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Abstract: Electric vehicles (EVs) are incorporated with higher energy density batteries to improve
the driving range and performance. The lithium-ion batteries with higher energy density generate
a larger amount of heat which deteriorates their efficiency and operating life. The currently com-
mercially employed cooling techniques are not able to achieve the effective thermal management of
batteries with increasing energy density. Direct liquid cooling offers enhanced thermal management
of battery packs at high discharging rates compared to all other cooling techniques. However, the
flow distribution of coolant around the battery module needs to be maintained to achieve the superior
performance of direct liquid cooling. The objective of the present work is to investigate the heat
transfer characteristics of the lithium-ion battery pack with dielectric fluid immersion cooling for
different fin structures. The base structure without fins, circular, rectangular and triangular fin struc-
tures are compared for heat transfer characteristics of maximum temperature, temperature difference,
average temperature, Nusselt number, pressure drop and performance evaluation criteria (PEC).
Furthermore, the heat transfer characteristics are evaluated for various fin dimensions of the best fin
structure. The heat transfer characteristics of the battery pack with dielectric fluid immersion cooling
according to considered fin structures and dimensions are simulated using ANSYS Fluent commercial
code. The results reveal that the symmetrical temperature distribution and temperature uniformity
of the battery pack are achieved in the case of all fin structures. The maximum temperature of the
battery pack is lower by 2.41%, 2.57% and 4.45% for circular, rectangular, and triangular fin structures,
respectively, compared to the base structure. The triangular fin structure shows higher values of
Nusselt number and pressure drop with a maximum value of PEC compared to other fin structures.
The triangular fin structure is the best fin structure with optimum heat transfer characteristics of the
battery pack with dielectric fluid immersion cooling. The heat transfer characteristics of a battery
pack with dielectric fluid immersion cooling are further improved for triangular fin structures with
a base length -to -height ratio (A/B) of 4.304. The research outputs from the present work could
be referred to as a database to commercialize the dielectric fluid immersion cooling for the efficient
battery thermal management system at fast and higher charging/discharging rates.

Keywords: fin structure; heat transfer characteristics; lithium-ion battery; immersion cooling;
thermal management

1. Introduction

The increasing energy demand with the rise in world population is depleting the
energy sources of fossil fuels continuously. The limited sources of fossil fuels have created
an unbearable situation of energy crisis [1]. The excessive consumption of fossil fuels is the
reason for environmental pollution which has forced many countries to publish guidelines
for zero CO2 emission [2]. Currently, internal combustion engine-based vehicles are replac-
ing EVs as an alternative to fossil fuels with an aim to reduce greenhouse emissions and
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satisfy the increasing energy demand [3,4]. The lithium-ion batteries are used as a source
of energy in EVs owing to their higher efficiency, high power density, long lifespan, and
self-discharge rate [5,6]. The increasing popularity of EVs demands an increase in their
driving range and comfort; hence, high energy density batteries have been incorporated in
recent EVs. The lithium-ion batteries with high energy density generate a larger amount
of heat which degrades their operating life and performance [7]. At fast charging and
discharging rates, the heat generation in lithium-ion batteries can result in thermal runaway
and explosion of batteries [8,9]. The safe and efficient operation of batteries is assured
when their operating temperature is maintained in a range of 20 ◦C–45 ◦C and tempera-
ture uniformity is maintained within 5 ◦C. Therefore, an effective thermal management
technique is requisite to dissipate the heat from batteries and assure their performance
and safety [10,11].

