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Abstract: In order to solve issues that arise in various branches of mathematical analysis, such as
split feasibility problems, variational inequality problems, nonlinear optimization issues, equilibrium
problems, complementarity issues, selection and matching problems, and issues proving the existence
of solutions to integral and differential equations, fixed point theory provides vital tools. In this
study, we discuss topological structure and several fixed-point theorems in the context of generalized
neutrosophic cone metric spaces. In these spaces, the symmetric properties play an important role. We
examine the existence and a uniqueness of a solution by utilizing new types of contraction mappings
under some circumstances. We provide an example in which we show the existence and a uniqueness
of a solution by utilizing our main result. These results are more generalized in the existing literature.

Keywords: cone metric space; intuitionistic fuzzy metric space; contraction mappings; fixed point;

generalized cone metric space

1. Introduction

The theory of fixed points has emerged as a very powerful and vital tool in the study
of nonlinear phenomena over the past 100 years or so. Fixed point methods in particular
have been used in a wide range of disciplines, including biology, chemistry, economics,
engineering, game theory, computer science, physics, geometry, astronomy, fluid and elastic
mechanics, physics, control theory, image processing and economics. The criteria for single
or multivalued maps to admit fixed points x = f(x), or inclusions of the form x € F(x)
are given by fixed point theorems. The theory itself combines pure and applied analysis
with topology and geometry. In 1912, the renowned Brouwer’s fixed point theorem was
validated. Since then, a number of fixed-point theorems have been validated under various
circumstances. The Banach Contraction Principle (BCP), the first metric fixed-point theorem
published by Stefan Banach a century ago, serves as an example of the unifying nature
of functional analytic techniques and the practicality of fixed-point theory. The Banach
contraction principle’s key characteristic is that it specifies the presence, singularity, and
order of successive approximations that converge to a solution to a problem. A shape is said
to be symmetrical if it can be moved, rotated, or flipped without changing its appearance.
An object is said to be asymmetrical if it lacks symmetry. In a metric space the symmetric
property plays an important role in various applications including linear programming.

In 1965, Zadeh [1], made a great contribution to the field of mathematics by proposing
the concept of fuzzy set, which deals with uncertainty or those problems that do have not
any clear boundary. In the year 1986, Atanassov [2] extended the Zadeh's concept of fuzzy
sets and introduced the notion of an intuitionistic fuzzy set, which have made a definite
change and promoted the field of applied research. In 2002, Smarandache [3] proposed the
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concept of neutrosophic sets as a generalization of IFSs. These three ideas actually paved a
great path that has led to several generalized metric spaces.

Huang and Zhang [4] defined the notion of cone metric spaces which generalized
the notion of a metric spaces and established several fixed-point results for contraction
mappings. In 2017, Mohamed and Ranjith [5] established the notion of intuitionistic fuzzy
cone metric spaces (IFCMSs), which combined the notions of intuitionistic fuzzy sets and
cone metric space. Recently, intuitionistic generalized fuzzy cone metric spaces (IGFCMSs)
were introduced by Jeyaraman and Sowndrarajan [6] as a generalization of IFCMS and
they extended the notion of a (¢, i)-weak contraction to IGFCMS by employing the idea of
altering distance function. They also obtained common fixed-point theorems in IGCEMS.

Gregori and Sapena [7] established the notion of a fuzzy contractive mappings and
used it to expand the Banach’s fixed point theorem. Further, Ramachandran [8] generalized
the Banach contraction theorem in the context of IGFCMS. Omeri et al. [9] introduced
the notion of a neutrosophic cone metric space and derived several fixed-point results
for contraction mappings. Omeri et al. [10] established a number of common fixed-point
results in the sense of neutrosophic cone metric space. Additionally, the idea of changing
the distance function is used to define the concept of (P, ¥)-weak contraction in the neutro-
sophic cone metric space (for more details see [11-19]). Recently, Riaz et al. [20] introduced
the notions of generalized neutrosophic cone metric spaces (GNCMSs) and ¢-chainable
neutrosophic cone metric spaces and established several common fixed-point results in
both spaces. Several authors [21-27] have worked on different interesting applications
including image encryption, image encryption based on a roulette-cascaded chaotic system
and alienated image library and fractional and differential equations. Hamidi et al. [28]
introduced the notion of KM-single valued neutrosophic metric spaces and established the
several topological properties and provided its interesting applications.

In this manuscript, we aim to establish some fixed-point results in the context of
GNCMSs. We examine the existence and a uniqueness of a solution by utilizing contraction
mappings under some circumstances. We will provide an example in which we show the
existence and a uniqueness of a solution by utilizing our main result.

2. Preliminaries

In this section, we discuss some important definitions which are helpful to understand
the main results.

Definition 1 ([19]). A binary operation *: [0, 1] x [0, 1] — [0, 1] is a continuous t-norm (CTN)
if it satisfies the following conditions:

(1) = is associative and commutative;

(i)  * is continuous;

(i) hx1=hforall h €0, 1];

(iv) hxl <cxd whenever h < cand { <d, forall h,{,c,d € [0,1].

Definition 2 ([19]). A binary operation o: [0, 1] x [0, 1] — [0, 1] is called a continuous t-conorm
(CTCN) if it meets the below assertions:

T1 o is associative and commutative;

T2 o is continuous;

T3 ho0=0, forallhe [0, 1];

T4 hot <coduwhenever h < cand{ <d,forall h,¢,c,d € [0,1].

