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Abstract: Quite often (e.g., using numerical methods), we are only able to find approximate solutions
of some equations, and it is necessary to know the size of the difference between such approximate
solutions and the mappings that satisfy the equation exactly. This issue is the main subject of the
theory of Ulam stability, and it is related to other areas of research such as, e.g., shadowing, opti-
mization, and approximation theory. In this expository paper, we present several selected outcomes
on Ulam stability of difference equations, show possible extensions of them and indicate further
directions for research. We also present and discuss some simple methods that allow improvement of
several already known results concerning Ulam stability of some difference equations in normed or
metric spaces and extend them to b-metric and 2-normed spaces. Our results show that the noticeable
symmetry exists between the outcomes of this type in normed and metric spaces and those obtained
by us for other spaces. In particular, we extend the result of Pólya and Szegö concerning the stability
of equation xn+m = xn + xm for m, n ∈ T, where T means either the set of integers Z or the set of
positive integers N. We also consider the stability of equation xn+p + a1xn+p−1 + · · ·+ apxn + bn = 0
(with a fixed positive integer p) and of two more general difference equations.

Keywords: Ulam stability; difference equation; 2-norm; b-metric; Banach space

1. Introduction

This is an expository paper presenting some selected results concerning Ulam stability
of difference equations, showing (with proof) some extensions of them and indicating
directions of further possible investigations. To avoid misunderstanding, let us mention
here that it is not a survey (or review) paper, and therefore numerous other outcomes on
Ulam stability of difference equations are not mentioned here.

Let us remind that the Ulam stability theory deals with the following problem that con-
cerns solutions to various equations (e.g., difference, differential, integral, functional, etc.)
and naturally arises in many areas of scientific investigations: How much an approximate
solution to an equation differs from the exact solutions of it?

This inquiry has been inspired by a question raised by Stanisław Ulam in 1940 (con-
cerning the functional equation of group homomorphism) and the first answer to it given
(for Banach spaces) by D.H. Hyers in [1]. However, there is an earlier result of this type
concerning real sequences that was formulated by Gy. Pólya and G. Szegö in [2]. It can be
stated in the following way.

Theorem 1. Assume that (rn)n∈N is a real sequence fulfilling inequality

sup
n,m∈N

|rn+m − rn − rm| ≤ 1.

Then,
sup
n∈N
|rn −ωn| ≤ 1
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for some real number ω.
Moreover,

ω = lim
n→∞

rn

n
.

After Hyers’ paper [1], some further stability results were formulated by Bourgin [3,4]
and Aoki [5] (for some other generalization of the result of Hyers, we refer to [6]). The
result of Aoki is included in Theorem 2 (when s ∈ [0, 1)), given below.

More information on this subject can be found in [7] (see also [8,9]). For various
examples of the Ulam stability outcomes, we refer to, e.g., [10–18]. Problems of such type
are quite natural and are related to the subjects studied in the theories of optimization,
approximation and shadowing (cf. [19]).

The next theorem can be regarded quite representative for the theory of stability of
Ulam type (see, e.g., [20] or Theorem 1 in [21]).

Theorem 2. Assume that W is a Banach space, V is a normed space, and V0 := V \ {0}. Let
η ≥ 0 and s 6= 1 be real numbers, and h : V →W satisfy inequality

‖h(z + w)− h(z)− h(w)‖ ≤ η(‖z‖s + ‖w‖s), ∀z, w ∈ V0 . (1)

Then, there is a unique mapping g : V →W that is additive and fulfils inequality

‖h(u)− g(u)‖ ≤ η‖u‖s

|1− 2s−1| , ∀u ∈ V0. (2)

Let us remind that g : V →W is additive provided

g(z + w) = g(z) + g(w), ∀z, w ∈ V. (3)

If s = 1, then a result analogous to Theorem 2 is not valid (see [14]). Next, the
constant in (2) is the best possible for s ≥ 0 (see, e.g., [8]), but for s < 0, this is not the
case, because then each mapping h : V →W satisfying condition (1) must be additive even
without completeness of space W (see, e.g., [20,21]). Namely, the following complement to
Theorem 2 is true (see Theorem 3.1 in [20]).

Theorem 3. Assume that V and W are normed spaces, Y ⊂ V \ {0} is a nonempty set, and γ ≥ 0
and s < 0 are fixed real numbers. Next, assume that

−Y := {−y : y ∈ Y} = Y (4)

and there is an integer n0 > 0 with

nz ∈ Y, ∀z ∈ Y, n ∈ N, n ≥ n0.

Then, each mapping h : Y →W satisfying inequality

‖h(z + w)− h(z)− h(w)‖ ≤ γ(‖z‖s + ‖w‖s), ∀z, w ∈ Y, z + w ∈ Y

must be additive on Y, i.e.,

h(z + w) = h(z) + h(w), ∀z, w ∈ Y, z + w ∈ Y. (5)

In the case Y = V \ {0}, this outcome can also be easily deduced from Theorem 5
in [22] (concerning a more general monomial functional equation).

The next theorem (see Theorem 3.4 in [20]) complements Theorem 3 and generalizes
Theorem 2.
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Theorem 4. Assume that W is a Banach space, V is a normed space, Y ⊂ V \ {0} is a nonempty
set, γ ≥ 0 and s ≥ 0, s 6= 1. Let one of the subsequent two conditions be valid.

(i) s < 1 and 2Y := {2y : y ∈ Y} ⊂ Y.

(ii) s > 1 and Y ⊂ 2Y.

Then, for each g : Y →W with

‖g(z + v)− g(z)− g(v)‖ ≤ γ(‖z‖s + ‖v‖s), ∀z, v ∈ Y, z + v ∈ Y,

there exists exactly one mapping T : Y →W that is additive on Y and fulfils inequality

‖g(z)− T(z)‖ ≤ γ

|1− 2s−1| ‖z‖
s, ∀u ∈ Y.

