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Abstract: In recent years, researchers have looked at how tube-like nanostructures respond to moving
loads and masses. However, no one has explored the scenario of a nanostructure embedded in
a vibrating medium used for moving nano-objects. In this study, the governing equations of the
problem are methodically derived using the nonlocal elasticity of Eringen as well as the Rayleigh
and Reddy–Bickford beam theories. Analytical and numerical solutions are developed for capturing
the nonlocal dynamic deflection of the nanostructure based on the moving nanoforce approach
(excluding the inertia effect) and the moving nanomass approach (including the inertia effect), respec-
tively. The results predicted by the established models are successfully verified with those of other
researchers in some special cases. The results reveal that for low velocities of the moving nano-object
in the absence of the medium excitation, the midspan deflection of the simply supported nanotube
exhibits an almost symmetric time-history curve; however, by increasing the nano-object velocity
or the medium excitation amplitude, such symmetry is violated, mainly due to the lateral inertia
of the moving nano-object, as displayed by the corresponding three-dimensional plots. The study
addresses the effects of the mass and velocity of the moving nano-object, amplitude, and frequency
of the medium excitation, and the lateral and rotational stiffness of the nearby medium in contact
with the nanostructure on the maximum dynamic deflection. The achieved results underscore the
significance of considering both the inertial effect of the moving nano-object and the shear effect of
stocky nanotubes embedded in vibrating media. This research can serve as a strong basis for conduct-
ing further investigations into the vibrational properties of more intricate tube-shaped nanosystems
that are embedded in a vibrating medium, with the aim of delivering nano-objects.

Keywords: dynamic response; vibrating surrounded medium; tube-like nanostructures;
Rayleigh and Reddy–Bickford beam theories; nonlocal continuum mechanics; moving
nano-object

1. Introduction

Nanostructured materials are commonly defined as those materials whose structural
elements (i.e., clusters, crystallites, or molecules) possess dimensions in the interval of
1–100 nm. They can be spherical, conical, spiral, cylindrical, tubular, flat, hollow, or irregu-
lar in shape and can be generally classified into four material-based categories, including
organic, inorganic, composite, and carbon-based. Among these various types of nanostruc-
tures, tube-like nanostructures (one-dimensional nanomaterials), such as carbon nanotubes
and boron-nitride nanotubes (CNTs and BNNTs), provide a suitable environment for
translocating nano-objects (i.e., zeroth-order nanomaterials) and nanofluids due to their
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brilliant geometrical, physical, and chemical properties [1–4]. For example, the frictionless
nature, as well as the smoothness of the inner surface of the CNTs, offer them for fast trans-
port of nanofluidic flows [5–9] and nano-objects (i.e., gene, molecule, and so on) [10–15],
particularly for water molecules. For instance, an investigation showed that the roughness
in the tube walls results in a robust hydrogen-bonding network, and no substantial flow
enhancement would be attained in rough tubes [16]. In addition, extensive laboratory and
theoretical research have been carried out on drug transport by CNTs since these brilliant
nanostructures have the ability to cross the cell membrane and can transfer drugs to target
cells in a harmless way without harming healthy cells [17]. Therefore, CNTs can be effec-
tively utilized for the targeted and accurate delivery of drugs. Using this method increases
the effectiveness of the treatment and reduces the side effects of drug use [18]. CNTs have
the ability to be filled with metal oxide; these agents are suitable for MRI detection and the
control of cancer cells [19]. Also, DNA molecules can be placed inside CNTs, which can be
used in the fields of molecular sensors, electronic DNA sequencing, gene delivery, and DNA
modulated molecular electronics [20]. There are two common methods for drug delivery
by CNTs. In the first method, the drug is placed in the form of capsules inside the nanotube,
and it is are suitably shot towards the target cell; in the other method, the drug is attached
to the surface of the nanotube and directed to the target cell [21]. The drug molecule can
easily move from one side of the nanotube to its end, but due to the van der Waals force
between the drug molecule and the inner surface of the nanotube, the molecule could
not individually leave the nanotube [22], necessitating an appropriate externally driven
agent. So far, various methodologies have been established to shoot (exit) the molecules
from inside the nanotube, including the displacing approach [23]; temperature-driven
pomping [24]; nanopumping [25]; the domino effect [26]; and electrical [13]. In most of the
cases mentioned above, the tube-like nanostructure is embedded in a medium and used for
the translocation of nano-objects. Due to the embedment state, any vibrations or excitations
of the surrounding medium could influence the functionality and dynamic response of the
CNT acted upon by moving nano-objects (MNOs); however, the theoretical aspects of such
a crucial problem have been not thoroughly formulated.

Over the past two decades, the increased exploitation of nanotechnology and nanoscale
materials has been accompanied by increased interest in nanomechanical simulations
and the modeling of solids. Through nanoscale investigations, the discrepancy between
experimental results and classical continuum mechanics (CCM) was revealed, proving that
the CCM is not able to predict the results of our concern rationally since it does not consider
small-scale parameters in its constitutive relations. With regard to this crucial deficiency of
the CCM, several principal investigators proposed some size-dependent elasticity-based
theories to accurately capture their responses, including the nonlocal elasticity theory of
Eringen [27–31], the strain gradient theory of Mindlin [32,33], the nonlocal strain gradient
theory (NSGET) of Lim et al. [34], the couple stress theory of Toupin [35,36], and the surface
elasticity theory (SET) of Gurtin–Murdoch [37,38]. One of the most popular size-dependent
theories is that established by Eingen, so-called nonlocal continuum mechanics (NCM),
expressing that the stress field is naturally nonlocal, meaning that the stress field in a point
also depends on the stresses of the nearby points (i.e., the nonlocality effect). Nonlocality
is commonly incorporated into the constitutive relations through a specific factor, the so-
called small-scale parameter (SSP), whose importance for each established nonlocal-based
model can be determined by adjusting the resulting dispersion curves and those obtained
from moleculardynamics [39–42]. The essential deficiency of the differential-based NCM
(DBNCM) of Eringen is mostly related to the lack of prediction of the hardening behavior
of solid structures at the nanoscale; however, in recent years, several investigations have
proved that some paradoxical mechanical behaviors of structures modeled based on the
above theory can be resolved by particular treatments, including through utilizing the
integral-based NCM (IBNCM) of Eringen [43–45].

In the previous three decades, exploring the nanoengineering problems of nanostruc-
tures by employing the NCM, including free vibration [46–58], buckling and
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postbuckling [59–64], sound wave propagation [65–70], and forced vibration [71–78], have
been of great interest to interdisciplinary scholars. Perhaps this is due to the straight-
forwardness of the NCM in expressing the constitutive relations in solids; for example,
in IBNCM, the nonlocal stress field is stated in terms of the local one by a simple expres-

sion as follows: σnl
mn(x, t) =

∫
Ω

Λ(|x− y|; ls) σl
mn(y, t)dΩ, in which Ω represents the total

spatial domain of the nanostructure and dΩ denotes a very tiny volume of this domain
(where dΩ = dy). Further, t is the time parameter; σnl

mn = σnl
mn(x, t) and σl

mn = σl
mn(x, t)

are the nonlocal and local dynamical stress fields, respectively, where x ∈ Ω denotes
the coordinates of a point in the spatial domain of the continuum-based nanostructure;
and Λ = Λ(|x− y|; ls) signifies the nonlocal kernel function that controls the influence
domain of the nonlocal stress field through the level of ls, namely, the small-scale parameter
or SSF. Under certain conditions, as explained by Eringen in his book [31], this version of
NCM could be reduced to DBNCM, as expressed by

(
1− l2

s∇2
)

σnl
ij = σl

ij, where ∇ is the

nabla operator (i.e., ∂2[.]/∂x2, ∂2[.]/∂x2 + ∂2[.]/∂y2, and ∂2[.]/∂x2 + ∂2[.]/∂y2 + ∂2[.]/∂z2,
respectively, for one-, two-, and three-dimensional domains), and

(
1− l2

s∇2
)

is commonly
called the nonlocal operator. Another popular aspect of NCM is its broad applications
to various unknown physical fields (i.e., thermal field, magnetic field, and so on), which
are commonly governed by a single or a set of partial differential equations with their
boundary conditions; however, the application of the above-introduced size-dependent
theories is limited to solid structures. Under the umbrella of the above-mentioned two
benefits, NCM has been of interest to applied mechanics communities in revealing the
role of the nonlocality of the chemical/physical/mechanical behaviors of nanostructures,
leading us to more rational prediction results.

It is worth noting that despite extensive applications of the SET and NSGET for
studying the buckling and vibrations of microscale/nanoscale structures with flexural
behavior in recent years, as evidenced by studies such as those given in Refs. [79–81],
these advanced theories of continuum mechanics have rarely been adopted for mechanical
analyses of SWCNTs. One possible explanation for this is that the surface effect is only
significant in nanostructures consisting of multiple layers of atoms across their thickness,
while SWCNTs are made by wrapping a single-layered graphene sheet, which makes
the consideration of surface parameters somewhat irrational. Additionally, the NSGET
typically employs two small-scale factors, namely, a nonlocal factor and a strain gradient
factor, in its formulations, but the role of the strain gradient factor in the elastodynamic
response resulting from the common forced vibrations of nanotubes is almost negligible.
NCM has been commonly employed for various vibrational problems associated with
CNTs, given these reasons.

