooding have increased significantly. This is
a direct result of global warming, attributed to the increased greenhouse gases released
from using conventional fossil fuels [1–10]. Therefore, there needs to be a shift from fossil
fuel to renewable energy to meet the increasing demands of power without causing much
environmental contamination [11–20]. Among renewable energy sources, solar energy is
considered an ideal solution due to zero CO2 emission and abundant resources [21–26].
Nonetheless, problems of solar cells are expensive, and restricted scale. Solar cells based on
silicon are the most widely used for converting solar energy to electricity to satisfy human
energy demands. Until now, Si-based materials displayed the highest performance for
converting solar energy into electricity [27–31]. However, solar cell-based Si materials are
ineffective with inside sunlight due to their unsuitable band gap. As a result, various types
of solar cells involving dye-sensitized solar cells (DSSC), perovskite solar cells (PSC), and
organic solar cells (OSC) have been explored with a large number of publications in recent
years (Figure 1) [32–34].

Regarding DSSC, TiO2 was identified as a typical photoanode material, whereas Pt-
based materials are the most effective counter electrodes (CE). However, the fast excitons
recombination of TiO2 and the high cost of Pt have driven scientists to explore the novelty
alternatives in solar cell applications. Furthermore, stability is an issue of concern for PSC
and OSC researchers due to the instability of organic components. As a result, ultra-stable
materials and integrated methodologies for increasing the long-term stability of PSC and
OSC must be investigated [35–37].

The terminology metal-organic frameworks (MOFs) was first known in 1995 by Yaghi,
which defined the structure construction from metal nodes along with organic linkers,
which have high-symmetry properties. For instance, HKUST-1 was constructed by sym-
metry units, including a copper paddle wheel (-Cu2(COO)4) along with benzene-1,3,5-
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tricarboxylic acid (H3BTC). MOFs have a crystal, porous framework structure, making
them promising candidates in various applications such as gas adsorption, catalysis, and
sensors [38–43]. In particular, MOFs containing unsaturated metal sites and Lewis basis
sites were evaluated as promising materials for gas storage, such as CH4, CO2, and H2 [44].
Moreover, the pore size of MOFs can be tunable, which is favorable for gas selectivity
adsorption [45]. Additionally, the well-distribution of metal nodes indicated uniformly
exposed active sites for catalytic application. On the other hand, enormous MOFs have
recently been widely applied for photovoltaic applications with various functions in DSSC,
PSC, and OSC [46–50]. As mentioned above, MOF structures were built from metal nodes
and organic components, leading to bandgap (Eg) along with semiconducting features that
could be adjusted by chemical composition change. Generally, the optical absorption ability
of materials is identified by their Eg. Consequently, the preparation of a MOF with an
appropriate Eg that is capable of adsorbing light in the spectrum of sunlight is an essential
requirement. Several theoretical works indicated that organic components of MOFs will
determine light absorption, whereas experimental studies revealed that the electron trans-
port process takes place through metal site-linkers. These outcomes implied that MOFs
could act as photoactive materials for photovoltaic applications. In particular, MOF-5 is the
first structure in the MOF family used as active material in solar cell applications [51]. Also,
MOFs were used as photoanode, counter electrode (CE), interfacial layers, and charger
carriers in DSSC and PSC.
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Figure 1. Number of publications resulting from the search of “solar cells” on Web of Science,
accessed on 12 September 2023.

Although there are several kinds of literature about MOFs for solar cells, the finding
of efficient and ultra-stable MOFs for solar cells is urgent and significant in minimizing
the influence of CO2 emission. This review helps the researchers have a comprehensive
view of the recent use of MOFs in solar cell applications. To begin, this literature discusses
the general aspects of MOF production, such as the hydrothermal approach, solvothermal
procedure, and sol-gel. Second, several DSSC responsibilities, including photoanodes and
counter electrodes (CE), were shown utilizing MOFs. Third, using MOFs as interfacial
layers (IL) and charge carriers in PSC were explored. Furthermore, several works related to
the usage of MOFs for OSC also was introduced. Finally, present obstacles and prospects
for the advancement of MOFs for solar cells are discussed.