Definition 3 ([4]). Let E be a real Banach space and C be a subset of E.C is called a cone if only if

(i) Cis closed, nonempty, and C # 0,
(i) o0,09€R,0,8>0,¢c1,0€C=0c1+0c€C,
(iii) ceCand —ceC=c=0.
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The cones being evaluated here have interiors that are not empty.

Definition 4 ([6]). A 5-tuple (E,F,Y,*,9) is said to be IGFCMS if C is a cone of E, E is an
arbitrary set, x is a CTN, o is a CTCN and ¥, Y are fuzzy sets in 5% x int(C) satisfying the
following conditions: For all @, w, 0,0 € Zand T, € int(C),
(IGF1) ¥ (@, w,0,T) + Y(c@ w,0,7) <1,
(IGF2) ¥ (@, w,0,T) >
(IGF3) ¥(®@,w,0,T) = 1 S0=w=0,
(IGFH) ¥ (@, w,0,7) = ¥ (p{®,w, 0}, T), where p is a permutation function,
(IGF5) ¥ (@, w,0,T+¢) > ¥(w,w,0,7) * ¥(c,0,0,7),
(IGF6) ¥ (@, w,0,.) : int(C) — (0,1] is continuous,
(IGF7) Y(®,w,0,T) >
(IGF8) Y(®w,w,0,T) = 0 <:> 0=w=y,
(IGF9) Y (@, w,0,7) = Y(p{®@,w, 0}, T), where p is a permutation function,
(IGF10) Y(®@,w,0,T+¢) < Y(@,w,0,T)0Y(0,0,0,T),
(IGF11) Y(®@,w, 0,.) : int(C) — (0,1] is continuous.
Then (¥, Y) is called an intuitionistic generalized fuzzy cone metric on 2.

Example 1. Let E = R? and consider the cone C = {(cy,c2) € R?:¢1 > 0,cp > 0} in E. Let
E = Rand the norms * and o be define by (7 x 0 = o0 and 0o & = max{c,0}. Define the
functions ¥ : Z3 x int(C) — [0,1] and Y : E% x int(C) — [0,1] by

1
¥(@,w,07) = oo el
e =l
[o-wl+lw—el+le-al
e el -1
Y(@,w,0,1) = lo—wlt|w—ql+le-a]
e el

forall @, w,0 € Eand T € int(C). Then, (2,¥,Y,*,0) isan IGFCMS.

Definition 5 ([20]). A 6-tuple (E,'¥,Y, @, x, ) is said to be a GNCMS if C is a cone of E, Z is an
arbitrary set, x isa CTC, o isa CTCN and ¥, Y, ® are neutrosophic sets in Z3 x int(C) fulfill the
following circumstances, for all @,w, 0,0 € Eand 7, € int(C),
(GNC1) ¥(w,w, 0, T) + Y(co,w, 0,7)+P(@,w,o,1) <3,
(GNC2) ¥(w,w, 0, T) >
(GNC3) ¥(w,w,0,T) = 1 S0=w=0y,
(GNCH) ¥ (w,w,0,T) = ¥(p{@,w, 0}, T), where p is a permutation function,
(GNC5) ¥ (w,w,0,T+¢) > ¥(@,w,0,7)*x¥(0,0,0,7T),
(GNC6) ¥(w,w,0,.) : int(C) — (0,1] is continuous,
(GNC7) Y(@,w,0,T) >
(GNC8) Y(w,w,0,T) = 0 @ 0=w=y,
(GNCI9) Y (@, w,0,7) = Y(p{®@,w, 0}, T), where p is a permutation function,
(GNC10) Y(®w,w,0,7+¢) <Y(®w,w,0,7)oY(0,0,0,7),
(GNC11) Y(w,w,0,.) : int(C) — (0,1] is continuous.
(GNC12) ®(w,w,0,T) >0,
(GNC13) ¢(@,w,0,T) =0 0 =w =9,
(GNC14) ®(w,w, 0,T) = ®(p{@,w, 0}, T), where p is a permutation function,
(GNC15) ®(w,w,0,T+¢) < P(@,w,0,T) 0 P(0,0,0,T),
(GNC16) ®(w,w,0,.) : int(C) — (0,1] is continuous.
Then (¥,Y, ) is called a generalized neutrosophic cone metric on E.

3. Main Results

In this section, we prove some fixed-point result in the sense of GNCMS, and also give
some non-trivial examples which support our main results.
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Definition 6. Suppose (2,¥,Y, @, x,¢) is called a symmetric GNCMS if, for all @, w € E and
T eint(C), ¥, Y and ® satisfy the following circumstances:

(W*)—(W”)'

Y(w,ww1)=Yw o 0,rT),
P(w,w,w,T)=P(w,0,w,T).

Definition 7. Let (£, ¥,Y, @, *,0) bea GNCMS and f : & — & be a self-mapping. Then f is
said to be a generalized neutrosophic cone contractive if there exists ¢ € (0,1) such that

(‘P(f(c@),f(lw),f(@/f) - 1) = (wwim - 1)'

Y((f(@), f(w), f(e), T) < cY(@,w, ¢ 1),

((f(@), f(w), f(0),T) < cP(@,w,0,T).
foreach @, w, 0,7 € Eand T € int(C).