Concerning the application of NCM to vibrations of nanostructures under the action
of MNOs, some investigators, via beam models [82–96], studied their nonlocal vibrations.
In most of these explorations, nonlocal beam models (i.e., Bernoulli-Euler, Rayleigh, or Tim-
oshenko, Levinson, or Reddy (i.e., higher-order)) were utilized for establishing the nonlocal
version of the governing equations of a single nanobeam or multiple-nanobeam-systems,
and the roles of the main properties of the MNO (i.e., mass weight and velocity) and
the geometrical characteristics of the nanobeam on the various dynamic responses of the
nanobeam were displayed and discussed in some detail. In addition, nonlocal vibrations
of two-dimensional structures (i.e., mostly nanoplates and nanoscaled platelets) in the
presence of in-contact MNO have been of interest to scholars [97–102]. In all of these
investigations (i.e., both one- and two-dimensional nanostructures acted upon by MNOs),
the possible vibration of the surrounding environment of the nanostructure on its overall
vibrations was excluded and thereby the simultaneous excitations of the nanobeam due
to the both vibrating medium and MNO were not addressed. With regard to this lack
of scientific rigour, the authors herein decided to methodically explore the problem to
rationally respond to the above-raised crucial query.
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Herein, some useful nonlocal models based on the Rayleigh and Reddy beam theories
(NRABT and NREBT) are established to examine transverse vibrations of the nanotube (NT)
embedded in a vibrating medium used for translocating nano-objects. After obtaining their
nonlocal-based equations of motion and solving via the Galerkin-based modal approach
and generalized Newmark-β methodology, their nonlocal deflections were appropriately
assessed. Afterward, the roles of the mass and velocity of the MNO, amplitude, and fre-
quency of the vibrating medium, NT’s length, nonlocality, and shear effect in the maximum
deflections are comprehensively investigated and discussed. Special attention has been also
devoted to both the shear and inertial effects, as crucial factors in the suitable mathematical
modeling of the NT and MNO, respectively.

2. Description and Assumptions Used in the Proposed Models

As illustrated in Figure 1, an NT-like structure is affected by both a vibrating elastic
medium and moving nanomass excitation. The NT has a length of lb and an average
radius of rm. The harmonic elastic medium excitation is denoted by wg(t) = agsin(ωt),
where ag and ω are the amplitude and frequency of the medium excitation, respectively.
Additionally, an MNO with a mass M and a constant speed v passes through the NT, and its
position at any moment can be represented by xM = vt, indicating that the MNO was
positioned at the left end at t = 0. The NT foundation is modeled using the Pasternak
foundation model, with kr and kt representing the stiffness of the rotational and transverse
springs, respectively. During the course of excitation of the nanotube by the MNO or
vibrating elastic medium, the nanotube is fully in contact with the medium, which is
modeled here by a two-parameter foundation model (i.e., the Pasternak foundation model,
which is essentially characterized by two constants: kr and kt). These factors mainly depend
on the material properties of the elastic medium (i.e., Young’s modulus, shear modulus,
and Poisson’s ratio), the existing bond between the nanotube and the surrounding elastic
medium (mainly van der Waals (vdW) forces), as well as its geometrical properties (i.e.,
a characteristic length of the medium, for example, the depth of the nanofoundation,
the depth of the embedment, and so on), and these are assumed to be constants during
vibrations. Because dislocations and nanocracks have not developed within the medium,
and the nanotube does not experience any mis-bonding at the interface (i.e., the so-called
mechanically imperfect interface), the material properties of the elastic medium do not
changeretained.
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Figure 1. An embedded continuum-based tube-like nanostructure acted upon by the excitations of
both elastic medium and MNO.

When it comes to studying MNO mechanical problems, there are two common ap-
proaches that could be considered: the moving nanoforce approach (MNFA) and the
moving nanomass approach (MNMA). While the MNFA only takes into account the weight
of nano-objects without considering transverse inertia, the MNMA includes nano-object
inertial forces in the equations of motion for the rational prediction of transverse vibrations.
However, it is important to note that both approaches used here ignore the friction force
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between the MNO’s outer surface and the NT’s inner surface. Regardless of the MNO’s
speed, it is rationally assumed that the MNO remains in contact with the NT surface
during the passage phase. This study aims to provide a comprehensive examination of
how significant parameters affect NT vibrations, utilizing the NRABT and NREBT based
on the MNFA and MNMA. For this purpose, the equations of motion are derived for each
theory within the appropriate framework, presenting an analytical solution for the MNFA
and an appropriate numerical method for the MNMA to analyze the problem for the major
elastodynamic fields of the NT.

3. Investigating Vibrations under Excitations of Elastic Medium and MNO Based on
the NRABT
3.1. Nonlocally Developed Governing Equations

The equation of motion of transverse vibrations of a tube-like nanostructure under
the action of a moving nano-object of weight Mg and excitation of the harmonic elas-
tic environment of the form wg(t) = agsin(ωt) based on the NRABT can be stated as
follows [50,83,103]:

ρb

(
Ab

∂2wR
t

∂t2 − Ib
∂4wR

t
∂t2∂x2

)
+ kt

(
wR

t − wg

)
− kr

∂2wR
t

∂x2 −
∂2
(

Mnl
b

)R

∂x2 = f R, (1)

where t f = lb/v represents the time when the MNO leaves the NT, wR denotes the pure
dynamical deflection field of the NT, wR

t is the total deflection field, and f R = f R(x, t)
stands for the transverse dynamic loads that act on the beam-like nanostructure. In the
above relationship, kt, kr, ρb, Ab, and Ib, respectively, the stiffness of the translational spring,
the stiffness of the torsional spring, density, the cross-sectional area, and the moment of
inertia of the equivalent continuum structure (ECS), are associated with the NT.

For a moving nano-object of weight Mg at the longitudinal location of xM, the con-
centrated force exerted on the NT accounting for the transverse inertia effect is stated

as [84,104–106]: f R(x, t) = M
(

g−κD2wR
t

Dt2

)
δ(x− xM)H

(
t f − t

)
, in which M

D2wR
t

Dt2 sig-

nifies the total transverse inertia of the MNO; H and δ represent Heaviside’s function

and Dirac’s delta function, respectively; and
D[.]
Dt

stands for the first material derivative

of the field [.] of the vibrating NT just at the MNO’s location. The Heaviside’s function
is utilized to control the entry and exit of the MNO into the NT, whereas Dirac’s delta
function is employed for point load modeling of the MNO. In the above relationship, κ
is the representative of the chosen approach, and it could take the values 0 or 1, where 0
indicates the MNFA and 1 represents the MNMA. The expressions of the non-local bending

moment (
(

Mnl
b

)R
) and the total transverse displacement (wR

t ) of the NT modeled based on
the NRABT are defined as follows:

wR
t (x, t) = wR(x, t) + wg(t),

Λ
{(

Mnl
b

)R
}

= (Ml
b)

R
= −Eb Ib

∂2wR

∂x2 ,
(2)

in which Λ[.] = [.]−(e0a)2 ∂2[.]
∂x2 represents the non-local operator, e0a is the small-scale

parameter, and Eb is Young’s modulus of the ECS pertinent to the NT. By inserting the
expression wR

t and by applying the non-local operator on the sides of Equation (1), the non-
local equations of motion in terms of the transverse displacement field are obtained:
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Λ
{

ρb

(
Ab

∂2wR

∂t2 − Ib
∂4wR

∂t2∂x2

)
+ ktwR − kr

∂2wR

∂x2

}
+ Eb Ib

∂4wR

∂x4 =

Λ

{
M
(

g−κD2wR

Dt2

)
δ(x− xM)H

(
t f − t

)
−
[
κMδ(x− xM)H

(
t f − t

)
+ ρb Ab

]d2wg

dt2

}
,

(3)

by substituting wg(t) = agsin(ωt) in Equation (3), the following relation can be reached:

Λ
{

ρb

(
Ab

∂2wR

∂t2 − Ib
∂4wR

∂t2∂x2

)
+ ktwR − kr

∂2wR

∂x2

}
+ Eb Ib

∂4wR

∂x4 =

Λ
{

M
(

g−κD2wR

Dt2

)
δ(x− xM)H

(
t f − t

)
+
[
κMδ(x− xM)H

(
t f − t

)
+ ρb Ab

]
agω2sin(ωt)

}
.

(4)

To solve the problem in a more general way, we should present the obtained nonlocal
motion equations in a dimensionless form as follows:

Λ

{
∂2wR

∂τ2 − λ−2 ∂4wR

∂τ2∂ξ2 + k
R
t wR − k

R
r

∂2wR

∂ξ2

}
+

∂4wR

∂ξ4 =

Λ

{
f

R
M

(
1−κD2wR

Dτ2

)
δ(ξ − ξM)H

(
τR

f − τ
)
+
[
κMNδ(ξ − ξM)H

(
τR

f − τ
)
+ 1
]

f
R
g sin(ΩR

τ)

}
,

(5)

where the dimensionless parameters are as follows:

wR =
wR

lb
, ξ =

x
lb

, ξM =
xM

lb
, Λ = [.]− µ2 ∂2[.]