The subsequent stability result concerning the Cauchy Equation (3) (but without
assumption (4)) was obtained in [23].

Theorem 5. Assume that W is a Banach space, V is a normed space, Y ⊂ V \ {0} is a nonempty
set, γ ≥ 0, s < 0, and there is an integer n0 > 0 with

ky ∈ Y, ∀y ∈ Y, k ∈ N, k > n0.

Let g : Y →W be a mapping such that

‖g(z + v)− g(z)− g(v)‖ ≤ γ(‖z‖s + ‖v‖s), ∀z, v ∈ Y, z + v ∈ Y.

Then, there is exactly one mapping T : Y → W, which is additive on Y and fulfils the
subsequent inequality:

‖g(u)− T(u)‖ ≤ γ‖u‖s, ∀u ∈ Y.

Of course, instead of (1), some other inequalities, of the form

‖g(z + v)− g(z)− g(v)‖ ≤ Φ(z, v),

can be considered and, for instance, condition

‖g(z + v)− g(z)− g(v)‖ ≤ ξ‖z‖p‖v‖q, ∀z, v ∈ V \ {0}

was studied in [24,25] with fixed p, q ∈ R and ξ > 0.
Also, from Theorem 9 in [26] (see the proof of it) the next two more precise results can

be derived.

Theorem 6. Let V be a normed space and d : V2 → R be such that

d(u + t, u + t)− d(u, u)− d(t, t)

= d(2u, 2t)− 2d(u, t), ∀u, t ∈ V.

Let Y 6= ∅ be a subset of V \ {0}, 2Y ⊂ Y, χ, ν, s ∈ R, s < 1, χ ≤ ν, and φ : Y → R satisfy

χ(‖z‖s + ‖v‖s) ≤ φ(z + v)− φ(z)− φ(v)− d(z, v) (6)

≤ ν(‖z‖s + ‖v‖s), ∀z, v ∈ Y, z + v ∈ Y.

Then, there exists exactly one mapping Φ : Y → R with

Φ(z + v) = Φ(z) + Φ(v) + d(z, v), ∀z, v ∈ Y, z + v ∈ Y, (7)
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χ

1− 2s−1 ‖z‖
s ≤ Φ(z)− φ(z) ≤ ν

1− 2s−1 ‖z‖
s, ∀z ∈ Y.

Theorem 7. Let V, d and χ, ν be as in Theorem 6 and s > 1. Let Y ⊂ V \ {0} be nonempty,
Y ⊂ 2Y, and φ : Y → R satisfy (6). Then, there exists exactly one mapping Φ : Y → R such
that (7) is fulfilled and

χ

2s−1 − 1
‖z‖s ≤ φ(z)−Φ(z) ≤ ν

2s−1 − 1
‖z‖s, ∀z ∈ Y.

Clearly, in a similar way, the stability of many other equations can be studied. Further
information on this subject, references and examples can be found in [7,8]. In particular,
some authors (see, e.g., [27–32]) studied the stability of various particular cases of the
following quite general functional equation

m

∑
i=1

Cig
( n

∑
j=1

cijzj

)
= d(z1, . . . , zn) (8)

for mappings g from a module M over a commutative ring P into a Banach space B over
the field K ∈ {R,C}, where mapping d : Mn → B is given and satisfies some additional
assumptions, C1, . . . , Cm ∈ K \ {0}, and cij ∈ P for i = 1, 2, . . . , m, j = 1, 2, . . . , n. Clearly,
functional Equation (3) is a special case of Equation (8). Information on various other
particular cases of (8) can be found, e.g., in [7,8,33–36].

Plainly, the closeness of two mappings and the notion of an approximate solution
can be understood in many ways (see, e.g., [35–40]). Therefore, Ulam stability can also be
considered with respect to some nonstandard ways of measuring distance. For instance, in
recent years, Ulam stability in 2-normed spaces has been investigated in numerous papers
(see, e.g., [35,41–48]), and in survey paper [21] a discussion of such results and further
references can be found. Also, Ulam stability with respect to quasi-norms and b-metrics
has been studied (see [37]).

This paper shows that it is possible to easily obtain many quite general stability results
for difference equations with respect to b-metrics and 2-norms by deriving them from some
already known outcomes proved for normed spaces. In this way, it is demonstrated that
a significant symmetry exists between such results in classical normed and metric spaces
and those obtained by us for other spaces.

2. Auxiliary Results

In this section, several examples of results on Ulam stability obtained for difference
equations are presented. They are used in the next sections.

Let N, N0, Z, R and C denote, as usual, the sets of positive integers, nonnegative
integers, integers, reals and complex numbers, respectively (also in all the next sections).
Let T ∈ {N0,Z}, K be either the field of reals R or the field of complex numbers C, X be a
nontrivial normed space over K, S := {a ∈ C : |a| = 1}, p ∈ N, a1, . . . , ap ∈ K, (bn)n∈T be
a sequence in X, and r1, . . . , rp ∈ C denote all the roots of equation

rp −
p

∑
i=1

airp−i = 0. (9)

The next theorem can be easily derived from [11] (for some related results, see also [38,49,50])
and concerns the Ulam stability of difference equation

xn+p = a1xn+p−1 + . . . + apxn + bn, ∀n ∈ T. (10)
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Theorem 8. Let X be a Banach space, δ > 0 and r1, . . . , rp ∈ C \ S. Let (yn)n∈T be a sequence of
elements of space X with

‖yn+p − a1yn+p−1 − . . .− apyn − bn‖ ≤ δ, ∀n ∈ T. (11)

Then, there exists a sequence (xn)n∈T in X satisfying (10) and the subsequent condition

‖yn − xn‖ ≤
δ

|1− |r1|| · . . . · |1− |rp||
, ∀n ∈ T. (12)

Moreover, the next three statements hold.