2. Synthetic Methods of MOFs
2.1. Hydrothermal Technique

The hydrothermal process is a typical method for producing MOFs and materials
developed from them for solar cells. Various sizes and structures of MOFs were created by
varying the temperature, reaction duration, and pressure [52]. Despite the effectiveness of
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obtaining MOFs, it was plagued by low yield and expansiveness. Furthermore, the reaction
pathway of MOFs and their derived materials remains to be discovered.

2.2. Solvothermal Method

The solvothermal technique is generally acknowledged as an effective method for
synthesizing MOFs and their composites by virtue of its high yield and facial control. The
solvent is vital in the solvothermal reaction process. Until now, the most often employed
organic solvents for MOF fabrication are N, N-dimethylformamide, ethanol, and methanol.
These organic solvents might shift MOFs’ structure and size for specific applications. How-
ever, organic solvents’ toxicity and environmental unfriendliness limit their widespread
use. Furthermore, organic solvents are difficult to decontaminate and recycle. As a re-
sult, developing safe and ecologically acceptable solvents for the solvothermal process is
critical [53].

2.3. Sol-Gel

Recently, the sol-gel approach has been frequently used to produce inorganic nanoma-
terials. The synthesis procedure causes ion co-precipitation, which results in the generation
of the desirable structures. This approach is more effective than the hydrothermal pro-
cess for synthesizing MOFs. MOFs with variable sizes and shapes might be created by
optimizing experimental parameters such as reaction temperature, duration, etc. Further-
more, MOFs might be employed as a precursor to create derivatives with outstanding
properties [54].

2.4. Other Methods

Besides the hydrothermal technique, solvothermal process, and sol-gel methods, MOFs
could be prepared by other strategies involving the electrochemical technique, microwave,
and ultrasound methods [55–57].

3. Fundamentals of Solar Cells

Solar cells are electronic devices for converting the sun’s energy directly into electricity.
Generally, a solar cell comprises a semiconductor with a photovoltaic effect once illumi-
nated. In terms of DSSC, the mechanism of the photovoltaic device includes three steps:
light adsorption, charge production, and charge transport. Notably, the first process is the
light adsorption of the dye molecule to change the excited state (dye*), after which this
dye provides electrons for the conduction band of the semiconductor, accompanied by
the oxidation process of dye*. Then, the injected electrons will move to the photoanode
before transferring to CE through an external circuit, as shown in Figure 2a [58]. In terms
of PSC, this device generally includes five parts: FTO (Fluorine-doped Tin Oxide) glass
as a conductive substrate, an electron transfer layer (ETL), a hole transfer layer (HTL),
a perovskite layer, along with a metal electrode. PSC’s operation may be broken down
into three steps: light adsorption and production of excitons, electron-hole separation,
and charge transfer process. In particular, the perovskite layer will absorb solar energy
to create electrons in the conduction band and holes in the valance band. The electrons
then move to ETL before being transported to the anode, whereas the holes flow to HTL
before being transferred to the cathode (Figure 2b) [59]. The process includes four steps for
OSC’s working principle: light adsorption/electron-hole pairs production, charge diffusion,
charge dissociation, and charge transport to the electrodes, as shown in Figure 2c [60]. In
particular, when a p-type material absorbed solar energy, electrons will be excited from the
highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital
(LUMO). Then these electrons will move to the LUMO of the acceptor before transfer-
ring into the cathode. Simultaneously, holes will move to the anode of the OSC device.
Overall, the power conversion efficiency (η) is linked to three parameters: the open-circuit
voltage (Voc), short circuit current density (Jsc), and fill factor (FF) following the formula
η = Voc × Jsc × FF × Pinput.
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pairs, 2 Charge diffusion, 3 Charge dissociation, 4 Charge transport. Reproduced with permission [60].
Copyright 2017, Elsevier B.V.