Numerous battery thermal management techniques, including air cooling, indirect
liquid cooling, phase change material (PCM) cooling, heat pipe -based cooling and direct
liquid cooling, have been researched. However, air cooling and indirect liquid cooling
are commercially employed as battery thermal management techniques [12]. The cooling
performance of indirect liquid cooling is superior compared to air cooling. However, the
battery thermal management system based on indirect liquid cooling poses drawbacks of
complex structure, heavy weight, and high cost [13]. In addition, indirect liquid cooling
uses water/glycol as a coolant which offers electrical conductivity; hence, to minimize the
direct contact between the battery and coolant, a cooling plate and channels are required.
The heat dissipation from the battery to the coolant reduces due to increased thermal
resistance offered by the presence of cooling plates and channels. Therefore, indirect
liquid cooling also fails to maintain the safe operating temperature of batteries at high
discharge rates [14,15]. The battery thermal management system with PCM cooling shows
enhanced temperature uniformity of lithium-ion batteries because PCM absorbs the larger
amount of heat from the battery when the temperature of the battery approaches to melting
point temperature of PCM. However, when the battery temperature crosses the melting
temperature of PCM, the performance of PCM cooling decreases [16]. In addition, the
PCM cooling could not effectively dissipate the internal accumulative heat of lithium-
ion batteries because the thermal conductivity of PCM is low. To enhance the thermal
conductivity of PCM, it is inserted with higher thermal conductivity materials such as metal
foam, expanded graphite, carbon nanofibers and other porous media [17]. Direct liquid
cooling uses dielectric fluid, which is electrically non-conductive. Thus, batteries can be
immersed in dielectric fluid [15]. Due to direct contact between the battery and coolant, the
cooling plate and channels are eliminated. Thus, the thermal resistance between the battery
and coolant reduces and the heat transfer rate increases compared to indirect liquid cooling.
Also, the absence of cooling plates and channels makes a direct liquid cooling-based battery
thermal management system less complex and bulky. The cell-to-cell thermal runaway
propagation could be suppressed using direct liquid cooling, and hence, the safety of the
battery system improves [18]. These benefits have increased the research interest in battery
thermal management using direct liquid cooling.

Sundin et al. have shown the maximum temperature of a battery cell within 30 ◦C at
a 2C discharge rate in the case of single-phase immersion cooling whereas that within 35 ◦C
at a 1C discharge rate in the case of forced air cooling [19]. Zhou et al. have concluded
that the thermal runaway propagation in a 60 Ah battery could be suppressed by enabling
phase change liquid immersion cooling. However, the battery is completely burned in
the case when phase change liquid immersion cooling is disabled [20]. Li et al. have
investigated the cooling performance of 18650 lithium-ion batteries using direct liquid
cooling with SF33 as coolant. The maximum temperature of the battery is maintained
in a range of 33 ◦C–34 ◦C at a 4C discharge rate and within 34.5 ◦C at a 7C discharge
rate [21]. Dubey et al. have concluded that the maximum temperature and pumping
power for direct liquid cooling using Novec7500 coolant are lower compared to indirect
liquid cooling using water/ethylene glycol coolant. However, the temperature uniformity
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of the battery is lower in the case of direct liquid cooling compared to indirect liquid
cooling [22]. Li et al. have studied the heat transfer performance of immersion cooling
with SF33 coolant for cylindrical lithium-ion batteries under fast discharge conditions.
The subcooled and saturation boiling is observed at a high charging current, and the heat
transfer coefficient increases significantly when the transition from single phase to boiling
heat transfer occurs [23]. In the case of direct liquid cooling, to distribute the coolant
around the battery surface, the baffles and fins should be provided in the flow channel.
Air cooling and direct liquid cooling have similar characteristics in that, in both cases,
working fluid is in contact with the battery. In the case of battery air cooling, numerous
researchers have studied the impact of baffles or fins on the cooling performance of the
battery. Sahin et al. have compared the thermal performance and pressure drop of air-
cooled battery modules with cylindrical, triangular, diamond and winglet baffles. The
air-cooled battery module with baffles shows a 5% lower maximum temperature, 40%
lower temperature difference and 3.5 times higher power consumption compared to that
without baffles [24]. Cheng et al. have studied the thermal performance and pressure
drop of the battery pack with air cooling considering the effect of fin height, fin thickness
and fin number. The maximum temperature and standard deviation of temperature for
the battery pack decrease by 17.63% and 39.30%, respectively, in the case of air cooling
with fins, compared to that without fins [25]. Zhuang et al. have investigated the cooling
performance and power consumption of batteries incorporated in air cooling channels
with prism shape fins of different dimensions. The lowest average temperature of 22.19 ◦C
with a power consumption of 0.101 W is observed for prism fin with diagonal dimensions
of 20 mm × 20 mm. The lowest power consumption of 0.019 W is evaluated for prism
fin with diagonal dimensions of 16 mm × 8 mm, which shows an average temperature
of 23.04 ◦C [26]. However, very limited research has been conducted on battery thermal
management with direct liquid cooling considering fins and baffles for uniform flow
distribution. Patil et al. have proposed hybrid tab forced air cooling and body immersion
cooling incorporated with baffles to improve the thermal performance of pouch cell battery
pack. The maximum temperature of the battery is achieved as 49.9 ◦C, 31.7 ◦C, and 28 ◦C at
a 3C discharge rate for volume flow rates of 0.5 LPM, 3 LPM, and 10 LPM, respectively [27].
Le et al. have optimized the structural parameters of manifold microchannel with baffles to
enhance the thermal performance of lithium-ion battery pack with immersion cooling. The
maximum temperature, bulk and surface temperature uniformity of the battery pack are
evaluated as 35.06 ◦C, 6.66 ◦C and 3.52 ◦C, respectively for the optimized structure [28].