∂ξ2 , λ = lb

√
Ab
Ib

, τ =
t
l2
b

√
Eb Ib
ρb Ab

, k
R
t =

kt l4
b

Eb Ib
,

k
R
r =

kr l2
b

Eb Ib
, µ =

e0a
lb

, MN =
M

ρb Ab lb
, τR

f =
1

vlb

√
Eb Ib
ρb Ab

, f
R
M =

Mgl2
b

Eb Ib
, Ω

R
= ωl2

b

√
ρb Ab
Eb Ib

,

f
R
g =

ag

lb

(
Ω

R
)2

,
D2 wR

Dτ2 =

(
Eb Ib

ρb Abgl3
b

)
∂2 wR

∂τ2 + 2

(
v

gl2
b

√
Eb Ib
ρb Ab

)
∂2 wR

∂τ∂ξ
+

(
v2

glb

)
∂2 wR

∂ξ2 .

(6)

3.2. An Analytically Developed Solution Based on the MNFA (κ = 0)

To discretize the dynamic deflection of the NT in the spatial domain, the modal analysis
is utilized as wR(ξ, τ) = ∑∞

n=1 aR
n (τ)φ

w
n (ξ), in which φw

n represents the shape function of the
n-th mode, where φw

n (ξ) = sin(nπξ) is exploited for simply ended boundary conditions
and aR

n (τ) signifies the unknown time-dependent parameter. By putting this discretized
version of the dimensionless deflection in the equation of motion given in Equation (5)
under the condition κ = 0 (moving nanoforce approach), the following relationship can
be reached:

∂2aR
n

∂τ2 + Γ2
naR

n = βR
n sin

(
gR

n τ
)

H
(

τR
f − τ

)
+AR

n sin
(

ΩR
τ
)

, (7)

where

Γ2
n =

(
k

R
t + k

R
r (nπ)2

)(
1 + (nπµ)2

)
+ (nπ)4(

1 +
( nπ

λ

)2
)(

1 + (nπµ)2
) , AR

n =
2 f

R
g (1− cos(nπ) )

nπ
(

1 +
( nπ

λ

)2
)(

1 + (nπµ)2
) ,

βR
n =

2 f
R
M

1 +
( nπ

λ

)2 , gR
n = vinπlb

√
ρb Ab
Eb Ib

.

(8)
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According to the initial conditions of the governing equations of the problem, we have:

aR
n (0) =

daR
n

dτ
(0) = 0. (9)

Using the Laplace transform, the unknown coefficients of the ordinary differential
equation in Equation (8) can be obtained in the following form:

L
{

aR
n

}
=

 βR
n gR

n

(
1− cos(nπ) e−sτR

f

)
(s2 + Γ2

n)
(

s2 + (gR
n )

2
) +

AR
n ΩR

(s2 + Γ2
n)

(
s2 + ΩR2

)
. (10)

By using the inverse Laplace transform, the unknown time coefficients can be obtained.
According to the initial conditions given in Equation (9), the unknown displacement field
of the problem can be calculated in the following form:

wR(ξ, τ) = ∑∞
n=1


BR

n
(

gR
n sin(Γnτ) − Γnsin

(
gR

n τ
) )
−

BR
n cos(nπ) H

(
τR

f − 1
)(

gR
n sin

(
Γn

(
τ − τR

f

))
− Γnsin

(
gR

n

(
τ − τR

f

)) )
+CR

n

(
ΩRsin(Γnτ) − Γnsin

(
ΩR

τ
) )

sin(nπξ) , (11)

in which,

BR
n =

βR
n

Γn

(
(gR

n )
2 − Γ2

n

) , CR
n =

AR
n

Γn

(
(ΩR

)
2
− Γ2

n

) . (12)

3.3. A Numerically Developed Solution Based on the MNMA (κ = 1)

The Galerkin methodology on the basis of the modal analysis is employed to deter-
mine the dynamic response of nanotubes. For this purpose, by multiplying both sides of
Equation (5) by δwR (δ is the variational sign) and integrating over the length of the NT,
the following can be written:

∫ 1

0


δwR ∂2wR

∂τ2 − µ2 ∂2(δwR)
∂ξ2

∂2wR

∂τ2 + λ−2 ∂
(
δwR)
∂ξ

∂3wR

∂τ2∂ξ
+ µ2λ−2 ∂2(δwR)

∂ξ2
∂4wR

∂τ2∂ξ2 +

k
R
t wRdwR − µ2k

R
t wR ∂2(δwR)

∂ξ2 − k
R
r

∂2wR

∂ξ2 δwR + µ2k
R
r

∂2wR

∂ξ2
∂2(δwR)

∂ξ2 +
∂2(δwR)

∂ξ2
∂2wR

∂ξ2

ffiξ

=
∫ 1

0


(

δwR − µ2 ∂2(δwR)
∂ξ2

)
f

R
M

(
1−κD2wR

Dτ2

)
δ(ξ − ξM)H

(
τR

f − τ
)

+δwR
[

MNδ(ξ − ξM)H
(

τR
f − τ

)
+ 1
]

f
R
g sin(ΩR

τ)

dξ.

(13)

After placing the discrete displacement field wR(ξ, τ) = ∑∞
n=1 aR

n (τ)φ
wR
n (ξ) in

Equation (13) and sorting the relations obtained, the following second-order ODEs can be
reached: [

MR
b

]ww

ij

d2aR
n

dτ2 +
[
CR

b

]ww

ij

daR
n

dτ
+
[
KR

b

]ww

ij
aR

n =
{

f
R
b

}w

i
, (14)

that the matrices of mass, damping, stiffness, and force are defined as follows:[
MR

b

]ww

ij
= 0.5

(
Υij + Gijλ

−2 + Gijµ
2 +

(
Gijµ

)2
λ−2

)
+MN

(
1 + (iπµ)2

)
sin(iπξM) sin(jπξM) H

(
τR

f − τ
)

,
(15)

[
CR

b

]ww

ij
= 2λβR MN jπ

(
1 + (iπµ)2

)
sin(iπξM) cos(jπξM) H

(
τR

f − τ
)

, (16)
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[
KR

b

]ww

ij
= 0.5Gij

2 + 0.5
(

k
R
t + k

R
r (iπ)2

)(
Υij + Gijµ

2
)
−

MN

(
jπλβR

)2(
1 + (iπµ)2

)
sin(iπξM) sin(jπξM) H

(
τR

f − τ
)

,
(17)

{
f

R
b

}w

i
= MN

(
λγR

)2(
1 + (iπµ)2

)
sin(iπξM) H

(
τR

f − τ
)
+(

MNsin(iπξM) H
(

τR
f − τ

)
+

1− cos(iπ)

iπ

)
f

R
g sin(ΩR

τ),
(18)

where the parameters used in these equations are defined as follows:

Υij = δij, Gij = ijπ2 δij, CR
l =

√
Eb1

ρb1

, γR =

√
glb

CR
l

, βR =
v

CR
l

, (19)

where δij signifies the Kronecker delta tensor. Considering that the mass, damping, and stiff-
ness matrices in the moving mass approach are time-dependent, the generalized Newmark-
β approach [107] is employed to determine the elastodynamic fields of the beam-like
nanostructure under the effect of moving nano-objects.

4. Investigating Vibrations under Excitations of Elastic Medium and MNO Based on
the NREBT
4.1. Nonlocally Developed Governing Equations

The nonlocal equations of motion of transverse vibrations of the NT under the action
of elastic medium stimulation and MNO weight (Mg) based on the higher-order shear
beam theory are expressed as follows [50,103]:

I0
∂2wH

t
∂t2 −

(
α2 I6 − αI4

) ∂3ψH

∂t2∂x
− α2 I6

∂4wH
t

∂t2∂x2 −
∂
(

Qnl
b

)H

∂x
+ kt

(
wH

t − wg

)
− α

∂2
(

Pnl
b

)H

∂x2 = f H , (20)

(
I2 + α2 I6 − 2αI4

)∂2ψH

∂t2 +
(

α2 I6 − αI4

)∂3wH
t

∂t2∂x
+
(

Qnl
b

)H
+ α

∂
(

Pnl
b

)H

∂x
−

∂
(

Mnl
b

)H

∂x
+ krψH = 0, (21)

where wH
t and ψH represent the total transverse displacement and the rotation angle of the

ECS associated with the NT, respectively, and f H = f H(x, t) denotes the exerted transverse
force on the NT due to the presence of the MNO inside the pore. Herein, this pointed load

is considered in the following form [84]: f H(x, t) = M
(

g−κD2wH
t

Dt2

)
δ(x− xM)H

(
t f − t

)
.