4. MOFs for Dye-Sensitized Solar Cells
4.1. MOFs as Photoanodes

Over the past decades, DSSC have gained considerable interests of scientists around
the world because of their low-price, facial preparation, and high η. A typical DSSC is
constructed from a photoanode, a CE, and a redox solution. TiO2 was evaluated as a
conventional photoanode material. But, the fast excitons recombination of TiO2 has driven
researchers to find the novelty photoanode in solar cell applications. On the one hand,
MOFs could be utilized as photosensitizers for the conversion of sunlight into electricity.
For example, Lee et al. conducted hole doping on various structures, including Co-BDC
(BDC = benzenedicarboxylate) and Co-NDC (NDC = 2,6-naphthalendicarboxylic acid) for
DSSCs [61]. The results revealed that I2-doped Co-based MOFs as photoanodes displayed
a potential performance for energy conversion. Notably, I2-doped Co-NDC/TiO2 gave
an efficiency of 1.12%, whereas this quantity is 0.96% for I2-doped Co-NDC/TiO2. The
improved performance was attributed to the well-interaction between I2 and π-electrons of
linkers. Spoerke et al. found that porphyrin-based MOFs could be efficient photosensitizers
for DSSC. Notably, the authors utilized a pillared porphyrin framework (PPF) as an active
component in solar cells, as shown in Figure 3 [62]. Although this device gave a low solar
conversion efficiency, it opened a promising direction for the advancement of MOFs for
photovoltaic applications. On the other hand, MOFs were utilized as interfacial modifiers.
For instance, ZIF-8 was formed on the photoanode’s TiO2 surface, which suppresses
the electron-hole pair recombination, resulting in a much higher open-circuit voltage
(Voc) than the pure DSSC [63]. Moreover, the cell efficiency was increased from 5.11%
to 5.34% with the assistance of the ZIF-8 layer at the ideal growth time. Gu et al. also
combined ZIF-8 with TiO2 to improve DSSC performance from 7.75% to 9.42%, attributed
to effectively prohibiting electron-hole pairs recombination from ZIF-8 [64]. He et al.
used reduced graphene oxide (RGO) with ZIF-8 and UiO-66 to improve DSSC efficiency
through improved charge transfer [65]. Notably, ZIF-8-RGO/TiO2 as a photoanode gave
an energy conversion efficiency (η) of 7.33%, whereas this value is 7.67% for UiO-66-
RGO/TiO2. Recently, He et al. mixed a 3D structure of graphene-based material with ZIF-8
to accelerate DSSC performance [66]. In particular, an optimal sample of ZIF-8/3DGN/TiO2
displayed η of 8.77%, ascribed to the synergistic effect of efficient charge transfer and good
conductivity from 3DGN. Besides ZIF-8, Cu-, Ni-, and Co-based MOF are also used to
fabricate photoanode in DSSCs. For instance, Ramasubbu et al. fabricated a TiO2-Ni-MOF
hybrid structure as an efficient photoanode for DSSC utilization [48]. In particular, this
material displayed a 30% larger performance than bare TiO2 as a photoanode. The result
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could be explained by the fact that Ni-MOF plays a vital role in changing optical properties
and prohibiting excitons recombination. Kumar et al. prepared and evaluated the solar
cell efficiency of various compounds such as Cu-MOF/TiO2, Ni-MOF/TiO2 and TiO2 [67].
The authors found that the diffusion time and charge transfer resistance of Ni-MOF/TiO2
are the smallest among investigated materials, which were attributed to the highest energy
conversion efficiency.
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4.2. MOFs as Counter Electrodes