(a) (xn)n∈T is unique if and only if the following condition is satisfied:

T = Z or |rk| > 1, ∀k ∈ {1, . . . , p}. (13)

(b) If (13) is valid, then (xn)n∈T is the only sequence in X fulfilling Equation (10) and such that

sup
n∈T
‖xn − yn‖ < ∞.

(c) If (13) is not satisfied, then the cardinality of the family of all sequences (xn)n∈T in X that
fulfill Equation (10) and Inequality (12) is the same as the cardinality of space X.

The next theorem also follows from [11] and concerns difference Equation (10), but
depicts the situations when the stability does not occur (we have non-stability).

Theorem 9. Suppose that there is j ∈ {1, . . . , p} with |rj| = 1. Then, for each δ > 0, there is a
sequence (yn)n∈T of elements of X such that (11) holds and

sup
n∈T
‖yn − xn‖ = ∞

for each sequence (xn)n∈T in X that is a solution to difference Equation (10).
Moreover, if r1, . . . , rp ∈ K or there exists a sequence (xn)n∈T in X that is bounded and

satisfies (10), then there exists such sequence (yn)n∈T that is unbounded.

This section is concluded with two results from Theorems 2.1 and 2.3 in [51]. It is
assumed that (M, ρ) is a complete metric space, J ∈ {N,Z}, p ∈ N, and Tn : Mp → M for
n ∈ J. The subsequent two theorems concern stability of difference equations

un+p = Tn(un, un+1, . . . , un+p−1), ∀n ∈ J, (14)

un = Tn(un+1, un+2, . . . , un+p), ∀n ∈ J, (15)

for sequences (un)n∈J ∈ MJ (MJ denotes the family of all sequences (un)n∈J in M).
Stability of particular cases of difference Equations (14) and (15) was studied earlier

in [49,50].

Theorem 10. Let δn ∈ R+
0 (positive reals) and Θn : Rp

+ → R+ for n ∈ J be such that

ρ(Tn(y), Tn(w)) ≤ Θn(ρ(y1, w1), . . . , ρ(yp, wp)), (16)

∀y = (y1, . . . , yp), w = (w1, . . . , wp) ∈ Mp, n ∈ J,

sup
i∈J

Θi(bi, . . . , bi+p−1)

δp+i
< ϑ sup

i∈J

bi
δi

, ∀(bn)n∈J ∈ RJ
+,
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with some ϑ ∈ (0, 1). Let (zn)n∈J ∈ MJ satisfy inequality

ρ(zn+p, Tn(zn, zn+1, . . . , zn+p−1)) 6 δn+p, ∀n ∈ J.

Then, there exists a sequence (un)n∈J ∈ MJ satisfying Equation (14) and such that

sup
n∈J

ρ(zn, un)

δn
6

1
1− ϑ

. (17)

Furthermore, if J = Z, then such sequence (un)n∈J ∈ MJ is unique.

Theorem 11. Let ϑ ∈ (0, 1) and δn ∈ R+
0 , Θn : Rp

+ → R+ for n ∈ J be such that (16) holds and

sup
i∈J

Θi(bi+1, . . . , bi+p)

δi
6 ϑ sup

i∈J

bi
δi

, ∀(bn)n∈J ∈ RJ
+.

Let (zn)n∈J ∈ MJ satisfy inequality

ρ(zn, Tn(zn+1, zn+2, . . . , zn+p)) ≤ δn, ∀n ∈ J.

Then, there is exactly one sequence (un)n∈J ∈ MJ fulfilling difference Equation (15) and
Inequality (17).

3. Auxiliary Information

In this section, some auxiliary information on 2-norms, b-metrics and quasi-norms is
provided, which is necessary in the further parts of this paper.

3.1. 2-Normed Spaces

Assume that V is a linear space over a field K ∈ {R,C} and the dimension of V is
greater than one. Let us start with the following definition (cf. [52–54]).

Definition 1. Mapping ‖·, ·‖ : V2 → R+ is a 2-norm if, for all v1, v2, v3 ∈ V and β ∈ K, the
subsequent conditions are fulfilled:

(a) ‖v1, v2‖ = 0 if and only if vectors v1 and v2 are linearly dependent;

(b) ‖v1, v2‖ = ‖v2, v1‖;
(c) ‖v1, v2 + v3‖ ≤ ‖v1, v2‖+ ‖v1, v3‖;
(d) ‖βv1, v2‖ = |β|‖v1, v2‖.

Further, let ‖·, ·‖ : V2 → R+ be a 2-norm. Then, pair (V, ‖·, ·‖) is called a 2-normed
space. Next, sequence (vn)n∈N in V is a 2-Cauchy sequence if

lim
m,n→∞

‖vm − vn, wi‖ = 0, i = 1, 2

for some linearly independent vectors w1, w2 ∈ V. Sequence (vn)n∈N in V is 2-convergent
if there is v ∈ V such that limn→∞ ‖vn − v, w‖ = 0 for each w ∈ V; such vector v must
be unique. It is called here a limit of (vn)n∈N and denoted by limn→∞ vn. The 2-norm
‖·, ·‖ (and also the 2-normed space (V, ‖·, ·‖)) is complete if all 2-Cauchy sequences are
2-convergent.

Let 〈·, ·〉 be a real inner product in V. Then, a 2-norm in V can be defined by formula

‖u, w‖ :=
√
‖u‖2‖w‖2 − 〈u, w〉2 , ∀u, w ∈ V. (18)
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In the case where (V, 〈·, ·〉) is a Hilbert space, from Proposition 2.3 in [55], it results
that the 2-norm defined by (18) is complete. In R2, with the usual inner product given by
〈(v1, v2), (w1, w2)〉 = v1w1 + v2w2, the 2-norm given by (18) has the following form:

‖(v1, v2), (w1, w2)‖ := |v1w2 − v2w1|, ∀(v1, v2), (w1, w2) ∈ R2.