Definition 8. Suppose (E,'¥,Y, @, *,0) bea GNCMS. ¥, Y and P are said to be triangular if,
forall @,w,0,u € Eand T € int(C),

(W‘l) : (W‘1>+<W‘l)'

Y(@,w,071) <Y(@ w,ut)+YHo0071),
?(@,w,0,7) < P(@,w, 1, T) + P(1, 0,0, 7).

Definition 9. Let (£,%F,Y, @, *,0) bea GNCMS, for @ € E,r > 0and T € int(C), the open ball
B¢ (@, r, T) with center at @ and radius r is defined by

Be(@, r,7) = weE ¥(wwwTt)>1-1,
C\H L E) = Y(@,w,w,1)<r and ®(@,w,w,t)<rf

Lemma 1 ([4]). For each ¢y € int(C) and c; € int(C), there exists ¢ € int(C) such that
c1—cp € int(C) and c; — ¢ € int(C).

Theorem 1. Let (E,'¥,Y, @, *,¢) be a GNCMS. Then 1 defined below is a topology:

w={DCE:@weDifandonlyif 3r € (0,1),7 € int(C)
such that Be(w@,r,T) C D}.

Proof.

i.  Itisobviousthat @ € 1z and E € 1¢.

ii. Suppose D1 € ¢ and D; € 1 and @ € D1 N D;y. Then @ € Dy and @ € Ds.
Implies that, 3,7, € (0,1) and 7y, 7» € int(C) such that B¢(@,r1, 1) C Dy and
BC ((D, 19, Tz) C Dz.
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By Lemma 3.1, 3 7 € int(C) such that 7 — 7 € int(C), » — 7 € int(C). Let r =
min{ry, rp}. Then

Be(@,r,T) C Be(w,r1, 1) N Be(@,12, ) C D1 N Dy

Hence, D1 N D; € 1.

ili. LetD; € 7¢ for each j € ], an index set and let @ € Uj¢;D;. then @ € Dj, for
some jo € |, implies that 37 € (0,1) and 7 € int(C) such that B¢ (@,7,7) C D), as
Dj, C UjeDj, we have that B¢ (@,r,T) C UjejD;. Thus UjejD; € 7. From (i), (ii),
and (iii), 7. is a topology. [

Remark 1. For any r1 > 1y, there exists r3 such that r1 x r3 > 1y and for any ry there exists
rs € (0,1) such that rs % r5 > ry, where r1,1,13,74,15 € (0,1).

Theorem 2. Suppose (£, ¥,Y, ,*,0) bea GNCMS. Then (E, ¢ ) is Hausdorff.
Proof. Let @, w € & and @ # w. Then

0<¥(www1) <1,

0<Y(®uwwrT) <1,

0<P(o,ww, )<l

Let
¥Y(w,w,w,T) =1,

Y(w,w,w,T) =1,
P(w,w,w,T) =T13.

Take r = max{ry, 7y, r3}. now, for each ry € (r,1), there exists r4, 75 € (0,1) such that
rgxry > rgand (1 —rs5) o (1 —rs5) < 1—rp. suppose r¢ = max{ry,rs}, we obtain

Bc(@,l —1’1,§> N Bc(w,l —1”2,%) #* .
Then, there exists

QEBc((O,l—I’l,%) ﬂBC(w,l—rZ,g),

and, we have that

T T
rn=%wouww,rt)> ‘F(w,w,g,i) *‘F(Q,w,w,i) > rgkTg > Tykty > 19> 11,

rn=Y(® ww,1) < Y(w,w,g,%) <>Y(Q,w,w,§>,

S(1—1’6)0(1—}’6)§(1—7‘5)<>(1—7’5)§(1—7’0)<1’2,

r3=®(0,w,w,T) < @(w,w,g,%) oé(g,w,w,%),

<(Q—=ry)o(1—r5) <(1—=r5)0(1—r5) < (1—r9) <12

This is a contradiction. Hence

Bc(w,l—rl,%) ﬁBc(a),l—rz,%) + .
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Therefore (Z, 17¢) is Hausdorff. OJ

Definition 10. Let (E,¥,Y, P, *,¢) bea GNCMS, @ € E and {@,} be a sequence in E.

i.  {@n} is said to converge to @ if for all T € int(C),

. 1 B
nng(W - 1) =0

nngY(con,w, ®,7)=0,

lim @(w,, @,®,7)=0.
n——+00

. 1 o . . o
ngrfm(w - 1) = 0, It is denoted by ngrfmcon = worby w, > @ as
n — —+oo.

ii.  {wy} is said to Cauchy sequence if for all T € int(C) and m € N, we have that
- 1 —
ngTw(Y(wn+7rlanrmn/T) - 1) - O’

nE}I—EOOY((Dn-i_m’ (Di’l/ CD}’[/ T) = 0/

lim @ (@y4m, @n, @n, T) = 0.
n—+o0

iii. (&,Y,Y,P,x,9) is called complete GNCMS, if every Cauchy sequence in = converges.
Remark 2. The convergence of sequences in a GNCMS is considered in the sense of the topology

defined here. Therefore, each converging sequence in a GNCMS has a unique limit and this makes
the definition of convergence meaningful.