The counter electrodes (CE) play vital roles in the construction of photovoltaic devices
and in determining efficiency. The CE is created from depositing an electrocatalyst on the
conductive template. Herein, Pt is generally utilized as electrocatalyst. Although Pt-based
thin layers are the best CE for DSSC, high cost leads to an increase in the cost of solar cells.
MOFs with a well-distribution of metal active sites were appreciated as promising CE in
DSSC. For instance, Chen et al. blended MOF-525 with a conductive polymer, followed
by coating on the carbon cloth to form an efficient CE in DSSC, as shown in Figure 4 [68].
This device displayed a high cell performance of 8.91%, comparable with Pt CE-based
solar cells. The effectiveness of using MOFs for CEs has been exemplified in a study by
Zhao et al. [69]. The authors found that using ZIF-8 for fabrication CE brings higher power
conversion efficiency than without MOF in DSSC. Yang et al. mixed a Cu-based MOF with
poly(3,4-ethylenedioxythiophene), followed by depositing on the fluorine-doped tin oxide
(ITO) to create a CE for DSSCs [70]. This cell displayed a higher performance of 9.45% and
remarkable stability, attributed to the abundant catalytic sites of -Cu-S- phases and good
film attachment on ITO. Tian et al. utilized Zn-TCPP nanolayers to efficiently advocate
for embedding Pt nanoparticles to generate promising CE for DSSC [71]. In particular,
DSSC with Zn-TCPP-Pt as a CE provided a solar cell performance of 5.48%. Overall, the
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usage of MOFs as CE is still limited in DSSC by virtue of their poor conductivity. Therefore,
enormous works have been reported on using MOFs as sacrificial agents for the fabrication
of hybrid structures, which are efficient CE in DSSC.
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5. MOFs for Perovskite Solar Cells
5.1. MOFs as Interfacial Layers (IL)

PSCs have been proven as potential candidates for replacing inorganic solar cell by
virtue of excellent optical adsorption, inexpensiveness, and fast charge transfer. Recently,
works related to the enhancement of PSC’s long-term durability have been implemented
through a strategy of compositional engineering. Notably, by using inorganic ions to
substitute unstable organic components, stability of PSC could be substantially improved.
Also, interfacial engineering is an effective strategy to enhance stability of PSC. Recently,
MOFs with high stability were employed as IL in PSC to improve the particle size and
perovskite crystallinity and hinder electron-hole recombination, leading to increased solar
cell efficiency. For instance, Shen et al. inserted ZIF-8 IL between the PSC application’s
mesoporous TiO2 and perovskite component [72]. This strategy improved the solar cell
efficiency from 14.75% (without ZIF-8) to 16.99% (with ZIF-8), attributed to the improved
crystal quality and efficient suppression of exciton recombination. Ahmadian-Yazdi et al.
used ZIF-8 as an interfacial modifier in PSC [73]. To confirm the ability of charge extraction,
Photoluminescence (PL) was analyzed with various samples. The outcome revealed that
c-TiO2/ZIF-8-10/perovskite displayed the smallest intensity of PL, implying the most effec-
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tive charge extraction. As a result, this material exhibited the highest solar cell performance
of 16.8%. Recently, Jin et al. utilized ZIF-8 as a host material to confine methylammonium
chloride (MACl) to form an effective IL between SnO2 and the perovskite layer, as shown
in Figure 5 [74]. This strategy brings several beneficial effects for PSC. First, oxygen va-
cancies of SnO2 were significantly decreased. Second, the new bonds were created from
interaction ZIF-8 with unsaturated Pb2+, I−, and Br−. Furthermore, the MACl component
would supply the ions to decline the Pb vacancies in perovskite material. As a result, the
MACl@ZIF-8-based solar cell gave a high performance of 22.10%, open novelty direction in
using MOF in PSC.
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5.2. MOFs as Charge Transfer Layers

MOFs have been identified as promising materials for charge transporting in PSC. On
the one hand, MOFs have been applied to improve electron transfer in PSC. For instance,
Ryu et al. mixed a Ti-based MOF with commercial carbon material (PCBM) to create an
electron transfer layer (ETL), as shown in Figure 6a [75]. This approach not only improves
charge transport but also prevents the recombination of excitons. As a result, the rigid
nTi-MOF/PCBM device exhibits a solar cell efficiency of 18.94%, whereas its flexible device
has a performance of 17.43% (Figure 6b,c). Nguyen et al. used a metal doping strategy
on TiO2 derived from Ti-based MOF to produce an efficient ETL in PSC [76]. Notably,
an optimized sample of Co-doped TiO2 displayed a higher solar cell performance than a
commercial TiO2 PSC device, attributed to the enhanced optical absorption and electron
transport by co-doping. The effectiveness of using MOF as an ETL has been reported
in the literature by Andrade et al. [77]. The author found that a PSC efficiency of 5.9%
was recorded on NH2-MIL-125 (Ti), whereas a lower performance of 4.1% was observed
on NH2-MIL-101 (Fe). These outcomes were attributed to the influence of porosity and
roughness of materials.