The shear force and bending moment of the NT based on the higher-order shear beam
theory, in the framework of Eringen’s nonlocal continuum-based theory, are expressed
as follows:

wH
t (x, t) = wH(x, t) + wg(t), (22)

Λ
{
(Qnl

b )
H
}

= (Ql
b)

H
= k

(
ψH +

∂wH

∂x

)
, (23)

Λ
{
(Pnl

b )
H
}

= (Pl
b)

H
= J4

∂ψH

∂x
− αJ6

(
∂ψH

∂x
+

∂2wH

∂x2

)
, (24)

Λ
{
(Mnl

b )
H
}

= (Ml
b)

H
= J2

∂ψH

∂x
− αJ4

(
∂ψH

∂x
+

∂2wH

∂x2

)
, (25)

where
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Λ[.] = [.]−(e0a)2[.],xx, wg(t) = agsin(ωt) , αi=
1

3r2
o

,

k =
∫

Ab

Gb

(
1− 3αz2

)
dA, Im =

∫
Ab

ρbzmdA; m = 0, 2, 4, 6, Jn =
∫

Ab

EbzndA; n = 2, 4, 6,
(26)

in which Gb denotes the shear modulus of the ECS. By applying the operator Λ to
Equations (20) and (21) and then introducing Equations (22)–(25), the resulting relations
and the nonlocal equations of motion are obtained in terms of nanosystem deformation
fields:

Λ
{

I0
∂2wH

∂t2 −
(

α2 I6 − αI4

) ∂3ψH

∂t2∂x
− α2 I6

∂4wH

∂t2∂x2 + ktwH
}
− k
(

∂ψH

∂x
+

∂2wH

∂x2

)
− αJ4

∂3ψH

∂x3

+α2 J6

(
∂3ψH

∂x3 +
∂4wH

∂x4

)
= Λ


M
(

g−κD2wH

Dt2

)
δ(x− xM)H

(
t f − t

)
−(

κMδ(x− xM)H
(

t f − t
)
+ I0

)
d2wg
dt2

,
(27)

Λ
{(

I2 + α2 I6 − 2αI4

)∂2ψH

∂t2 +
(

α2 I6 − αI4

)∂3wH

∂t2∂x
+ krψH

}
+ k
(

ψH +
∂wH

∂x

)
−
(

J2 − 2αJ4 + α2 J6

)∂2ψH

∂x2 −
(

α2 J6 − 2αJ4

)∂3wH

∂x3 = 0.

(28)

By inserting wg(t) = ag sin(ωt) into the equations of motion given in
Equations (27) and (28), the resulting relations can be rewritten as follows:

Λ
{

I0
∂2wH

∂t2 −
(

α2 I6 − αI4

) ∂3ψH

∂t2∂x
− α2 I6

∂4wH

∂t2∂x2 + ktwH
}
− k
(

∂ψH

∂x
+

∂2wH

∂x2

)
− αJ4

∂3ψH

∂x3

+α2 J6

(
∂3ψH

∂x3 +
∂4wH

∂x4

)
= Λ


M
(

g−κD2wH

Dt2

)
δ(x− xm)H

(
t f − t

)
+

(κMδ(x− xM)H
(

t f − t
)
+ I0)agω2sin(ωt)

,
(29)

Λ
{(

I2 + α2 I6 − 2αI4

)∂2ψH

∂t2 +
(

α2 I6 − αI4

)∂3wH

∂t2∂x
+ krψH

}
+ k
(

ψH +
∂wH

∂x

)
−
(

J2 − 2αJ4 + α2 J6

)∂2ψH

∂x2 −
(

α2 J6 − 2αJ4

)∂3wH

∂x3 = 0.

(30)

In order to arrive at the dimensionless equations of motions, the following dimension-
less parameters are defined:

wH =
wH

lb
, ψ

H
= ψH , ξ =

x
lb

, τ =
α

l2
b

√
J6

I0
t, γ2

1 =
αI4 − α2 I6

I0l2
b

, γ2
2 =

α2 I6

I0l2
b

,

γ2
3 =

kl2
b

α2 J6
, γ2

4 =
αJ4 − α2 J6

α2 J6
, γ2

6 =
αI4 − α2 I6

I2 − 2αI4 + α2 I6
, γ2

7 =
kI0l4

b
α2 J6(I2 − 2αI4 + α2 I6)

,

γ2
8 =

(
J2 − 2αJ4 + α2 J6

)
I0l2

b
α2 J6(I2 − 2αI4 + α2 I6)

, γ2
9 =

(
αJ4 − α2 J6

)
I0l2

b
α2 J6(I2 − 2αI4 + α2 I6)

, f
H
M =

Mgl2
b

α2 J6
, f

H
g =

ag

lb
Ω2,

Ω =
ωl2

b
α

√
I0

J6
, τH

f =
α

vlb

√
J6

I0
, ξ =

xM
lb

, MN =
M

ρb Ablb
, k

H
r =

kr I0l4
b

α2 J6(I2 − 2αI4 + α2 I6)
,

k
H
t =

ktl4
b

α2 J6
,

D2wH

Dτ2 =

(
α2 J6

I0gl3
b

)
∂2wH

∂τ2 + 2

(
vα

gl2
b

√
J6

I0

)
∂2wH

∂τ∂ξ
+

(
v2

glb

)
∂2wH

∂ξ2 .

(31)
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By introducing the dimensionless parameters in Equation (31) to the equations of
motion (29) and (30), the dimensionless governing equations are obtained as:

Λ

{
∂2wH

∂τ2 + γ2
1

∂3ψ
H

∂τ2∂ξ
−γ2

2
∂4wH

∂τ2∂ξ2 + k
H
t wH

}
− γ2

3

(
∂ψ

H

∂ξ
+

∂2wH

∂ξ2

)
− γ2

4
∂3ψ

H

∂ξ3 +
∂4wH

∂ξ4 =

Λ

{
f

H
m

(
1−κD2wH

Dτ2

)
δ(ξ − ξM)H

(
τH

f − τ
)
+
(
κMNδ(ξ − ξM)H

(
τH

f − τ
)
+ 1
)

f
H
g sin(ΩH

τ)

}
,

(32)

Λ

{
∂2ψ

H

∂τ2 −γ2
6

∂3wH

∂τ2∂ξ
+ k

H
r ψ

H
}
+ γ2

7

(
ψ

H
+

∂wH

∂ξ

)
− γ2

8
∂2ψ

H

∂ξ2 + γ2
9

∂3wH

∂ξ3 = 0. (33)

4.2. An Analytically Developed Solution Based on the MNFA (κ = 0)

To determine the dynamic response of the NT in the presence of simultaneous ac-
tions of the MNO and medium excitations, the modal analysis is implemented. To this
end, we will discretize the unknown displacement field of the problem as wH(ξ, τ) =

∑∞
n=1 aH

n (τ)φW
n (ξ) and ψ

H
(ξ, τ) = ∑∞

n=1 b
H
n (τ)φ

ψ
n (ξ), in which φ

wi
n and φ

ψi
n , respectively,

represent the shape function corresponding to the transverse deformation and the rotation
angle of the n-th vibration mode of the NT. For the nanostructure with simply supported
ends, φw

n (ξ)=sin(nπξ) and φ
ψ
n (ξ)=cos(nπξ) are used. By replacing the above discrete

forms in the dimensionless nonlocal motion relations, as provided in
Equations (32) and (33), the following system of equations is obtained:

[
ζ1n ζ2n

ζ2n ζ3n

]
∂2aH

n
∂τ2

∂2b
H
n

∂τ2

+

[
η1n η2n

η3n η4n

]{
aH

n

b
H
n

}
=

{
βH

n sin
(

gH
n τ
)

H
(

τH
f − τ

)
+AH

n sin
(

ΩH
τ
)

0

}
,

(34)

that the initial conditions of this system of 2nd-order ODEs are given by:

{
aH

n (0), b
H
n (0)

}
=

{
daH

n
dτ

(0),
db

H
n

dτ
(0)

}
= {0, 0}, (35)

where the dimensionless coefficients used in Equation (34) are defined as follows:

η1n = k
H
t

(
1 + (nπµ)2

)
+ γ2

3(nπ)2 + (nπ)4, η2n = γ2
3nπ−γ2

4(nπ)3,

η3n = γ2
7nπ−γ2

9(nπ)3, η4n = k
H
r

(
1 + (nπµ)2

)
+ γ2

7nπ + γ2
8(nπ)2 ,

ζ1n =
(

1 + (nπµ)2
)(

1 + (nπγ2)
2
)

, ζ2n=− γ2
1

(
(nπ) + µ2(nπ)3

)
,

ζ3n=− γ2
6

(
(nπ) + µ(nπ)3

)
, ζ4n=1 + (nπµ)2 , AH

n =
2 f

H
g

nπ
(1− cos(nπ))

gH
n =

vnπlb
α

√
I0

J6
, βH

n = 2 f
H
M

(
1 + (nπµ)2

)
.