Finally, let ‖·, ·‖1 : V × V → R+ and ‖·, ·‖2 : V × V → R+ be 2-norms. Fix β1, β2 ∈
(0, ∞). Then, the next two expressions also define 2-norms:

(A) max {β1‖·, ·‖1, β2‖·, ·‖2};
(B) β1‖·, ·‖1 + β2‖·, ·‖2.

3.2. b-Metrics

If M is a nonempty set, then mapping d : M×M → R+ is said to be a b–metric (in
M) if there is a real constant µ ≥ 1 such that, for all u, z, w ∈ M, the next three conditions
are valid:

(a) d(u, z) = 0 if and only if u = z;

(b) d(u, z) = d(z, u);

(c) d(u, z) ≤ µ
(
d(u, w) + d(w, z)

)
.

If conditions (a)–(c) are fulfilled, then (M, d, µ) is called a b–metric space.
b–metric spaces also have been called quasi-metric spaces (e.g., in [56]). Actually, this

name better corresponds to the notion of quasi-norms (cf. the comments after Theorem 12),
but the name b-metric seems to be less ambiguous, because there are also other meanings
of the term quasi-metric (see, e.g, [57,58]); for example, in [57], it is a mapping d fulfilling
only conditions (a) and (c) for µ = 1 (without condition (b)).

The notion of b-metric has been introduced in [59] with µ = 2 and later used in [60]
for µ ≥ 1.

Let us also recall that, if (M, d, µ) is a b-metric space, then

• sequence (un)n∈N ∈ MN is convergent to an element u ∈ M if limn→∞ d(u, un) = 0
(then, we say that u is a limit of the sequence and denote it by x = limn→∞ un; such
limit must be unique);

• sequence (un)n∈N ∈ MN is Cauchy if limn,m→∞ d(um, un) = 0;

• (M, d, µ) is said to be complete if all Cauchy sequences in M are convergent to some
elements of M.

Remark 1. Let s ∈ (1, ∞) and ρ be a metric in a set M 6= ∅. Since for all a, b ∈ R+, (a + b)s ≤
2s−1(as + bs), the following is also true

ρ(x, y)s ≤
(
ρ(x, z) + ρ(z, y)

)s ≤ 2s−1(ρ(x, z)s + ρ(z, y)s)
for all x, y, z ∈ M. This means that (M, ds, 2s−1) is a b-metric space, with ds(z, w) := ρ(z, w)s

for all z, w ∈ M.
Next, if n ∈ N, c1, . . . , cn ∈ (0, ∞) and d1, . . . , dn are b-metrics in a set M 6= ∅, then it is

easy to check that d and d0 also are b-metrics in M, where

d(x, y) =
n

∑
i=1

cidi(x, y), d0(x, y) = max
i=1,...,n

cidi(x, y), ∀x, y ∈ M.

The following result from [61] (Proposition , p. 4308) is also needed.

Theorem 12. Assume that (M, d, µ) is a b-metric space and

Dd(z, w) = inf
{ n

∑
i=1

d ξ(ui, ui+1) : u2, ..., un ∈ M, n ∈ N, u1 = z, un+1 = w
}
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for every z, w ∈ M, where ξ := log 2µ 2 and d ξ(z, w) =
(
d(z, w)

)ξ for all z, w ∈ M. Then, Dd is
a metric on M with

1
4

d ξ(z, w) ≤ Dd(z, w) ≤ d ξ(z, w), ∀z, w ∈ M. (19)

Moreover, if d is a metric, then Dd = d.

Let Y be a real or a complex vector space. Mapping ‖ · ‖ : Y → R+ is a quasi-norm if
there exists µ ∈ [1, ∞) such that, for every z, w ∈ Y and every scalar β,

(a1) ‖w‖ = 0 if and only if w = 0;
(b1) ‖βw‖ = |β| ‖w‖;
(c1) ‖z + w‖ ≤ µ

(
‖z‖+ ‖w‖

)
.

(Y, ‖ · ‖, µ) is said to be a quasi–normed space if (a1)–(c1) are valid.
Note that if (Y, ‖ · ‖, µ) is a quasi–normed space, then (Y, d, µ) is a b-metric space, with

mapping d : Y2 → R+ given by d(z, w) := ‖z− w‖ for z, w ∈ Y.
In a similar way as in Remark 1, we can obtain the following two examples (cf. Examples 1.1

and 1.2 in [62]).

Example 1. Let Y be a Banach space and p ∈ (0, 1). Let

`p(Y) :=
{
(un)n∈N ∈ YN :

∞

∑
n=1
‖un‖p < ∞

}
and define ‖ · ‖p : `p(Y)→ R+ by

‖u‖p :=
( ∞

∑
n=1
‖un‖p

)1/p
, ∀u = (un)n∈N ∈ `p(Y).

Then,
(
`p(Y), ‖ · ‖p, 2(1−p)/p) is a quasi-normed space.

Example 2. Let p ∈ (0, 1),

Lp[0, 1] :=
{

y : [0, 1]→ R : y is continuous and
∫ 1

0
|y(t)|pdt < 1

}
,

and ‖ · ‖p : Lp[0, 1]→ R+ be given by

‖x‖p :=
( ∫ 1

0
|x(t)|pdt

)1/p
, ∀x ∈ Lp[0, 1].

Then,
(

Lp[0, 1], ‖ · ‖p, 2(1−p)/p) is a quasi-normed space.

According to the Aoki–Rolewicz Theorem (see, e.g., Theorem 1 in [63]), every quasi-
norm is equivalent to a p-norm. However, there exist p-norms that are not equivalent to
any norm (see, e.g., Examples 1 and 2 in [63]). Let us reiterate here that mapping ‖ · ‖ from
a real or complex linear space Y into R+ is a p-norm (with a real p > 0) if conditions (a1)
and (b1) are fulfilled and the following inequality is valid:

(c1’) ‖z + w‖p ≤ ‖z‖p + ‖w‖p for every z, w ∈ Y.