Definition 11. Let (2, ¥, Y, @, *,¢) be a GNCMS. A sequence {&y} in E is cone contractive if
there exists ¢ € (0,1) such that

IN

Y(gnz €n+l/ gl’l+1 /T) < CY(énfli gl’l/ ‘:nr T)/

D (G, Gnt1,Gnt1,T) < cP(Cn—1,Gns Cn, T)-
Forall T € int(C).

Lemma 2. Suppose (E,'F,Y,®,*,o) bea GNCMS is symmetric.
Proof. Let @, w € Z and 7 € int(C). Then

im¥(w,0,w,T+7) > lim(¥(0,@,0,7)«¥(0,w,w,T)),
r—0 r—0

Iim¥(w,w, @, t+7) > lim(¥Y(w,w,w,r) *¥(0,w,w,T)),
r—0 r—0

implies
M(w,®,w,7) > M(®,w,w,T) and M(w,w,®,T) > M(w,®,®,T)

limY (0, 0,w,t+7) <lim(Y(®,®,®,r) oY (®,w,w,T)),
r—0 r—0

imY(w,w, @, t+7r) <lim(Y(w,w,w,r)oY(w,®,®,T)),
r—0 r—0
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implies
N(®o,@,w,t) < N(w,w,w,7)and N(w,w,®,T) < N(w,®,®, 1),
lim®(@,®,w,T+7r) < lim(®(®, @, ®,r) o P(@,w,w,T)),
r—0 r—0
Im®(w,w,@,t+7) <lim(P(w, w,w,r) o P(w,®,®,T)),
r—0 r—0
implies
P(w,0,w,7) <P(w,w,w,T)and P(w,w,®,7) < P(w,w,®,T).
Hence
M(®,w,w,7) = M(w,®,®, 1),
N(@,w,w,t) = N(w,®,®,T),
P(w,w,w,T)=P(w,0,w,T).
O

Lemma 3. Let (2,¥,Y,®,*,0) bea GNCMS where ¥ , Y and & are triangular. Then any cone
contractive sequence in = is a Cauchy sequence.

Proof. Let the sequence {, } be cone contractive Z. Then there exists ¢ € (0,1) such that

1 1
(Y(gnlén+1/§n+lﬂ’) a 1) S C<T(§n—1/§nr§nzf) B 1)
Y(Cﬂl ng»l/ §n+1/7) S CY(Cnflr gn; (;(n, T)

(’D(gnl €n+l/ gnJrlr T) S C(P(écnflr g?’l/ gn/ T)-
Now, ¥, Y and @ are triangular. By Lemma 3, for m > n > ng,n9 € N,

(vezes 1) < ((fmans — V) + Geagies - 1)

1 1
(veazmm 1) * (semeeas 1)
1
+ (Y(€n+2/§n+2/§mﬁ) 1)

Y (En &G T) <Y (B G Grst, T) 4 Y (En, Gst S T)

< (Y(CTU Cl’l/ §n+1/ T) =+ Y(CnJrlr gi’lJrlr §n+2/ T))
B +Y(§n+2/ §n+2/ émr T) ,

and

D (8 CnsGms T) < (8 Sy G, T) + D(8ng1, S1s G, T)

< (é(gfl/ én/ €n+lr T) + (p(gn+1/ gnJrl/ §n+21 T))
B +®(€n+2/ §n+2/ gm/ T) )
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Continuing the process, and, using (1), (2) and (3), we finally arrive at

(ot 1) < [ =)+ (st )

++ (vmmenes — L)

< (vmtomm 1)+t vmdnm 1)

-1 1
_(Cn+...+cm )(m_l)

< (m B 1)’

Y(Cn, (:n; ij/ T) S Y(‘:nr gn/ gn—i-l/ T) + Y(érn-&-lr gn-&-l/ ém, T) + ot Y(gm—ll Cm—lr (:m/ T)
< c"Y (&, &0, E1,T) + - 4+ " Y (&, Eo, E1, T)

("4 4" )Y (s0, 60,81, T),

< 1C_HCY(SO, 0,81, 7),
and

©(€nf (;rn/ ij/ T)Sé(gnf (;rn/ gn-&-l/ T) + @<€n+1r gn-&-l/ ém, T) +oe Q(Cm—lr Cm—l/ ij/ T)
< c"®(Go, G0, 61, T) + -+ "D (8o, Go, 81, T)

— (Ci’l + . 4 Cm71)¢(50/ 60/ gl,T),

< =D (s0, &0, €1, 7).
We have that
(vemmm 1) =0
Y(Gn, GnsGm, T) — 0,

©(€n; gn/ CMI T) — 0/
as n — +oo. Therefore {{, } is a Cauchy sequence. [J

Theorem 3. Let (Z,¥,Y, @, *,©) be a complete GNCMS, where ¥, Y and & are triangular. If
I': B — E is such that for all ©,w, 0 € X and T € int(C),

1 1 1
€1 (Y’((D,w,g,r) - 1) +o (?'(w,m,m,r) - 1) +c3 (‘f’(w,FQ,FQ,T) - 1)
1 1 1
(‘F(Fa), T'w,To,T) 1> = +C4(‘F(w,1"w,1"w,~() B 1) * CS(Y(@F@F@T) N 1) )
1 1
+¢6 (‘I’(Q,Fw,l"w,"r) o 1) o7 (‘P(w,]"w,g,r) - 1)
aY(@,w,0,17)+cY(@,I'w, Tw,T)+c3Y(w, o, To,T)
Y(Iw, Tw, o, T) < +aY(w, Tw, Tw,T)+c5Y(0, 0,0, 7) (2)

+eY (o, Tw, Tw,T)+c7Y(w, ['@,0,T)
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a®(®,w,0,17)+0P(@, Tw, I'®,T)+c3P(w, 0,0, T)
O(I'w, Tw,I'g,T) < +c1P(w, Tw, T'w, ) +c5P(0,0,T0, T) 3)
+ceP(0, Tw, I'w, T) + cyP(w, T'w,0,T)

where ¢; € [0,+00], i =1,--- ,6and Y0, ¢; < 1. Then I has a fixed point and such a point is
unique if c1 +c7 < 1.