(36)
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By applying the Laplace transform to the set of relations in Equation (34), it is obtainable:

L
{

aH
n

}
=

 βH
n gH

n

(
1− cos(nπ) e−sτH

f

)(
ζ4n s2 + η4n

)
∆H

n (s)
(

s2 + (gH
n )

2
) +

AH
n ΩH(

ζ4n s2 + η4n

)
∆H

n (s)
(

s2 + (ΩH
)

2
)
,

L
{

b
H
n

}
= −

 βH
n gH

n

(
1− cos(nπ) e−sτH

f

)(
ζ3n s2 + η3n

)
∆H

n (s)
(

s2 + (gH
n )

2
) +

AH
n ΩH(

ζ3n s2 + η3n

)
∆H

n (s)
(

s2 + (ΩH
)

2
)
,

∆H
n (s) = (ζ1n ζ4n − ζ2n ζ3n)(s

2 + (rH
1n)

2
)(s2 +

(
rH

2n)
2)

,

(37)

so that,

(rH
1n)

2
=

(ζ1n η4n + ζ4n η1n − ζ2n η3n − ζ3n η2n)−
√

χn

2(ζ1n ζ4n − ζ2n ζ3n)
,

(rH
2n)

2
=

(ζ1n η4n + ζ4n η1n − ζ2n η3n − ζ3n η2n) +
√

χn

2(ζ1n ζ4n − ζ2n ζ3n)
,

χn = (ζ1n η4n + ζ4n η1n − ζ2n η3n − ζ3n η2n)
2 − 4(η1n η4n − η2n η3n)(ζ1n ζ4n − ζ2n ζ3n).

(38)

Using the inverse Laplace transform, the unknown coefficients of Equation (37) are
obtained. By determining these coefficients, the dimensionless deformation fields of the
NT under the effect of the MNO based on the MNFA-NREBM are obtained:

wH(ξ, τ) =
∞

∑
n=1


AH

1n
rH
1n

sin
(

rH
1n

τ
)

+
AH

2n
rH
2n

sin
(

rH
2n

τ
)

+
AH

3n
gH

n
sin
(

gH
n τ
)
− cos(nπ) H

(
τH

f − 1
)
×(

AH
1n

rH
1n

sin
(

rH
1n

(
τ − τH

f

))
+

AH
2n

rH
2n

sin
(

rH
2n

(
τ − τH

f

))
+

AH
3n

gH
n

sin
(

gH
n

(
τ − τH

f

)) )
+

BH
1n

rH
1n

sin
(

rH
1n

τ
)

+
BH

2n
rH
2n

sin
(

rH
2n

τ
)

+
BH

3n

ΩH sin
(

Ω
H

τ
)

sin(nπξ) , (39)

ψ
H
(ξ, τ) =

∞

∑
n=1


CH

1n
rH
1n

sin
(

rH
1n

τ
)

+
CH

2n
rH
2n

sin
(

rH
2n

τ
)

+
CH

3n
gH

n
sin
(

gH
n τ
)
− cos(nπ) H

(
τH

f − 1
)
×(

CH
1n

rH
1n

sin
(

rH
1n

(
τ − τH

f

))
+

CH
2n

rH
2n

sin
(

rH
2n

(
τ − τH

f

))
+

CH
3n

gH
n

sin
(

gH
n

(
τ − τH

f

)) )
+

DH
1n

rH
1n

sin
(

rH
1n

τ
)

+
DH

2n
rH
2n

sin
(

rH
2n

τ
)

+
DH

3n

ΩH sin
(

Ω
H

τ
)

cos(nπξ) , (40)

where



Symmetry 2023, 15, 1827 12 of 26

AH
1n

=
CH

n (−ζ4n(r
H
1n)

2
+ η4n)(

(rH
2n)

2 − (rH
1n)

2
)(

(gH
n )

2 − (rH
1n)

2
) , AH

2n
=

CH
n (−ζ4n(r

H
2n)

2
+ η4n)(

(rH
1n)

2 − (rH
2n)

2
)(

(gH
n )

2 − (rH
2n)

2
)

AH
3n

=
CH

n (−ζ4n(gH
n )

2
+ η4n)(

(rH
1n)

2 − (gH
n )

2
)(

(rH
2n)

2 − (gH
n )

2
) , BH

1n
=

DH
n (−ζ4n(r

H
1n)

2
+ η4n)(

(rH
2n)

2 − (rH
1n)

2
)(

(ΩH
)

2
− (rH

1n)
2
) ,

BH
2n

=
DH

n (−ζ4n(r
H
2n)

2
+ η4n)(

(rH
1n)

2 − (rH
2n)

2
)(

(ΩH
)

2
− (rH

2n)
2
) , BH

3n
=

DH
n (−ζ4n(Ω

H
)

2
+ η4n)(

(rH
1n)

2 − (ΩH
)

2
)(

(rH
2n)

2 − (ΩH
)

2
) ,

CH
1n

=
EH

n (−ζ2n(r
H
1n)

2
+ η2n)(

(rH
2n)

2 − (rH
1n)

2
)(

(gH
n )

2 − (rH
1n)

2
) , CH

2n
=

EH
n (−ζ2n(r

H
2n)

2
+ η2n)(

(rH
1n)

2 − (rH
2n)

2
)(

(gH
n )

2 − (rH
2n)

2
) ,

CH
3n

=
EH

n (−ζ2n(gH
n )

2
+ η2n)(

(rH
1n)

2 − (gH
n )

2
)(

(rH
2n)

2 − (gH
n )

2
) , DH

1n
=

FH
n (−ζ2n(r

H
1n)

2
+ η2n)(

(rH
2n)

2 − (rH
1n)

2
)(

(ΩH
)

2
− (rH

1n)
2
) ,

DH
2n

=
FH

n (−ζ2n(r
H
2n)

2
+ η2n)(

(rH
1n)

2 − (rH
2n)

2
)(

(ΩH
)

2
− (rH

2n)
2
) , DH

3n
=

FH
n (−ζ2n(Ω

H
)

2
+ η2n)(

(rH
1n)

2 − (ΩH
)

2
)(

(rH
2n)

2 − (ΩH
)

2
) ,

CH
n =

βH
n gH

n
(ζ1n ζ4n − ζ2n ζ3n)

, DH
n =

AH
n ΩH

(ζ1n ζ4n − ζ2n ζ3n)
, EH

n =
βH

n gH
n

(ζ1n ζ3n − ζ2
2n
)

, FH
n =

AH
n ΩH

(ζ1n ζ3n − ζ2
2n
)

.

(41)

4.3. A Numerically Developed Solution Based on the MNMA (κ = 1)

In this part, the dynamic response of the NT is sought by applying the Galerkin
method based on the modal analysis approach. For this purpose, by multiplying both sides
of Equations (32) and (33), respectively, by δwH and δψ

H and then by adding the obtained
relations and applying the integral part by part, the following relation is obtained:

∫ 1

0



δwH ∂2wH

∂τ2 − µ2 ∂2(δwH)
∂ξ2

∂2wH

∂τ2 +k
H
t wHdwH−fl2

1
∂(wH)

∂ξ
∂2ψ

H

∂τ2 −

fl2
1µ2 ∂2(δwH)

∂ξ2
∂3ψ

H

∂τ2∂ξ
+fl2

2
∂(δwH)

∂ξ
∂3wH

∂τ2∂ξ
+γ2

2µ2 ∂2(δwH)
∂ξ2

∂4wH

∂τ2∂ξ2 + k
H
r ψ

H
δψ

H

−fl2
3δwH

(
∂ψ

H

∂ξ + ∂2wH

∂ξ2

)
+

∂(δwH)
∂ξ (γ2

4
∂2ψ

H

∂ξ2 −
∂3ψ

H

∂ξ3 ) + δψ
H
1

∂2ψ
H

∂τ2

+µ2 ∂
(

δψ
H
)

∂ξ
∂3ψ

H

∂τ2∂ξ
− γ2

6
∂ψ

H

∂ξ
∂2wH

∂τ2 − µ2γ2
6

∂ψ
H

∂ξ
∂4wH

∂τ2∂ξ2 − k
H
t µ2wH ∂2(δwH)

∂ξ2 +

γ2
7δψ

H
(

ψ
H − ∂wH

∂ξ

)
− γ2

8
∂
(

δψ
H
)

∂ξ
∂ψ

H

∂ξ + γ2
9

∂
(

δψ
H
)

∂ξ
∂2wH

∂ξ2 − µ2k
H
r ψ

H ∂2
(

δψ
H
)

∂ξ2


dξ

=
∫ 1

0

(
δwH − µ2 ∂2(δwH)

∂ξ2

) f
H
m

(
1−κD2wH

Dτ2

)
δ(ξ − ξM)H

(
τH

f − τ
)
+(

MNδ(ξ − ξM)H
(

τH
f − τ

)
+ 1
)

f
H
g sin(ΩH

τ)

dξ.