4. Extensions of Theorem 1

Write Z0 := Z \ {0}. If in Theorems 3–5 V = R and Y ∈ {N,Z0} are taken, then the
following extensions of Theorem 1 are obtained.
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Theorem 13. Let W be a normed space, T ∈ {N,Z}, T0 := T \ {0}, and γ ≥ 0 and s < 1 be real
numbers. Let (xn)n∈T be a sequence in W with

‖xn+m − xn − xm‖ ≤ γ(|n|s + |m|s), ∀n, m ∈ T0. (20)

Then, the subsequent three statements are true.

(i) If s < 0 and T = Z, then
xn = nx1, ∀n ∈ T. (21)

(ii) If W is complete, s < 0 and T = N, then there exists exactly one z0 ∈W with

‖xn − nz0‖ ≤ γ ns, ∀n ∈ T. (22)

Moreover,

z0 = lim
n→∞

1
n

xn. (23)

(iii) If W is complete and s ≥ 0, then there is exactly one z0 ∈W with

‖xn − nz0‖ ≤
γ |n|s

1− 2s−1 , ∀n ∈ T0. (24)

Moreover, (23) holds.

Proof. First, assume that s < 0 and T = Z. Then, by Theorem 3 with V = R, Y = T and
h(n) = xn for n ∈ T,

xn+m = xn + xm, ∀n, m ∈ T0, n + m 6= 0. (25)

By induction, it is easy to show that, in view of (25),

xn = nx1, ∀n ∈ N. (26)

Further,

xn = xn+m−m = xn+m + x−m = xn + xm + x−m, ∀n, m ∈ N,

whence

x−m = −xm, ∀m ∈ N,

and consequently (in view of (26)),

xn = nx1, ∀n ∈ T0. (27)

Finally, from (20) and (27), obtain

‖x0‖ = ‖x0 − xn − x−n‖ ≤ 2γ |n|s, ∀n ∈ T0,

which (with n→ ∞) yields x0 = 0. This completes the proof of (21).
Now, assume that W is complete, s < 0 and T = N. Then, by Theorem 5 with V = R,

Y = T and h(n) = xn for n ∈ T, there is sequence (yn)n∈T in W with

yn+m = yn + ym, ∀n, m ∈ N, (28)

and
‖xn − yn‖ ≤ γ ns, ∀n ∈ T.
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Clearly, (28) implies that yn = ny1 for n ∈ N, whence

‖xn − ny1‖ ≤ γ ns, ∀n ∈ T. (29)

Further, from (29), obtain∥∥∥ 1
n

xn − y1

∥∥∥ ≤ γ ns−1, ∀n ∈ T,

which, with n→ ∞, yields

y1 = lim
n→∞

1
n

xn. (30)

Thus, statement (ii) is proven (with z0 = y1).
It is still necessary to consider the case where W is complete and s ≥ 0. Similarly as

above, by Theorem 4 (with V = R, Y = T and h(n) = xn for n ∈ T), there is sequence
(yn)n∈T in W with

yn+m = yn + ym, ∀n, m ∈ T0, n + m 6= 0, (31)

and

‖xn − yn‖ ≤
γ |n|s

1− 2s−1 , ∀n ∈ T0. (32)

In the same way as above (in the case of (25)), it can be shown that (31) implies
yn = ny1 for n ∈ T. Hence

‖xn − ny1‖ ≤
γ |n|s

1− 2s−1 , ∀n ∈ T0.

Now, as before, it can be shown that (30) holds. This ends the proof of statement
(iii).

Note that Theorem 1 results from Theorem 13 (with s = 0).

Remark 2. Let T = Z, γ 6= 0 and s ≥ 0 (in Theorem 13). Let w0 ∈W be such that ‖w0‖ = γ. If
xn = w0 for n ∈ T0 and x0 = 3w0, then inequality (20) is fulfilled. This simple example shows
that, in the case T = Z and s ≥ 0, the inequality in (24) does not need to hold for n = 0.

Remark 3. It seems to be interesting whether an outcome similar to Theorem 13 can also be obtained
for s > 1.

Remark 4. Estimations (22) and (24) are optimal in the general situation. To notice this, in the
case of (22), it is enough to take xn = nsw0 for n ∈ N, with any fixed w0 ∈W such that ‖w0‖ = γ.
Then, we have equality in (22) with z0 = 0. Moreover, for every n, m ∈ N,

‖xn+m − xn − xm‖ = γ
(
ns + ms − (n + m)s) ≤ γ

(
ns + ms),

which means that (20) holds.
In the case of (24), xn = sign(n)|n|sw0 can be taken for n ∈ T (sign means the signum

function that returns the sign of a real number) with any fixed w0 ∈W such that

‖w0‖ =
γ

1− 2s−1 .

Then, (24) becomes equality with z0 = 0. Moreover, Theorem 2.10 in [8] shows that (20)
is fulfilled.

From Theorem 6, the subsequent finer outcome for real sequences can also be obtained.
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Theorem 14. Let T ∈ {N,Z}, T0 := T \ {0}, χ, ν, s ∈ R, χ ≤ ν, s < 1, and d : T2 → R be
such that there is a real sequence (yn)n∈T with

yn+m = yn + ym + d(n, m), ∀n, m ∈ T0. (33)

Let (xn)n∈T be a real sequence satisfying inequality

χ(|n|s + |m|s) ≤ xn+m − xn − xm − d(n, m) (34)

≤ ν(|n|s + |m|s), ∀n, m ∈ T0.

Then, there exists exactly one z0 ∈ R such that

χ |n|s
1− 2s−1 ≤ yn + nz0 − xn ≤

ν |n|s
1− 2s−1 , ∀n ∈ T0. (35)

Moreover,
z0 = lim

n→∞

xn − yn

n
.