Proof. Let ¢y € X be arbitrary. Generate a sequence {¢,} with ¢, = I'¢,,_1 forn € N. If
there exists a nonnegative integer m such that ¢,,+1 = ¢, then I'¢;; = ¢y and ¢, becomes

a fixed point of I'.

Suppose S, # S;,—1 for any n € N. From (1), we have

(verimmm 1) < (sreterem 1)
a(yemen ) te(semress — 1) tolvemmes - 1)
e (vrmrtores — 1) + o (vErdres 1)

+es(erdrms — 1) T o (e — )

IN

2 (vemems 1) te(seines — 1) tolvaaiaas — )
= ta(vmaians 1) to(veammns 1) :

+es(vmazms ~ ) Yo (vedan — L)

= {(Cl +Cz)(m—l) +(C3+C4+C5+C6)(m_l>}'

Hence, we have that

1 B c1+c2 1 B
(W(gn/ gnJrl/ §n+1/ T) 1) S 1- (C3 + Cq + C5 + Cé) (W(Cnlr gl’l/ gnr T) 1) . (4)

Assume that

c1t+e
c = s
1—(c3+ca+c5+ce)
then ¢ < 1 and (4) becomes
1 1
—-1)<c —1]. 5
(Y(gnr§n+1/€n+lr7) > N (Y(gnlr‘:nlén,'f) ) ©

From (2), we have

Y(‘.::Tll gn—l—l/ gl’l-‘rl/T)S Y(an—lfrgnr F(:an)
Cly(énflr CnsCnys T) + CZY(Cnflr CnsCns T) + CSY(gn/ I'¢u, I'Cu, T)
< +C4Y(€nr I'¢y, I'Cy, T) + CSY(gn/ I'éy, I'Cy, T) + C6Y(€n/ I'¢y, I'Cy, T) ’
+C7Y(€n/ ‘:n/ gn/ T)
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1Y (§n—1,8n,Cn, T) +2Y(Gn—-1,Gn,Cn, T) + c3Y (Ens Snt1, Gnv1, T)
= { 1Y (Cns Gnt1, Cnt1, T) +5Y (Cns Cnt1, Cnt1, T) + 66 (Cns 1, Gnt1, T) ¢
+c7Y (Gn,CnsGns T)
={(c1+2)Y(Cn-1,GnGn, T) + (c3 +ca +¢5+¢6)Y (Ens Cnv1, Gnt1, T) }-

Hence, we have that

(c1+c2)
3+ €4 + C5 + Cq

Y(gnfgn—&-lf Cn-&-l/T) < ( )Y(gn—l/ ‘:n; Cn/ T)/

implies
Y(Cn/ §n+1/ €n+l/T) S CY(CY[*lI én; gnr T)- (6)
From (3), we have

@(gn/ ‘:nJrlr €n+1r T)S ‘D(anflz anz ng’l/ T)
Cl®(€n—1r gn/ é’n, T) + Cz<15(§n_1, (:nr gn/ T) + C3®(§n/ an/ F(:nr T)

< +C4(P(Cn,T§n,FCn,T) + CS@(gn,an,FCn,T) + C6¢(Cnrrgnz an/T) ,
+C7(’D(§n/ CnsCny T)
Cl®(‘:n—1r gﬂ/ gn/ T) + CZQ)(gn—l/ ‘:nr gn/ T) + CSQ)(‘;’H/ gn-i—lf ‘:n+1/ T)
= +C4©(€nr ‘:rt+1r §n+1/ T) + C5<D(§n, €n+1, €n+1r T) + Céqb(‘:nr ‘:n+1/ €n+1f T) ’
+C7(D(§Vl/ Cﬂ/ én/ T)

= {(Cl + 02)¢)(‘:n—1/ CnsCny T) + (CS +c4+c5+ Cé)‘P(gn/ Cnt1sCntls T)}
Hence, we have that,

(c1+¢2)
C3+C4+C5+C6)

(P(‘:nr §n+1/ g'rH»l/T) < ( (D(gnfl/ gn/ énr T)/

implies
©(§n/§n+1/€n+117) S Cq)(gn—l/gn/‘:nll—)- (7)

By utilizing inequalities (5), (6) and (7) make the sequence {¢, } is cone contractive.
Hence by Lemma 2, {¢,, } is Cauchy in E. As E is complete, there exists $ € X such that