(42)

After substituting the discretized displacement fields wH(ξ, τ) = ∑NM
n=1 aH

n (τ)φw
n (ξ)

and ψ
H
(ξ, τ) = ∑NM

n=1 b
H
n (τ)φ

ψ
n (ξ) into Equation (42) and appropriately sorting the resulting

relationships, the following system of ODEs is derived:


[
MH

b

]ww

ij

[
MH

b

]wψ

ij[
MH

b

]ψw

ij

[
MH

b

]ψψ

ij




d2aH
n

dτ2

d2bH
n

dτ2

+


[
KH

b

]ww

ij

[
KH

b

]wψ

ij[
KH

b

]ψw

ij

[
KH

b

]ψψ

ij

{ aH
n

b
H
n

}
=

{ {
f

H
b

}w

i
0

}
, (43)
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in which the rows of these matrices are provided in the following form:[
MH

b

]ww

ij
= 0.5

(
Υij + Γijµ

2 + Γijγ
2
2 + γ2

2
(
µΓij

)2
)
+

MN

(
1 + (iπµ)2

)
sin(iπξM) sin(jπξM) H

(
τH

f − τ
)

,
(44)

[
MH

b

]wψ

ij
=− 0.5γ2

1

(
Ξij + Πijµ

2
)

, (45)

[
MH

b

]ψw

ij
= −0.5γ2

6

(
Ξij + Πijµ

2
)

, (46)

[
MH

b

]ψψ

ij
= 0.5

(
Υij + Γijµ

2
)

, (47)

[
CH

b

]ww

ij
= 2βH MN jπ

(
1 + (iπµ)2

)
sin(iπξM)cos(jπξM)H

(
τH

f − τ
)

, (48)

[
KH

b

]ww

ij
= 0.5

(
γ2

3Γij + Γij
2
)
+ 0.5k

H
t Υij

(
1 + (iπµ)2

)
−

MN

(
jπβH

)2(
1 + (iπµ)2

)
sin(iπξM) sin(jπξM) H

(
τH

f − τ
)

,
(49)

[
KH

b

]wψ

ij
= 0.5(γ2

3Ξij − γ2
4Πij), (50)

[
KH

b

]ψw

ij
= 0.5(γ2

7Ξij − γ2
9Πij), (51)

[
KH

b

]ψψ

ij
= 0.5

(
γ2

7Υij + γ2
8Γij

)
+ 0.5k

H
r Υij

(
1 + (iπµ)2

)
, (52)

{
f

H
b

}w

i
= MN

(
γH
)2(

1 + (iπµ)2
)

sin(iπξm) H
(

τH
f − τ

)
+(

MNsin(iπξm) H
(

τH
f − τ

)
+

(1− cos(iπ) )

iπ

)
f

H
g sin

(
ΩH

τ
)

,
(53)

where
Υij = δij, Γij = ijπ2δij, Πij = ji2π3 δij, Ξij = iπδij,

CH
l =

α1

lb

√
J6

I0
, γH =

√
glb

CH
l

, MN =
M

ρb Ablb
.

(54)

Since the dynamical matrices based on the MNMA are time-dependent, we adopt the
generalized Newmark-β methodology [107] for the time discretization of the set of ODEs
given in Equation (43) and then evaluate the elastodynamic fields of the nanobeam under
the simultaneous influence of the MNO and medium excitations.

4.4. Results and Discussion

A comprehensive parametric study on the vibrations of an NT in the presence of the
effect of MNO and the stimulation of the elastic medium based on the theory of Rayleigh
beams and higher-order shear is presented. Since the inertial effect of the MNO is also
of great importance, both the results of the MNFA and MNMA are also demonstrated.
To this end, carbon nanotubes with tb = 0.34 nm, rm = 1 nm, ρb = 2.3 gr/cm3, Eb = 1 TPa,
λ = 20, and vb = 0.2 are considered. Also, in all the demonstrated figures, we consider

e0a= 1 nm , β = 0.6, ag = 10−15lb, MN = 0.3_ k
R
r = 10, and k

R
t = 10, unless other values

are clearly specified for them. In the presented graphs and tables, normalized speed,
normalized displacement, and other parameter values are considered as:
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WN =
w(ξ, τ)

wst
, wst =

Mgl2
b

48Eb I∗b
=

0.3ρb A∗b g
(
l∗b
)3

48Eb I∗b
, β =

Ω
v1

, A∗b = π
(
(r∗o )

2 − (r∗i )
2
)

,

A∗b = π
(
(r∗o )

2 − (r∗i )
2
)

, I∗b =
π

4

(
(r∗o )

4 − (r∗i )
4
)

, r∗o = r∗m +
tb
2

, r∗i = r∗m −
tb
2

,

r∗m = 1 nm, VN =
v
v∗

, v∗ =
π

l∗b

√√√√√ Eb I∗b

ρb A∗b

(
1 + I∗b π2

A∗b(l∗b )
2

)(
1 + (πµ)2

) .

(55)

In the next subsections, the correctness of the performed calculations is checked first,
and then the influence of the parameters of the frequency and amplitude of the medium,
the MNO’s velocity and mass, and the stiffness of the torsional and translational spring on
the deflection of the beam-like nanostructure are discussed.

4.5. Validation Studies of the Suggested Models
4.5.1. A Comparison between the MNFA’s Results and Those of the MNMA

In order to ensure the accuracy and effectiveness of our calculations and models, we
need to compare the results obtained from both analytical and numerical solutions for
a specific scenario. This will help us confirm the correctness of our work and make any
necessary adjustments if needed. To this end, we should lessen the transverse inertia
of the nano-object, where herein such an issue is met by considering a negligible mass
of the nano-object, i.e., MN = 0.01. In Table 1, the estimated normalized maximum
deflection (WN,max) of the vibrated nanostructure by the surrounding medium and the
MNO based on the MNFA and MNMA have been given for three levels of the amplitude of
the vibrating medium (i.e., ag/lb = 10−14, 2× 10−14, and 3× 10−14), and the other properties
of the MNO and surrounding medium are provided in the caption. As can be seen from
Table 1, the percentage of the relative discrepancy between the results of the analytical
and numerical methodologies is almost insignificant. Since these two approaches have
been established completely distinctly, this result indicates that both models are capable of
rationally predicting the dynamic response of the elastically embedded nanostructure in
the presence of both medium excitation and MNO.

Table 1. Comparison between the results of the maximum normalized mid-span displacements based
on the MNFA and MNMA for different slenderness ratios and excitation amplitudes of the elastic

medium (e0a = 1 nm, VN = 0.6, MN = 0.01, β = 0.3, and k
R
r = 10, k

R
t = 10).

λ WN,max

MNFA MNMA
ag

10−14lb
1 2 3 1 2 3

20 NRABT 1.846 3.671 5.497 1.896 3.685 5.517
(%2.86) (%0.38) (%0.36)

NREBT 1.857 3.692 5.527 1.902 3.762 5.632
(%2.42) (%1.2) (%1.9)

50 NRABT 2.285 4.213 6.145 2.353 4.238 6.170
(%2.98) (%0.59) (%0.60)

NREBT 2.297 4.219 6.150 2.345 4.296 6.266
(%2.09) (%1.83) (%1.87)

100 NRABT 5.169 6.998 8.859 5.212 7.024 8.953
(%0.83) (%0.8) (%1.06)

NREBT 5.190 7.020 8.880 5.249 7.104 9.002
(%1.14) (%1.2) (%1.37)
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4.5.2. A Comparison between the Results Predicted by the Model and Those of Another
Work in the Case of ag = 0

In another comparison study, the results obtained from the proposed model with
the results of Simsek [108] and Kiani [103], who, respectively, investigated the transverse
vibrations of an NT acted upon by an MNO without considering its transverse inertia and
the transverse vibrations of an NT under the action of harmonic environmental excitation.
To properly compare the results of Simsek [108] with the proposed models based on the
MNFA, the excitation of the elastic medium is omitted. Figure 2a has been added to
compare the predicted results of our proposed model based on the MNFA-NRABT with
those obtained by Simsek [108]. This subfigure showcases the predicted results of WN,max in
relation to lb/d for three nonlocal factor levels (e0a = 0, 1, and 2 nm) for ag=0 (the stationary
elastic medium). Through this comparison, it is evident that our model’s predicted results
align well with those of Simsek [108] for each lb/d value and all of the nonlocality levels
considered. This indicates the dependability of our suggested model in accurately capturing
the maximum deflection of the nanotube for a broad range of factors.
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Figure 2. (a) Plots of WN,max-lb/d (rm = 0.325 nm, ρb = 2300 kg/m3, tb = 0.35 nm,
VN = 0.1, ag = 0; (◦) e0a = 0, (4) e0a = 1 nm, (�) e0a = 2 nm; (—) Simsek [108], and (...) present
study). (b) Plots of WN,max-ag (rm = 3 nm, ρb = 2500 kg/m3, MN = 0, ag = 0.01tb, λ = 30; (—) Kiani [103],
(...) present study; (◦) NRABT, and (4) NREBT)retained.

4.5.3. A Comparison between the Results Predicted by the Model and Those of Another
Work in the Absence of the MNO

Also, to make a comparison between the results predicted by the model and those
of Kiani [103], the MNO has been removed. The resulted obtained from this comparison
investigation have been presented in Figure 2b. The plotted results in these subfigures
reveal that reasonably good agreement between the results predicted by the proposed
models and those of Kiani [103] can be achieved, indicating the rationality and high
accuracy of the established models in this paper. It should be noticed that the present
model possesses such generality that it could appropriately take into account both the
transverse inertia effect of the MNO and the transverse excitation of the surrounding elastic
medium, whose physical/structural mechanics interpretations have been not revealed yet.