On the other hand, MOFs are also used in hole transfer layers (HTL) of PSC by mixing
with Spiro-OMeTAD to improve conductivity, durability, and oxidation performance.
For instance, Li et al. used In-based MOF for doping Spiro-OMeTAD to improve the
oxidation process and electrical conducting of HTL [78]. This approach helped to increase
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electron transfer and prevent exciton recombination of PSC. Thus, solar cell efficiency was
accelerated. Notably, an efficiency of 17.0% was recorded on PSC with In-based MOF
doping, whereas this quantity is 14.1% for PSC without MOF in HTL. The effectiveness of
MOF doping in HTL has been reported in the literature by Wang et al. [79]. The authors
used a Zn-based MOF to accelerate the conductivity of HTL in PSC. Besides, carbonyl
groups of Zn-based MOF bind with Pb(II) ions, leading to improved solar cell performance
significantly.
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6. MOFs for Organic Solar Cells

OSC are a potential new energy conversion device that has significant prospects to
deliver excellent η by utilizing inexpensive, adjustable conductive polymers or organic
molecules. Moreover, these materials could be applied for industrial applications, implying
that large-scale preparation is achievable. However, the stability of OSC is a headache
problem for scientists. Therefore various strategies were conducted to improve η as well
as stability of OSC devices. Interfacial engineering was identified as a primary strategy
for increasing power conversion efficiency. The interfacial layers in OSCs could take
various roles, involving shifting the energetic barrier at the metal/photoactive material
interface, providing contact selectivity, hindering chemical or photophysical interaction
between the photoactive component and the electrode, and acting as an optical spacer
to maximize photocurrent. Compared to the rising uses in DSSC and PSC, MOFs have
yet to be fully investigated in OSCs due to their low semiconducting characteristics. Up
to now, only a few works related to MOFs for OSC application. For example, Xing et al.
utilized polyethylenimine ethoxylate (PEIE) to exfoliate Te-based MOF bulk to nanolayers,
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which was applied for interfacial layers in OSC [80]. This strategy accelerated the power
conversion efficiency from 9.91% (ZnO/PEIE as an electron extraction layer (EEL) to
10.39%, which was attributed to the passivity of defective ZnO and improved conductivity
(Figure 7). Additionally, the effectiveness of using MOFs for OSC has been exemplified
in a work by Sasitharan et al. [81]. The author mixed three components, including Zn-
based MOF nanolayers, poly(3-hexylthiophene-2,5-diyl) (P3HT), and [6,6]-PhenylC61-
butyric acid methyl ester (PCBM) to create an active material layer in OSC device. This
approach improved the power conversion efficiency from 2.67% (without MOF) to 5.2%
(with MOF). This result could be explained by the fact that Zn-based MOF plays a vital role
in forming P3HT and avoids the expansion of PCBM. The performances of MOFs for solar
cell applications are summarized in Table 1.
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Table 1. Performance of MOFs for solar cells application.

Solar Cell Types MOF-Based Materials Jsc (mA cm−2) Voc (V) FF η (%) Ref.

DSSC

I2@ Co-NDC/TiO2 2.56 0.63 0.63 1.12 [61]
ZIF-8/TiO2 10.28 0.753 0.69 5.34 [63]
ZIF-8/TiO2 14.39 0.897 0.73 9.42 [64]

UiO-66-RGO/TiO2 18.6 0.678 0.608 7.67 [65]
ZIF-8/3DGN/TiO2 20.9 0.681 0.616 8.77 [66]

TiO2-Ni-MOF 27.32 0.624 0.516 8.846 [48]
Cu-MOF/TiO2 1.70 0.32 0.236 0.13 [67]
MOF-525/s-PT 16.14 0.80 0.70 8.91 [68]