: 1 —
ngrfoo(lf/(én,s,S,T) a 1) o O
Jlim (Y(6,8,57) =0 4. ®)
=0

lim (<:D(§n, S, S, T))

n——+o0

By repeated application of (5), (6) and (7), we obtain that

1 _ n 1 _
(Y(§711§71+1’§n+1’r) 1) S € (Y’(Eo,é‘erl,T) 1)/
Y(én, Cn-i-lr Ci’H—er) S CnY(COr ':::1/ Clr T)r
Q)(Cn/ gn-i-l/ (:}’l-‘rl/ T) S qu)(CO/ Cl/ Cl/ T)/

implies that

im (F@aiza 1) =0

n—+oo

nETmY(gn/ ‘:n+1r (:n-&-l’ T) =0,

nlj}lirkloo®(§n' gn—i-l/ gn-i-l/ T) =0.
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Now,
(vmrerss —1) = (wrzoterss — 1)
a (sizese —1) +e(vmrdras 1) + o (earisg — 1)
< +C‘l('jrf(srsfsr *1)+C5<m*1> ’

1
+C6(‘~I’ §IsT351T) )+C7(m_l)

o (wrpem —1) +e fﬁﬁ@@ﬁﬁ 1) + o (grirsm — 1)
Ferbres — 1) (st 1) :

(vrirsm
+C6<‘P5,I“s]"sr) >+C7(m_l)

%d( (srsrsr) —1) asn — +oo,

where d = ¢3 + ¢4 + ¢5 + ¢6. Since by (6) and (7). Hence

lim su ! 1) <d(ot
P \ ¥ (@31, T5,T5,7) =N\ ¥ s T81) )

Similarly,
lim sup Y(Gy41, 5,18, T) <dY(5,18,15,7),

n——+oo

lim sup @(&,41,I8,18,7) <dP(5,18,5,7).

n— 00

As ¥, Y and @ are triangular

1 1 1
(‘F(Fslfs,s,f) B 1) = (‘P(sts,f;m,r) B 1) + (‘F(cn+1,s,s,r) B 1)’
Y(I's,I8,8,1)<Y(IsTI$&41,T)+Y(Eri1,88 1),
D(I's,T8,8,7) < O(I$,T8,8u11,7T) + P(Eni1,8,8,7).

From (6) to (8), we can bring that

1 1
(?(rs,rs,s,r) o 1) = d(w(s TsI57) 1)'
Y(s,8,Ts,1) <dY(515,Ts,1),
D(s,8,Ts,1) <dd(s5,I5,Ts,1),
implies

(71 - 1) =0
¥ (Ts,15,5,T) -

Y(I's, I's,5,7) =0,

d(Is,Is,8,1)=0.

Since d < 1, it implies that
I's =s.
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Thus, we can conclude that $ is a fixed point of I". Suppose I & = & The form (1),

1 1
teo| e~ — 1| +c7[ ———~L—~—1
‘P(g,rg,rg,r) ‘F(g,rs,g,r)
implies
1 1
(‘F(S,é,é,’[) - 1) S (Cl + C7) <Y(S,é,é,’[> - 1) .
1 _ .
<I\/I<s/§,§,r) —1> —OlfC] +C7 < 1.
Similarly,

Y(S, é, é’, T) =0,
cb(s, & T) — 0.
Hence, we can conclude that I has a unique fixed-point if ¢; +cy < 1. O
Example 2. Let Z = [0, +00) with metric d(@,w) = |@ — w| forall ®,w € Eand let C = R™.

Define the t-norm * and the t-conorm ¢ by o * ¢ = min{c, 9} and 0 ¢ % = max{c,d}.
Define the ¥,Y and ® by

— T
¥(@ w,e7) = Trmareerean”

I(jo—w|+|w—o|+|e-a|)
TH(|o—w|+|w=e¢l+le—al) ’

Y (0,w,0,7) =

P (@,,0,7) = !lo=wlHw=gl+lo-a)

forall @, w,0 € E and T € int(C) where | = 10. Then it is clear that (Z,¥,Y, P, *,0) be a
complete GNCMS and that ¥ and Y are triangular. Consider the self-map I : & — E given by

3043, @€[0,1]
I'o =
o+4,@e [l +o).

Then

! 1) =2 (g1
¥Y(l®, Tw, To,T) C4\¥Y(@,w,0,7T)

and

Y(Iw, Tw, T'o,T) >3 Y(®,w,0,7),

H=U1

O(Iw, T'w, I'g, T) >

=11

P(w,w,0,7T),
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when @,w,0 € [0,1]. Hence I is not fuzzy cone contractive. Therefore, we cannot use the

contraction theorem to assure the existence of fixed points. However, here I satisfied the conditions
(1) and (2) with

3 17
€1 = 57,02 = 55, 03=C4=C5=

80 80 0 7

1 a1
20070 720
Therefore, I' has a unique fixed point and this point is @ = 14.

Corollary 1. Let (E,¥,Y, ®, *,0) be a complete GNCMS where ¥, Y and & are triangular. If
I': B — E is such that for all @,w,0 € &, T € int(C),

) > o1 (¥migm — 1) + o2 (¥rariran — 1)+

(‘I’(FrD,Fw,FQ,T) . 1 C1) 4 1 .
3\ ¥(w, To,ToT) 4\ ¥(w o)

4

aY(w,w,0,1)+0Y(TIw I'o,I'o,T)+
Y(I'o,Tw,Io,T) <
3Y(w, I'o,To,7)+csY(w, IT'®,o,

iy’
a1®P(®,w,0,7)+cP(ITw, Tw, T'®, T)+}
7)

O(TIw, Tw, o, T) <
c3®(w,I'0,T9,7T)+c4®(w, I'@,0,
where c; € [0,+00), i=1,--- ,4and

c1t+co+e3<l.