Proof. Write un := xn − yn for n ∈ T. Then, by (33) and (34),

χ(|n|s + |m|s) ≤ un+m − un − um (36)

≤ ν(|n|s + |m|s), ∀n, m ∈ T0.

Therefore, by Theorem 6 (with d(n, m) ≡ 0), there exists a real sequence (wn)n∈T such
that

wn+m = wn + wm, ∀n, m ∈ T0, (37)

and

χ |n|s
1− 2s−1 ≤ wn − un ≤

ν |n|s
1− 2s−1 , ∀n ∈ T0. (38)

Since (37) implies that wn = nw1 for n ∈ T (see the proof of Theorem 13), from (38),
the following can be obtained:

χ |n|s
1− 2s−1 ≤ nw1 − un ≤

ν |n|s
1− 2s−1 , ∀n ∈ T0, (39)

whence

χ |n|s
1− 2s−1 ≤ yn + nw1 − xn ≤

ν |n|s
1− 2s−1 , ∀n ∈ T0, (40)

and

χ |n|s−1

1− 2s−1 ≤ w1 −
1
n

un ≤
ν |n|s−1

1− 2s−1 , ∀n ∈ T0.

The last inequality (with n→ ∞) means that

w1 = lim
n→∞

1
n

un.

Clearly, (40) is (35) (with z0 = w1).
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5. Stability in 2-Normed Spaces

In this section, some of the theorems presented in the previous sections are extended
to the case of 2-normed spaces. In what follows, W always stands for a 2-normed space
with the 2-norm denoted by ‖·, ·‖.

The following simple lemma is needed.

Lemma 1. Let k, l ∈ N and z, w ∈W. Assume that z and w are linearly independent and write

‖x‖k,l :=
1
l
‖x, z‖+ 1

k
‖x, w‖, ∀x ∈W. (41)

Then, ‖ · ‖k,l is a norm in W. Moreover, if the 2-norm in W is complete, then norm ‖ · ‖k,l is
complete.

Proof. It is easy to check that ‖ · ‖k,l is a norm in W. Therefore, assume that 2-norm ‖·, ·‖ is
complete. Let (xn)n∈N be a Cauchy sequence in W with respect to norm ‖ · ‖k,l . Then

lim
m,n→∞

‖xn − xm, u‖ = 0

for u ∈ {z, w}. Consequently, (xn)n∈N is a 2-Cauchy sequence. Hence, there exists x0 ∈W
with

lim
n→∞

‖xn − x0, u‖ = 0, ∀u ∈W.

This means that
lim

n→∞
‖xn − x0‖k,l = 0.

Thus, ‖ · ‖k,l is complete.

Let us start with an analogue of Theorem 13. In this section, Y is a subset of W that
contains at least two linearly independent vectors.

Theorem 15. Let T ∈ {N,Z}, T0 := T \ {0}, s < 1 be a fixed real number and Γ : Y → R+. Let
(xn)n∈T be a sequence in W satisfying inequality

‖xn+m − xn − xm, u‖ ≤ Γ(u)(|n|s + |m|s), ∀n, m ∈ T0, u ∈ Y. (42)

Then, the following three statements are valid:

(i) If s < 0 and T = Z, then (21) holds.

(ii) If the 2-norm in W is complete, s < 0 and T = N, then there exists exactly one z0 ∈ W
such that

‖xn − nz0, u‖ ≤ Γ(u) ns, ∀n ∈ T, u ∈ Y. (43)

Moreover, if Y = W, then (with respect to the 2-norm in W)

z0 = lim
n→∞

1
n

xn. (44)

(iii) If the 2-norm in W is complete and s ≥ 0, then there exists exactly one z0 ∈W such that

‖xn − nz0, u‖ ≤ Γ(u) |n|s
1− 2s−1 , ∀n ∈ T0, u ∈ Y.

Moreover, in the case Y = W, (44) holds (with respect to the 2-norm in W).
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Proof. Fix k, l ∈ N and linearly independent z, w ∈ Y. Let ‖ · ‖k,l be a norm in W defined
by (41). Then, by (42),

‖xn+m − xn − xm‖k,l ≤
(1

l
Γ(z) +

1
k

Γ(w)
)
(|n|s + |m|s), ∀n, m ∈ T0.

Therefore, in the case s < 0 and T = Z, by Theorem 13 with

γ :=
1
l

Γ(z) +
1
k

Γ(w),

(21) holds.
Now, assume that the 2-norm in W is complete. Then, in view of Lemma 1, norm

‖ · ‖k,l is complete. Let s < 0 and T = N. Then, by Theorem 13, there exists exactly one
zk,l ∈W such that

‖xn − nzk,l‖k,l ≤ γ ns, ∀n ∈ T. (45)

Note that ‖x‖k,l ≥ ‖x‖k+1,l and ‖x‖k,l ≥ ‖x‖k,l+1 for every k, l ∈ N and x ∈ W.
Therefore, the uniqueness of zk,l means that z0 := zk,l = zk+1,l = zk,l+1 for each k, l ∈ N.
Hence, first with k→ ∞ and l = 1 and next with k = 1 and l → ∞, from (45), obtain

‖xn − nz0, u‖ ≤ Γ(u) ns, ∀n ∈ T, u ∈ {z, w}.

This completes the proof of (43).
Suppose that v0 ∈W is such that

‖xn − nv0, u‖ ≤ Γ(u) ns, ∀n ∈ T, u ∈ Y.

Then,

‖nv0 − nz0, u‖ ≤ ‖xn − nz0, u‖+ ‖xn − nv0, u‖ ≤ 2Γ(u) ns, ∀n ∈ T, u ∈ Y,

and consequently

‖v0 − z0, u‖ ≤ 2Γ(u) ns−1, ∀n ∈ T, u ∈ Y,

which with n→ ∞ yields z0 = v0. This shows that z0 is the unique vector in W satisfying (43).
Further, (43) yields∥∥∥ 1

n
xn − z0, u

∥∥∥ ≤ Γ(u) ns−1, ∀n ∈ T, u ∈ Y,

whence with n→ ∞, in the case Y = W, (44) is obtained (with respect to the 2-norm in W).
The proof of (iii) is analogous.