The battery pack achieves enhanced cooling performance and temperature uniformity
when the coolant flow is distributed symmetrically around the battery surface. In the
case of indirect liquid cooling, extensive research has been conducted to achieve uniform
coolant flow around the battery surface by optimizing the shape and structure of cooling
channels. In air cooling, the airflow distribution around the battery surface is unified by
adding the fins or baffles in the flow channel to various research studies. Similarly, the fins
and baffles could be added to the flow channel to improve the overall cooling performance
of the battery pack with direct liquid cooling, including maximum temperature, average
temperature, and temperature difference. There are few studies on direct liquid cooling
considering baffles to improve the heat transfer performance of battery packs. However,
the concrete research study on the cooling performance of battery packs with direct liquid
cooling according to various fin structures is missing in the open literature. Therefore,
in the present study, the heat transfer characteristics of the cylindrical battery pack with
dielectric fluid immersion cooling are compared for various fin structures. The maximum
temperature, temperature difference, average temperature, Nusselt number, pressure drop
and PEC are simulated using ANSYS Fluent for base structure without fins and circular,
rectangular and triangular fin structures. The best fin structure is proposed based on the
optimum heat transfer characteristics of the battery pack with dielectric fluid immersion
cooling. Furthermore, the novelty of the present work is extended by investigating the
effect of various fin dimensions on the heat transfer characteristics of the battery pack
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with dielectric fluid immersion cooling with the aim of further improvement in battery
cooling performance.

2. Numerical Method

The heat transfer characteristics of dielectric fluid immersion cooling for thermal
management of battery are numerically investigated. The present numerical method elabo-
rates the computational geometry of the battery with dielectric fluid immersion cooling in
Section 2.1, followed by an explanation of meshing for computational geometry, governing
equations, and boundary conditions in Section 2.2, Section 2.3, Section 2.4 respectively.

2.1. Computational Geometry

The computational geometry of the battery pack with dielectric fluid immersion
cooling is shown in Figure 1. Figure 1 depicts the computational geometry without fins
which is named the base structure. The cooling performance is affected by the arrangement
of cells in the battery pack; therefore, an aligned arrangement of cells for the battery pack
is selected in the present numerical study. The spacing between the battery cells is set to
4 mm, and the battery cell has a height of 65 mm and a diameter of 18 mm.
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Figure 1. Computational geometry of battery pack with dielectric fluid immersion cooling and
without fin structure.

The fluid flow is an important aspect to improve the cooling performance of direct
liquid cooling for the battery pack. Han et al. have found that the bus bar of a battery
pack affects the cooling performance of direct liquid cooling because the bus bars act as
fins to affect the distribution of fluid flow in direct liquid cooling [29]. Therefore, the
computational geometry is modified by incorporating three different fin structures of
circular, rectangular and triangular, as shown in Figure 2. A total of 36 fins of each type
(circular, rectangular and triangular fins) are inserted in the base structure with the aim
of achieving the symmetrical flow distribution of working fluid. The lengths of circular,
rectangular and triangular fins are 5 mm, 4.43 mm, and 6.73 mm, respectively with the
same area and the same height. The fins are located in the empty space between the battery
cells with 4 mm spacing. The ANSYS Fluent commercial software is used to simulate the
heat transfer characteristics of the battery pack with dielectric fluid immersion cooling,
considering the effect of various fin structures.