Then I has a fixed point and such a point is unique if c¢1 +cq < 1.

Corollary 2. Let (E,¥,Y,®,*,0) be a complete GNCMS, where ¥ and Y are triangular. If
I': E — E is such that forall @,w,0 € E, T € int(C),

(vrrotares — 1)
o (w@mgm — 1) +e2(srarmrem — 1) T e (sratoren — 1)+

s(wrararan — 1) +os(vrarerem — 1) + % (wraTiran — 1)
aY(w,w,01)+0Y(Io,To, I'o,Tt)+c3Y(w,To o, 1)+
caY(w, Tw,Tw,t)+csY (0,0, T'o,T)+ceY( Q,Fw,Fw,T)}
a®(w,w,01)+0®(I'w,I®w,I'®,7)+c3P(w, o, o, 7T)+
c®(w, Tw,Tw,t)+c5P(0,T0,I0,T)+ ceP( Q,Fw,Fw,T)}

Y(I'®,Tw,To,1) < {

Y(I'w, Tw,To,T) {

where ¢; € [0, +00|, i = ,6and Y-8 | ¢; < 1. Then I has a fixed point.

Corollary 3. Let (E,¥,Y,Px,0) be a complete GNCMS, where ¥ and Y are triangular. If
I':E — & satisfied (1) and (2) with Y-7_; ¢; < 1, then I' has a unique fixed point.

Theorem 4. Let (Z,¥,Y,®,%,0) be a complete GNCMS, where ¥ and Y are triangular. If
I': E — E is such that forall @,w,0 € E, T € int(C),
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(v

IN

__ 1 1
I'o, T'w,I'o,T)

@ (wtmin —1) T (vratagm — 1) + o (wraaram — 1)+
s(v@raram 1) o (sratars — 1) + oo (srateem — 1)+
o (wratags —1) + s (srrargan — 1) + o (sramman — 1)+
ClO(W_OJrC“(m_l)jLCu( @F@e, 1)+

1 1
€13 (‘I’(Q,Fw,Fw,T) - 1) + g (‘f’( @Tolot) 1)

1 1
€15 (‘I’(Fw,l“e,w,f) B 1) * e (‘F( @ToTeT) — 1)

Y(I'w,I'w,T'g,T)
aY(®@,w,07)+ Y (@ TIw01)+c3Y (@ w0 o, T)+
aY(w,I'o, I'o,7)+cY(o,Tw,0,7T)+ccY(w, o0 7)+
c7Y(TI'®o, Tw,0,7)+cgY(I'@,T'o,w,7)+coY(w,w, Tw,T)+

IN

c13Y (o, Tw, Tw, )+ c14Y(w, T, To,T)
c15Y(Tw,T'o,@,7) +c16Y(@,T'0,I'0,T)

O(I'w,ITw,Io,T)
a®(®,w,0,7)+c®(®,Tw,0,7)+c3P(®@,0,Tw,T)+
(@, I'o, Tw, )+ c5P(0,Tw,0,7)+ceP(w,To,0 1)+

IN

c13P( 0, Tw, Tw,7)+c14®P(w, 0, T0,7T)
c15P(Tw, I'o,®,T)+c16®P(@,I0,T0,T)

c10Y(0,0,To,7) +cennY(w, Tw, Tw,7)+c12Y(0,T0,To, T)+

c7®(I'w, Tw,0,7)+cg®(I'@, I'o,w,T) + co®( w,w, [w,T)+
c109(0,0,T0,T) +c1P(w, I'w, Tw,T)+c1nP(0,T0,T0, T)+

©)

(10)

(11)

where ¢; € [0,400], i=1,--,16and c; + - + c14 + 2(c15 + c16) < 1. Then I has a fixed point.

Proof: Let {y € Z be an arbitrary point. Generate a sequence {,} with §, = I'(,_1 for
n € N. If there exists a non-negative integer m such that ¢,;,11 = ¢m. Then I'¢y, = &y and

¢m becomes a fixed point of I'.

Suppose ¢, # §,—1 forany n € N. As ¥, Y and @ are triangular and Lemma 3, we have

< (vedmme ~ U + (vemizms — Y-

Y(Gn+1,Cnt1,6n-1,T) < Y(Gu-1,8n-1,Cn+1,T)
Y(&n-1,8n-1,6nT) + Y(&n, Cnt1,Cnt1, T)
D(Cnt1,Gnt1,Gn-1,T) < P(Eu-1,8n-1,Gn+1,7T)
D(Cn—1,6n-1,8nT) + P(Cn, Cut1,Cnv1, T)

(‘P(én_l,;,cw,r) - 1) = (‘P(én_l,lén,cn,ﬂ B 1) * <?<cn,cn+11,§n+1,r) - 1)

(12)

(13)

(14)
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Y(gnflr CrsCnt1s T) < Y(Ci’lflr CnsCny T) + Y(Cn/ Cnt1, Cntls T)- (15)

qj(‘:n—lzgn/ §n+117) < q)(gn—l/ én/‘:n/ T) + q)(‘:nrgn—&-l/ ‘:n-&-l/T)- (16)