The following partial analogue of Theorem 8 was proven in [64].

Theorem 16. Let ‖·, ·‖ be complete and T ∈ {N,Z}. Let p ∈ N, µ : Y → R+,

C0 :=
p

∏
i=1

∣∣1− |ri|
∣∣ 6= 0

and (bn)n∈T , (yn)n∈T be sequences in W with

‖yn+p + a1yn+p−1 + . . . + apyn + bn, z‖ ≤ µ(z), ∀n ∈ T, z ∈ Y.
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Assume that T = Z or (13) is valid. Then, there is exactly one sequence (xn)n∈T in W such
that (10) is fulfilled and

‖yn − xn, z‖ ≤ C−1
0 µ(z), ∀n ∈ T, z ∈ Y.

It would be very desirable to obtain a fuller analogue of Theorem 8 for 2-normed
spaces and an analogue of Theorem 9 (at least of the first part of it concerning the lack
of stability).

The subsequent extension of Theorem 10 is also true.

Theorem 17. Let p ∈ N, ‖·, ·‖ be complete and ϑ ∈ (0, 1). Let Tn : Wp → W, εn ∈ (0, ∞) and
Φn ∈ R+ for n ∈ Z be such that

sup
i∈Z

Φi(ai + . . . + ai+p−1)

εp+i
< ϑ sup

i∈Z

ai
εi

, ∀(an)n∈Z ∈ RZ
+,

‖Tn(y)− Tn(w), u‖ ≤ Φn(‖y1 − w1, u‖+ . . . + ‖yp − wp, u‖), (46)

∀y = (y1, . . . , yp), w = (w1, . . . , wp) ∈Wp, n ∈ Z, u ∈ Y.

Let ξ : Y → R+ and (zn)n∈Z ∈WZ satisfy inequality

‖zn+p − Tn(zn, . . . , zn+p−1), u‖ ≤ ξ(u)εn+p, ∀n ∈ Z, u ∈ Y. (47)

Then, there is sequence (un)n∈Z ∈WZ such that (14) holds and

sup
n∈Z

‖zn − un, u‖
εn

≤ ξ(u)
1− ϑ

, ∀u ∈ Y. (48)

Proof. Let z, w ∈ Y be linearly independent and fix k, l ∈ N. Define norm ‖ · ‖k,l in W
by (41). According to Lemma 1, the norm is complete. Therefore, by (47),

‖zn+p − Tn(zn, zn+1, . . . , zn+p−1))‖k,l ≤
( ξ(z)

k
+

ξ(w)

l

)
εn+p := δn+p, ∀n ∈ Z.

Further,

‖Tn(y)− Tn(w)‖k,l ≤ Φn(‖y1 − w1‖k,l + . . . + ‖yp − wp‖k,l),

∀y = (y1, . . . , yp), w = (w1, . . . , wp) ∈Wp, n ∈ Z.

Hence, by Theorem 10 (with M = W, Θn(a1, . . . , ap) = Φn(a1 + . . .+ ap) and ρ(x, y) =
‖x − y‖k,l), there exists exactly one (un(k, l))n∈Z ∈ WZ such that (14) holds (with un =
un(k, l)) and

sup
n∈Z

‖zn − un(k, l)‖k,l

δn
≤ 1

1− ϑ
. (49)

Note that ‖x‖k,l ≥ ‖x‖k+1,l and ‖x‖k,l ≥ ‖x‖k,l+1 for every k, l ∈ N and x ∈ W.
Therefore, the uniqueness of (un(k, l))n∈Z means that

(un)n∈Z := (un(k, l))n∈J = (un(k + 1, l))n∈J = (un(k, l + 1))n∈Z

for each k, l ∈ N.
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Hence, first with k→ ∞ and l = 1 and next with k = 1 and l → ∞, from (49), obtain

sup
n∈Z

‖zn − un, u‖
εn

≤ ξ(u)
1− ϑ

, ∀u ∈ {z, w}.

This completes the proof of (48).

In a very similar way, the following analogue of Theorem 11 can be obtained.

Theorem 18. Let p ∈ N, ‖·, ·‖ be complete, ϑ ∈ (0, 1) and J ∈ {N,Z}. Let Tn : Wp → W,
εn ∈ (0, ∞) and Φn ∈ R+ for n ∈ J be such that (46) holds with Z replaced by J and

sup
i∈J

Φi(ai+1 + . . . + ai+p)

εi
≤ ϑ sup

i∈J

ai
εi

, ∀(an)n∈J ∈ RJ
+.

Let ξ : Y → R+ and (zn)n∈J ∈WJ satisfy inequality

‖zn − Tn(zn+1, . . . , zn+p), u‖ ≤ ξ(u)εn, ∀n ∈ J, u ∈ Y.

Then, there is sequence (un)n∈J ∈WJ satisfying difference Equation (15) such that

sup
n∈J

‖zn − un, v‖
εn

≤ ξ(v)
1− ϑ

, ∀v ∈ Y.

6. Stability in b-Metric Spaces

In this section, simplified analogues of Theorems 10 and 11 for b-metric spaces are presented.
In what follows, p ∈ N, (M, d, µ) is a complete b-metric space, ξ := log 2µ 2 and

d ξ(x, y) =
(
d(x, y)

)ξ for x, y ∈ M. Next, a mapping Ψ : Rp
+ → R is nondecreasing if

Ψ(y1, . . . , yp) ≤ Ψ(z1, . . . , zp)

for every y1, . . . , yp, z1, . . . , zp ∈ R+ with yi ≤ zi for i = 1, . . . , p.
Let us start with a partial analogue of Theorem 10.