2.2. Meshing

The mesh independence test is conducted to confirm the balance between the com-
putational time and the accuracy of the simulated results. The mesh configuration with
six different mesh element numbers is considered to conduct the mesh independency test.
The maximum temperature of the battery and pressure drop are simulated for six different
mesh element numbers. The simulated results of maximum temperature and pressure drop
for the considered mesh element numbers are shown in Table 1. The maximum temperature
and pressure drop converged within 0.045% and 0.309%, respectively, for mesh type 5.
Therefore, mesh type 5 with an element number of 6,239,514 is selected as the final mesh
configuration for the computation geometry to conduct the numerical analysis.
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Table 1. Simulated results for a different number of mesh elements.

Mesh Type Number of Elements Maximum
Temperature (◦C) Pressure Drop (Pa)

Type 1 1,917,896 48.22 23.92
Type 2 2,718,920 48.46 24.36
Type 3 3,719,946 48.82 24.67
Type 4 5,313,376 49.14 24.93
Type 5 6,239,514 49.22 25.02
Type 6 6,772,943 49.24 25.09

The orthogonal quality for mesh type 5 is measured to ensure the quality of the mesh.
The minimum value of orthogonal quality for mesh type 5 is reported as 0.156, which is
an acceptable value for the numerical simulation. The mesh is provided with the inflation
layers between the solid wall and fluid domain to predict the velocity at the boundary layer
of flow. The mesh configuration for the computational geometry is shown in Figure 3.
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2.3. Governing Equation

To predict the heat transfer characteristics of the battery pack with dielectric fluid im-
mersion cooling, continuity, momentum, and energy equations as presented by Equations
(1)–(3) are solved numerically. The Reynolds number for all cases of fin structures is below
2300. Hence, the laminar flow is considered for the present simulations [30].

∂ρw

∂t
+∇ · (ρwU) = 0 (1)
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∂ρw

∂t
U +∇ · (ρwU)U = −∇p + (µw∇U) (2)

ρwCp,w
∂Tw

∂t
+∇

(
ρwCp,wUTw

)
= ∇ · (kw∇Tw) (3)

Here, ρw is the density of the working fluid, U is velocity, p is pressure, kw is the
thermal conductivity of the working fluid, µw is the viscosity of working fluid, Cp,w is
specific heat of working fluid and Tw is temperature of working fluid.

The energy conservation for battery pack is presented by Equation (4) [31].

∂

∂t
(ρbCp,bTb) = ∇·(kb∇Tb) + Qtotal (4)

Here, ρb is density of battery pack, Cp,b is specific heat of battery pack, Tb is temperature
of battery pack, kb is thermal conductivity of battery pack and Qtotal is heat generation of
battery pack.

2.4. Boundary Condition

The heat source of the battery at 5C discharge rate is shown in Table 2 based on
the experiment data presented by Dong et al. [32]. This heat source is considered as
heat generation for battery pack while simulating its heat transfer characteristics. The
mathematical expression of heat generation to battery cells is presented by Equation (5)
which is employed as boundary condition in numerical model. The E5-TM410 coolant is
selected as a working fluid in the present numerical simulation. The inlet temperature
of the working fluid is set to 25 ◦C. The wall condition of the surface is set to non-slip
condition. The boundary conditions for numerical simulation are shown in Table 3. The
thermophysical properties of battery and working fluid are shown in Table 4 [32]. In the
numerical simulations, the thermophysical properties are assumed to be constant; hence,
the temperature effect on thermophysical properties is neglected [33].

Qb = 0.0013t3 − 0.97t2 + 143.12t + 293016 (5)

Here, Qb is heat generation employed as boundary condition to battery cells and
t is time.

Table 2. Battery heat source considered in numerical simulations.

Time (s) Heat Generation (W) Time (s) Heat Generation (W)

0 4.91 432 4.75
71 4.89 504 4.75

144 4.84 576 4.72
216 4.82 648 5.57
287 4.73 720 6.29
360 4.66

Table 3. Boundary conditions for numerical simulation.

Specification

Working fluid E5-TM410
Inlet working fluid temperature (◦C) 25

Inlet working fluid volume flow meter (LPM) 1, 2, 3, 4, 5
Outlet pressure (Pa) 0
Wall slip condition Non-slip

Heat source of battery (W) Table 2
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Table 4. Thermophysical properties of battery and working fluid.