Furthermore, our research focuses on exploring the effects of different factors on
the WN,max of beam-like nanostructures. These factors comprise medium excitation and
MNOs, which play a crucial role in shaping the system’s mechanical behavior. Herein, our
chief objective is to comprehend the fundamental mechanisms involved and identify the
crucial variables that impact these structures’ performance. By thoroughly analyzing these
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factors, we aim to devise better methods for managing and regulating these structures.
This information will have far-reaching consequences for a diverse range of applications.

4.6. Time History Analysis of the Mid-Span Deflection

The time-history plots of the NT’s mid-span deflection based on the NREBT for
three MNO’s velocities (i.e., VN = 0.03, 0.3, and 0.6) and three amplitudes (i.e., ag/lb = 0,
10−15, and 2× 10−15) are illustrated in Figure 3a–c. The other properties of the MNO and
medium excitation, as well as the mechanical interaction characteristics of the NT with the
surrounding medium, are given in the caption. In the demonstrated subfigures, the dotted
and solid lines are associated with the MNFA and the MNMA, respectively. For a fairly
low MNO velocity (i.e., VN = 0.03), the predicted results based on the MNMA are almost
close to those obtained by employing MNFA, particularly in the absence of the excitation of
the medium. Such a fact is chiefly related to the negligible amount of the transverse inertia
effect of the MNO. In the case of ag = 0 and VN = 0.03, we observe a symmetric time-history
plot of WN,mid-τ/τf w.r.t., the midspan point of the NT; however, by growing the amplitude
of the medium excitation, the plotting results become unsymmetric, and this fact becomes
highlighted as the MNO’s velocity grows. In the presence of the medium excitation (see
Figure 3b,c), the aforementioned symmetry is wholly violated even for a very small velocity
of the MNO. The illustrated results reveal that the discrepancies between the MNFA-based
and MNMA-based graphs increase with the growth of the MNO’s velocity and medium
excitation amplitude, representing the highlight of the MNO’s transverse inertia. This
pivotal issue guides us that for arriving at the near-to-exact mechanical response of the
vibrating embedded NT subjected to the MNO, the influence of the MNO’s inertia should
be appropriately taken into account in the cases of MNOs with high velocities as well as
vibrating mediums with high amplitudes.
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Figure 3. Plots of WN,mid-τ/τf based on the NREBT: (a) ag = 0, (b) ag = 10−15lb, and (c) ag = 2× 10−15lb
(β = 0.6, MN = 0.3, k

R
r = k

R
t = 10, λ = 20; (...) MNFA, (—) MNMA; (�) VN = 0.03, and (4) VN = 0.3, and

(♦) VN = 0.6).

The three-dimensional plots of the normalized mid-span deflection (i.e.,
WN,mid = w(0.5,τ)

wst
) as a function of the normalized MNO’s velocity have been provided

in Figure 4a,b for two cases ag = 0 and ag = 10−15lb, respectively. In the absence of the
medium excitation (i.e., ag = 0; see Figure 4a), the illustrated results indicate that WN,mid
presents almost a symmetric curve w.r.t., the mid-span point at the small levels of the
MNO’s velocity. As the velocity of the MNO increases slightly, the symmetry of the time
history plot of the mid-span deflection is violated such that the plot exhibits a moderately
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positive value at the departure time of the MNO (i.e., τ/τf = 1). For higher levels of the
MNO’s velocity (i.e., VN > 0.7), we observe an almost ascending trend, indicating that the
maximum value of the deflection plot shifts from the course of vibration (i.e., 0 < τ/τf < 1)
to the course of excitation (i.e., τ/τf > 1). In the presence of a slight medium excitation
of the amplitude ag = 10−15lb (see Figure 4b), no specific symmetry of the deflection time-
history plot is detectable for each level of the velocity. As is seen, for low levels of the
MNO’s velocity, the plots of WN,mid-τ/τf demonstrate some fluctuations such that their
amplitudes for specific levels of the MNO’s velocity increase as time goes by during the
course of excitation. In addition, for higher levels of the MNO’s velocity (i.e., VN > 0.5), we
observe an almost ascending time-history plot of the mid-span deflection during the course
of excitation, revealing the transfer of the peak point from that course to the free vibration
course where their corresponding plots have been not given for the sake of brevity.

Figure 4. Three-dimensional plots of WN,mid-VN-τ/τf based on the NRABT: (a) in the absence of
medium excitation (ag = 0); (b) in the presence of medium excitation (ag = 10−15lb); (β = 0.6, MN = 0.3,

k
R
r = k

R
t = 10, and λ = 20).

4.7. Influence of the Medium Excitation Parameters on the Maximum Deflection

In this subsection, the combined role of the medium and MNO’s excitation parameters
on the dynamic response of the nanobeam for the dimensionless velocities of 0.3, 0.6,
and 0.9 for the MNO is examined. Figure 5 illustrates the impact of the medium excitation
amplitude on WN,max. By increasing the amplitude of the medium excitation, the predicted
results by both established models increase almost linearly. In addition, it is expected that
with the growth of the speed of the MNO, the maximum values of deflections generally
increase, but due to the interaction between the medium and the moving load, a decrease
in the dynamic response is detectable. As can be seen, the evaluated deflections based on
the MNMA are usually greater than those obtained from the MNFA. Also, with the increase
in the amplitude of medium excitation, the difference between the two mass and moving
force approaches increases, which is the main reason for considering the transverse inertia
in the MNMA.

According to Figure 5a,c, there are relative differences between the results of the
NREBT and those of the NRABT in both the MNFA and MNMA for VN = 0.3, 0.6, and 0.9
in the case of no medium excitation (i.e., ag = 0) in order reach 20(62), 22(55), and 23(47),
respectivelyintended meaning has been retained. . By increasing the amplitude of excitation,
the relative discrepancies between the two nonlocally developed beam models based on
the drawing results, for both moving force and mass approaches (except Figure 5a in the
moving force approach), would generally decrease. Based on Figure 5a–c, for the moving
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nanomass (moving nano-force) approach, such discrepancies touch 2(9), 2(2), and 24(5)
percent, respectively.

In Figure 6, the influence of the medium excitation frequency on the maximum trans-
verse displacements of the elastically rested nanostructure for different nano-object speeds
is investigated. In this figure, we see several sudden ascending and descending branches
in the maximum amount of displacements, which represent the existence of resonance
states. Between these resonance points, the maximum transversal displacement of the
nanostructure exhibits a sharp decrease, a mild increase, and finally a drastic increase as a
function of the frequency of the excited medium.
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Figure 5. Plots of WN,max-ag for various MNO’s speeds: (a) VN = 0.3, (b) VN = 0.6, and (c) VN = 0.9;

((◦) MNFA, (4) MNMA; (...) NRABT, and (—) NREBT; β = 0.6, ag/lb = 10−15, MN = 0.3, k
R
t = 10, and

k
R
r = 10).

0 10 20

  

0

25

50

 W
N

,m
a

x

a

0 10 20

  

0

25

50

b

0 10 20

  

0

25

50

c

Figure 6. Plots of WN,max-β based on the MNMA for various MNO’s speeds: (a) VN = 0.3,

(b) VN = 0.6, and (c) VN = 0.9; ((...) NRABT, (—) NREBT; ag/lb = 10−15, MN = 0.3, k
R
t = 10, k

R
r = 10;
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ω
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4.8. Influence of the MNO’s Parameters on the Maximum Deflection

Figures 7 and 8 are drawn in order to more closely examine the effect of MNO’s mass
and velocity on the maximum dynamic response of the nanostructure embedded in the
vibrating medium. In Figure 7, the dependency of the transverse displacement to the
MNO’s mass is methodically investigated for the normalized speeds of 0.3, 0.6, and 0.9.
It can be clearly seen that with the growth of the nano-object mass, displacements grow.
Since the transverse inertia effect of the MNO is taken into account in the MNMA, with the
increase in the mass of the nano-object, the inertial effect increases, and thus the difference
between the two considered approaches of moving nanomass and nanoforce (i.e., MNFA
and MNMA) increases. For example, in the case of MN = 0.4, the NRABT(NREBT) predicts
that the relative differences between the predicted maximum deflections based on the
MNFA and those of the MNMA for VN = 0.3, 0.6, and 0.9 take 42.5(39.7)%, 39.8(41.5)%,
and 45.5(53.5)%, respectively. This issue also reveals that the nonlocal shear deformable
model exhibits a more inertial effect of the MNO compared to the nonlocal Rayleigh
beam-based model, particularly at high levels of the MNO’s speed.
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Figure 7. Plots of WN,max-MNO’s mass for various MNO’s speeds: (a) VN = 0.3, (b) VN = 0.6,
and (c) VN = 0.9; ((◦) MNFA, (4) MNMA; (...) NRABT, and (—) NREBT; β = 0.6, ag/lb = 10−15, and

k
R
t = 10, k

R
r = 10).
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Figure 8. Plots of WN,max-MNO’s speed for three levels of the excitation amplitude of the elastic
medium: (a) ag = 10−15lb, (b) ag = 2× 10−15lb, and (c) ag = 3× 10−15lb; ((◦) MNFA, (4) MNMA;

(...) NRABT, and (—) NREBT; MN = 0.3, and k
R
t = k

R
r = 10).
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According to the plotted results in Figure 7, the relative discrepancy between the two
newly established models (i.e., shear effect) is initially negligible, but with the growth
of the MNO’s mass, such a difference generally grows. In other words, the shear effect
commonly increases with the mass of the MNO, irrespective of considering its inertia
effect. For instance, for the case of MN = 0.4, these relative differences based on the
MNMA(MNFA) for the MNO’s speeds of VN = 0.3, 0.6, and 0.9 reach 7(13.3)%, 10(7.6)%,
and 21(8.5)% percent, respectively.