Theorem 19. Let J ∈ {N,Z}, χ ∈ (0, 1) and Ψn : Rp
+ → R+ for n ∈ J be nondecreasing. Let

εn ∈ (0, ∞) and Tn : Mp → M for n ∈ J be such that

d(Tn(y), Tn(w)) ≤ Ψn

(1
4

d ξ(y1, w1), . . . ,
1
4

d ξ(yp, wp)
)

, (50)

∀y = (y1, . . . , yp), w = (w1, . . . , wp) ∈ Mp, n ∈ J,

sup
i∈J

Ψi
(
a ξ

i , . . . , a ξ
i+p−1

)
εp+i

< χ sup
i∈J

ai
εi

, ∀(an)n∈J ∈ RJ
+.

Let (zn)n∈J ∈ MJ satisfy inequality

d(zn+p, Tn(zn, zn+1, . . . , zn+p−1)) ≤ εn+p, ∀n ∈ J. (51)

Then, there is sequence (un)n∈J ∈ MJ such that (14) holds and

sup
n∈J

d ξ(zn, un)

ε
ξ
n

≤ 4
1− χ ξ

.
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Proof. In view of Theorem 12, there exists metric Dd in M such that

1
4

d ξ(x, y) ≤ Dd(x, y) ≤ d ξ(x, y), ∀x, y ∈ M. (52)

Since d is complete, inequalities (52) imply that metric Dd is also complete.
Note that, by (50),

Dd(Tn(y), Tn(w)) ≤ d ξ(Tn(y), Tn(w))

≤ Ψ ξ
n

(1
4

dξ(y1, w1), . . . ,
1
4

d ξ(yp, wp)
)

≤ Ψ ξ
n

(
Dd(y1, w1), . . . , Dd(yp, wp)

)
for every y = (y1, . . . , yp), w = (w1, . . . , wp) ∈ Mp and n ∈ J. Next, (51) and (52) yield

Dd(zn+p, Tn(zn, zn+1, . . . , zn+p−1)) ≤ d ξ(zn+p, Tn(zn, zn+1, . . . , zn+p−1))

≤ ε
ξ
n+p, ∀n ∈ J.

Now, observe that the assumptions of Theorem 10 are fulfilled with ϑ = χ ξ , δn = ε
ξ
n ,

ρ = Dd and Θn = Ψ ξ
n . Consequently, there is sequence (un)n∈J ∈ MJ such that (14)

holds and

sup
n∈J

Dd(zn, un)

δn
≤ 1

1− ϑ
,

whence

sup
n∈J

d ξ(zn, un)

ε
ξ
n

≤ 4
1− χ ξ

.

In an analogous way, the following (complementary to Theorem 19) partial extension
of Theorem 11 can be obtained.

Theorem 20. Let J ∈ {N,Z}, χ ∈ (0, 1) and Ψn : Rp
+ → R+ be nondecreasing for n ∈ J. Let

Tn : Mp → M and εn ∈ (0, ∞) for n ∈ J be such that (50) holds and

sup
i∈J

Ψi(a ξ
i+1, . . . , a ξ

i+p)

εi
≤ χ sup

i∈J

ai
εi

, ∀(an)n∈J ∈ RJ
+.

Let (zn)n∈J ∈ MJ satisfy inequality

d(zn, Tn(zn+1, zn+2, . . . , zn+p)) ≤ εn, ∀n ∈ J.

Then, there is sequence (un)n∈J ∈ MJ satisfying difference Equation (15) such that

sup
n∈J

d ξ(zn, un)

ε
ξ
n

≤ 4
1− χ ξ

.

7. Conclusions

An equation is Ulam stable if each mapping, fulfilling the equation approximately, is
somehow close to an exact solution of the equation.

Since the notions of approximate solutions and the closeness of two mappings may be
understood in different ways (depending on a situation that we study), it makes sense to
consider Ulam stability in various spaces.
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In this paper, we showed ways to obtain some general Ulam stability outcomes for
difference equations with respect to the norms, 2-norms and b-metrics. In particular, we
demonstrated in this way that some symmetries occur between such outcomes in classical
normed spaces, 2-normed spaces and b-metric spaces.

We also mentioned some issues that can be studied further. Moreover, it would be
interesting to improve and complement the results presented here, but also investigate sim-
ilar outcomes for other equations (including differential, functional and integral equations).
In connection with this last issue, we would like to draw the attention of interested readers
to the methods presented in [64] and to the outcomes in publications [10,27–32] (that were
proven mainly in the case of normed spaces).

Finally, it also would be interesting to extend the methods presented here to the n-
normed and quasi-normed spaces. For the necessary information on Ulam stability in
n-normed spaces, we refer the readers to [21,65–69].
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21. Brzdęk, J.; El-hady, E.-S. On Ulam stability of functional equations in 2-normed spaces—A survey II. Symmetry 2022, 14, 1365.
22. Lee, Y.-H. On the stability of the monomial functional equation. Bull. Korean Math. Soc. 2008, 45, 397–403. [CrossRef]
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38. Brzdęk, J.; Popa, D.; Xu, B. Selections of set-valued maps satisfying a linear inclusion in a single variable. Nonlinear Anal. 2011, 74,

324–330. [CrossRef]
39. Cho, Y.C.; Rassias, T.M.; Saadati, R. Stability of Functional Equations in Random Normed Spaces; Springer: New York, NY, USA, 2013.
40. El-Fassi, I.-I.; Elqorachi, E.; Khodaei, H. A Fixed point approach to stability of kth radical functional equation in non-Archimedean

(n,β)-Banach spaces. Bull. Iran. Math. Soc. 2021, 47, 487–504. [CrossRef]
41. Chung, S.C.; Park, W.G. Hyers-Ulam stability of functional equations in 2-Banach spaces. Int. J. Math. Anal. 2012, 6, 951–961.
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