ZIF-8/PEDOT:PSS 11.46 0.852 0.70 7.56 [69]
Cu-MOF/PEDOT 16.36 0.777 0.65 8.26 [70]

Zn-TCPP-Pt 12.95 0.69 0.61 5.48 [71]

PSC

mp-TiO2/ZIF-8 22.82 1.02 0.73 16.99 [72]
c-TiO2/ZIF-8-10 21.8 1.23 0.59 16.8 [73]

MACl@ZIF-8 24.07 1.16 0.791 22.10 [74]
nTi-MOF/PCBM 23.18 1.082 0.755 18.94 [75]
Co-doped TiO2 24.078 1.027 0.64949 15.75 [76]

NH2-MIL-125 (Ti) 19.10 0.64 0.48 5.9 [77]
In-based MOF 24.3 1.0 0.70 17.0 [78]

Zn-CBOB 23.17 1.135 0.784 20.64 [79]

OSC
ZnO/MOF-PEIE 17.09 0.86 0.7069 10.39 [80]

P3HT-Zn2(ZnTCPP)-PCBM 10.8 0.69 0.69 5.2 [81]
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7. Conclusions and Outlook

In summary, MOFs have emerged as a new topic in solar applications, which in-
troduced tremendous theoretical and experimental works to improve the photovoltaic
capabilities of MOFs. In particular, MOFs could be utilized as counter electrodes or pho-
toanodes for DSSC with potential efficiency. Moreover, interface modifiers and charge
transport components could be made from MOFs for PSC. Additionally, several works
related to the usage of MOFs for OSC could bring a novelty direction in photovoltaic appli-
cations. Although uses of MOFs in various functions of solar cells have advanced quickly
in recent years, fundamental difficulties to accelerate solar cell efficacy are as follows:

(1) The durability of solar cells is a critical factor in evaluating industrial application
possibilities. Future research should periodically examine the applications of MOFs
in PSCs under extreme conditions, e.g., high humidity.

(2) Poor electron conductivity is one of the most significant barriers to MOF utilization
in solar cells. This might be enhanced by rationally designing and manufacturing
novelty kinds of MOFs. Combination MOFs with highly conductive materials or
the development of conductive MOFs provide possible solutions for increasing the
electrical conductivity of MOFs, allowing for their use in solar cells.

(3) Metal compounds originating from MOFs are a novel selection that can potentially
increase solar cell efficiency. Although these compounds lose the natural features
of MOFs, their charge transport behavior may be enhanced. Furthermore, these
materials often preserve adequate porosity and have a large surface area, implying a
wide range of solar applications.

(4) A thorough knowledge of the links between MOFs’ architectures, characteristics, and
solar cell efficiency is required. This may allow for the development of more expected
MOFs for photovoltaic utilization. Further research into the uses of 2-dimensional
MOFs could provide potential results in solar cells.

(5) The growth of MOFs on a conductive substrate is a challenging task by virtue of the
lack of chemical linking. Therefore, finding a new process to prepare MOF thin films
on a conductive substrate is necessary.

(6) The conduction mechanism of MOF materials is a controversial problem. Therefore,
insight studies combining simulation works and experimental studies need to be con-
ducted to explore relationships between structures and power conversion efficiency,
as well as a better knowledge of how MOFs operate in photovoltaic devices.

Aside from existing obstacles, MOFs-based materials for solar cells offer substantial
prospects due to the diversification of MOFs. Based on composition engineering, Eg of
MOFs could be adjusted to optimal values in order to achieve maximum power conversion
efficiency. Also, usage of MOF for OSC devices is still limited due to their optical properties.
Therefore, the development of photoluminescence MOFs could bring potential results in
solar cell applications. Additionally, using contemporary computer techniques to deter-
mine the optimum type of MOFs for solar cells might save a significant amount of time
and cost in experimental studies. Moreover, the outstanding conductivity of conductive
MOFs and the amazing stability of MOF derivatives have yielded promising results in
photovoltaic applications.
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