Using inequalities (9), (10) and (11) and above inequalities, we obtain

1 C1+--catc15+C16 1 _
(‘F(ﬁmé’nﬂéwlﬁ) )S 1—(c5+++c16) (‘Y@n—lfgiu‘:nff) 1)'

Y(gn/§n+1/‘:n+1ff) S %Y(é’n—li gn/é‘nr’f)r
D (&, Cn1, s, T) < T 00D (81, En, G, T).
Putting

gt reqtc15+Cie
T—(cs+---+cig)

the above inequality becomes

1 1
Faamans ) <Garaas 1) 17
Y(CTII gn-{-l/ €n+1rT) < CY(gn—ll g’rl/ (:nr T), (18)
(’D(gnl CnJrl/ CH+1/T) S Cé(gnflr Cl’l/ gn/ T)' (19)

By utilizing inequalities (13), (14) and (15) made the sequence {¢ } fuzzy cone contractive.
Hence by Lemma 2 {, } is Cauchy in Z. As = is complete, there exists $ € = such that

: 1 —
Jim (s —1) =0
HETDOY((:WS/ s/ T) - O . (20)

lim ®(&,$,8,1) =0

n—+0oo

By repeated application of (18), (19) and (20), we obtain that

1 n 1 o
(vemmzas 1) < (vmaaa 1)
Y(‘:ﬂ/ (:rl-l-l/ gn—&-l/ T) < CnY(&O/ 61/ gllT)/
(D(gnr gnJrlr Cn+1/ T) < c”(I)(é’O/ gl/ 61/ T)-

Implies that,
. 1 . _
Jim (gl —1) =0

im Y (&0, Gt Euin, 1) =0 4 (21)
nl_%l}_loo(p(gn, CnJrlr CnJrl/T) =0

From (9), we have

(vererss —1) = (vogorerss 1)

< d(grratszm — 1):
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where d = ¢5+ - - - + ¢14, hence

lims L 1) <d ! 1
1 u — — = — .
Puoteo\ (&, 1, T8, T5,7) =%\ ¥(Ts 1575 1)

Similarly,
limsupn_>+ooY(§n+1,Fs, I's,t) <dY(s,Ts,Ts,1),

limsupn_>+oo(15(§n+1,1“s, I's,t) <do(s,Is,Ts,1).
As ¥, Y and @ are triangular

1 1 1
(verren ) =(vmrans ) (Feasn Y @

Y(S, FS, FS, T) S Y(FS, FS, €n+1 ,T) + Y(§n+1 ,S, é, T) (23)

D(s,I8,I's,T) < O(I'8,I8,8111,T) + P(Eps1,58 7). (24)
From (22) to (24), we can bring that

1
(‘I’(S,Fs,Fé,r) - 1)
Y(s,I8,T5,7)
D(s,I8,T5,7)

IN

A(gerires 1),
<dY(s,Ts,Ts,1),
<do(s,Ts,Ts,1),
implies
(vrims 1) =0
Y(s,T5,T's,7) =0,
d(8,I'sI's,7) =0, asd < 1.
I's=s.

Thus, we can conclude that $ is a fixed point of I'. Suppose I § = 5 Then from (9), (10),
(11) and by Lemma 1, we have

-1 -1 _
() =4 )

Y(s, & r) < d’Y(s, & r),

qﬁ(s,é,é,'r> < d’@(s,g,é,'r),

where, d' = ¢1 + ¢y + ¢7 + cg + c15 + C16.
These inequalities imply that

(Y(sglgr) —1) :0,Y(s,é,é,r) = 0and ‘P(S,é,é,r) o

Since, d’ < 1. Thus, we can conclude that I' is a fixed point. [J
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Corollary 4. Suppose (E,'F,Y, ®, *, ) be a complete GNCMS, where ¥, Y and @ are triangular.
If T : E — E is a self-mapping such that for all w, 0 € E, T € int(C),

(vrroteres — 1)
1 (w@mgm — 1) T2 (sratags — 1) T o (srrarme — 1)+

1 1 1
64(‘1’( w, ToToT) — 1) * CS(‘I’( Tw,Fo@,7) 1) * 06(‘1”( @, TweT) 1)

4

ca1Y(w,w,0,7)+cY (@, I'®w,0,7)+c3Y(T'w, Tw,o0,T)+
Y(rw,rw,rg,r)g{ 1Y ( 0,7) ( 0,7 ( 0,7) }

cY(w, I'o,To,7)+c5Y(Tw, o, @,T)+csY(@,Tw,o,T)
(

aqP(w,w,0,7)+cd(w0,I'w,0,7)+c3P(I'w, Tw,o,T)+
qb(rw,rw,rg,r)g{ Q) ( Q) ( Q,T) }

c1P(w, o, To,7)+c5P(IT'w, o, @,T)+c6P( @, Tw,o,T)

where
c; €[0,+00],i=1,--,6and c1 +co+c3+cg+2(c5+¢) < 1.

Then I has a unique fixed point.

4. Conclusions

In this paper, we established several fixed-point results for new types of contraction
mappings in the context of GNCMSs and derived an example to show the validity of
our main result. If the triangular condition does not hold then these results cannot be
fulfilled under the given conditions. This work could be extended to increase the number of
self-mappings, i.e., two self-mappings, three-self-mappings, etc., and in different structures
such as generalized neutrosophic cone b-metric spaces, generalized neutrosophic cone
controlled-metric spaces, etc.
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