Figure 8 demonstrates WN,max in terms of the MNO’s speed for various amplitudes of
the medium excitation. As the dimensionless MNO’s speed increases up to 1,
WN,max generally fluctuate such that these fluctuations are more obvious in the range
of VN ∈ [0, 0.4], and then the plot follows a descending trend. In such a velocity interval
(i.e., VN > 1), the values of WN,max are commonly lower than those obtained from the load-
ing of the purely excited medium (i.e., v = 0). As is seen, the maximum possible magnitudes
of WN,max based on the MNMA for the cases of ag/(10−15lb) = 1, 2, and 3 are, respectively,
obtained as 3.45, 5.96, and 8.82, taking place at VN = 0.95, 0.2, and 0.2. Additionally, WN,max
generally grows with the increase in the amplitude of medium excitation, where the more
detailed trend of WN,max as a function of the amplitude was displayed in Section 4.7.

Upon a closer examination of the presented findings, it becomes apparent that the
discrepancy between the two models (i.e., shear effect) varies in an oscillatory pattern
based on the speed of the MNO; for example, the maximum values of this difference on
the basis of the MNMA(MNFA) in the cases of ag/(10−15lb) = 1, 2, and 3 would be about
20.5%(13%), 14.3%(9.5%), and 12.2%(6.2%), respectively, for the understudied range of the
MNO’s speed (i.e., 0 < VN < 2). Most of these discrepancies also occur close to VN = 1; for
instance, the results obtained based on the MNMA show that the maximum discrepancies
between the NRABT and NREBT deflections for the above-mentioned three excitation
amplitudes (i.e., ag/(10−15lb) = 1, 2, and 3) take place at around VN = 1, 0.93, and 0.9. As is
seen, the shear effect would commonly reduce with increased amplitude of the medium
excitation in the range of 10−15lb < ag < 3× 10−15lb.

The plotted results based on both the NREBT and NRABT reveal that the abso-
lute maximum inertia effect for the cases of ag/(10−15lb) = 1, 2, and 3 occurs at about
VN = 0.18, 0.18, and 0.2 such that the relative discrepancies between their results based
on the NREBT-MNMA and those of the NREBT-MNFA reach 53.8%, 55.6%, and 54.9%,
respectively. In addition, other relative maximum points of the plots of these discrepancies
for the above-mentioned amplitudes of the medium excitation take place at VN = 0.9, 0.9,
and 0.86, which are reported to be 47.8%, 47.2%, and 45.9%, respectively. For MNO’s speeds
greater than these values, WN,max of the nanostructure embedded in the vibrating medium
commonly follows a descending trend, indicating that the maximum deflection lessens
with the increase in the MNO’s speed.

4.9. Influence of the Substrate Parameters on the Maximum Deflection

In Figures 9 and 10, respectively, the impacts of the stiffness of torsional and transla-
tional springs of the elastic bed on the WN,max response of the elastically rested nanostruc-
ture under the combined excitations of the MNO and harmonic bed excitation are explored
for different values of the MNO’s velocity. In the moving force approach, with the increase
in stiffness of the torsional and transmission springs, WN,max lessens sharply at first; then,
they do not substantially alter. In this approach, by increasing the speed of the nano-object
to 0.9, the relative discrepancies between the predicted deflections by the NRABT and
those of the NREBT increase, and the main reason for this fact is considering the effect of
shear deformation in the NREBT’s formulations. In the MNMA as its corresponding results
demonstrated in Figure 9, the two established models exhibit different trends so that in
the NRABT, WN,max first experiences a downward trend; then, after a temporary upward
trend, it starts to decrease again. However, according to the plotted results on the basis
of the MNMA in Figure 9a, the two beam theories exhibit different trends. Concerning
the results predicted by the NRABT, with the increase in torsional spring stiffness, WN,max
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first demonstrates a downward trend; then, after a temporary upward trend, it starts to
decrease again, while the NREBT-based graphs of WN,max begin to oscillate after a sharp
decrease.
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Figure 9. Graphs of WN,max-k
R
r for various MNO’s speeds: (a) VN = 0.3, (b) VN = 0.6, and (c) VN = 0.9;

((◦) MNFA, (4) MNMA; (...) NRABT, and (—) NREBT; β = 0.6, ag/lb = 10−15, MN = 0.3, and k
R
t = 10).
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Figure 10. Graphs of WN,max-k
R
t for various MNO’s speeds: (a) VN = 0.3, (b) VN = 0.6, and (c) VN = 0.9;

((◦) MNFA, (4) MNMA; (...) NRABT, and (—) NREBT; β = 0.6, ag/lb = 10−15, MN = 0.3, and k
R
r = 10).

The changes in the dynamic response of the nanostructure are different depending
on the stiffness of the translational spring for the MNMA (Figure 10). In Figure 10a,
the maximum lateral displacement of both beam theories changes in an oscillating manner
after an upward movement, whereas Figure 10b,c display that the predicted results lessen
to reach their lowest value and then start to rise, while WN,max based on the MNMA-NREBT
commences to oscillate after a sharp decrease. According to the plotted results in Figures 9
and 10, the relative difference between the results of the two established models in both the
MNFA and MNMA as a function of rotational and translational stiffness of the adjacent
medium varies in an oscillating manner. According to Figure 9a–c for the vases of VN = 0.3,
0.6, and 0.9, the maximum relative discrepancy between these two models in the MNMA
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(MNFA) reaches 41(12), 27(18), and 33(21) percent, respectively, while these maximum
relative discrepancies for the above-mentioned MNO’s velocities based on Figure 10a–c
would be equal to 21(12), 19(6), and 25(6) percent, respectively.

5. Concluding Remarks

Vibrations of embedded tube-like nanostructures translocating MNOs in the presence
of a vibrating elastic medium are appropriately unlocked in the context of the nonlocal
elasticity theory. To this end, the governing equations of the problem based on Rayleigh and
Reddy–Bickford beam theories are methodically obtained. Using suitable vibration modes,
both analytical and numerical solutions are developed to properly capture the nonlocal
dynamic deflection of the nanostructure based on the MNFA (excluding the inertial effect)
and MNMA (including the inertial effect). To show the precision of the developed models,
their results are successfully checked with those of other researchers in particular cases.
In continuing, the impacts of the chief characteristics of the MNO (mass and velocity),
the main features of the medium excitation (amplitude and frequency), and the properties
of the surrounding medium (lateral and rotational stiffness) on the maximum deflection
are examined in detail.

The resulted obtained indicate that by increasing the amplitude of medium excita-
tion, the results of both nonlocally established models increase almost linearly. Due to
the interactional effects of the medium and the moving load on the nonlocal vibrations,
for ag/lb < 3× 10−15, as the dimensionless MNO’s speed increases up to 1, the maximum
dynamic deflection generally exhibits a fluctuation trend such that most of these oscillations
occur in VN ∈ [0, 0.4], and then it generally lessens with the growth of the MNO’s speed.
On the other hand, with the increase in the frequency of the medium excitation up to the
fundamental frequency (approaching resonant state), the maximum dynamic deflection
sharply grows. The maximum transversal displacements of the nanosystem between two
resonance states generally exhibit a U-shape trend. In addition, with the increase in the
mass of the nano-object, the effect of inertia increases, and thus the discrepancy between
the results of the MNFA and MNMA increases. Because of the lateral inertial effect of the
MNO, the maximum dynamic deflections of the nanotube carrying the nano-object based
on the MNMA are higher than those predicted by the MNFA.

It is hoped that this research could provide a solid basis for further investigations
into the vibrations of more complex tube-like nanosystems (for example, vertically aligned
membranes and jungles of nanotubes) embedded in a vibrating medium for delivering
MNOs. In addition, artificial intelligence (AI) and machine learning (ML) have become
two of the most crucial and rapidly evolving technologies of the digital age, with a diverse
range of applications in various branches of engineering sciences [109–115]. Computers
now have the ability to execute tasks that were once thought to be the exclusive domain of
human intelligence, including decision-making, pattern recognition, and problem-solving.
These technologies are gradually expected to revolutionize the way we approach complex
challenges in nanoscale modeling and mechanical behavior predictions.
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