Property Battery E5-TM410

Density (kg/m3) 2055.1 805
Specific heat (J/kg·K) 1129.95 2100
Thermal conductivity

(W/m·K)
1.07 (radial)

19.03 (axial, tangential) 0.14

Viscosity (Pa·s) - 0.015617-

2.5. Data Reduction

In this section, the heat transfer characteristics of dielectric fluid immersion cooling
for battery pack are evaluated in terms of maximum temperature, temperature difference,
pressure drop, heat transfer coefficient, Nusselt number, friction factor and PEC.

The average heat transfer coefficient of dielectric fluid immersion cooling for battery
is calculated using Equation (6) [34].

havg =
Qw

Abat

(
Tavg,bat − Tbulk,mean,w

) (6)

The bulk mean temperature of working fluid is calculated using Equation (7).

Tbulk,mean,w =
Tbulk,in,w + Tbulk,out,w

2
(7)

The heat absorbed by working fluid is calculated using Equation (8).

Qw =
.

mwCp,w(Tbulk,in,w − Tbulk,out,w) (8)

The average Nusselt number for working fluid is calculated using Equation (9) [35].

Nuavg =
havgDh

kw
(9)

The pressure drop for working fluid is calculated using Equation (10).

∆Pavg,w = Pin,w − Pout,w (10)

The friction factor for working fluid is calculated using Equation (11) [36].

f =
2Dh∆Pavg,w

ρLu2 (11)

The PEC is calculated using Equation (12) [37,38].

PEC =

(Nuavg,without f in
Nuavg,with f in

)
( fwithout f in

fwith f in

) 1
3

(12)

Here, Qw is heat absorbed by working fluid, Abat is surface area of battery, Tavg,bat is
average temperature of batteries, Tbulk,mean,w is bulk mean temperature of working fluid,
Tbulk,in,w is inlet temperature of working fluid, Tbulk,out,w is outlet temperature of working
fluid,

.
mw, Cp,w and kw are mass flow rate, specific heat and thermal conductivity of working

fluid, respectively, Pin,w and Pout,w are inlet and outlet pressures of working fluid, L is length
of channel, Dh is hydraulic diameter of channel, u is average velocity of working fluid, ρ is
density of working fluid.



Symmetry 2023, 15, 92 8 of 21

3. Results and Discussion

In this section, the numerical simulation model is validated with experiment for
heat transfer characteristics of the battery. The heat transfer characteristics of maximum
temperature, temperature difference, average temperature, Nusselt number and pressure
drop are elaborated considering different fin structures for battery pack with dielectric
fluid immersion cooling. The best fin structure is selected based on the parameter, namely
performance evaluation criteria (PEC). Furthermore, the effect of different fin dimensions
of the best fin structure is studied on heat transfer characteristics of battery pack with
dielectric fluid immersion cooling.

3.1. Validation

To assure the accuracy and reliability of the numerical results, the thermal performance
of the battery is validated with the experimental data presented by Dong et al. [32]. The
comparison of numerical and experimental results of battery temperature at 5C discharge
rate is shown in Figure 4. The simulated temperature from the proposed numerical model
shows closer agreement with the experimental temperature over the entire discharge period.
The maximum error between the simulated temperature and experimental temperature of
the battery is restricted within 1.7%.

Symmetry 2023, 15, x FOR PEER REVIEW 9 of 24 
 

 

 
Figure 4. Validation of numerical results with experimental data. 

3.2. Effect of Fin Structure 
3.2.1. Temperature Performance 

The maximum temperature of the battery pack with volume flow rate for different 
fin structures is shown in Figure 5a. The maximum temperature decreases with increase 
in volume flow rate for all cases of fin structures. Dubey et al. have also concluded that 
the maximum temperature of the battery decreases with increase in volume flow rate be-
cause the heat transfer coefficient improves with increase in volume flow rate [22]. The 
optimum operating temperature for the battery pack is achieved at a volume flow rate of 
3 LPM in case of fin structure. All cases with volume flow rate higher than 3 LPM satisfy 
the criteria of battery optimum operating temperature range. The triangular fin structure 
shows the lowest maximum temperature of battery pack owing to the more uniform dis-
tribution of working fluid within the channel compared to other fin structures. The max-
imum temperatures decease by 2.41%, 2.57%, 4.45% in case of circular, rectangular, trian-
gular fin structures, respectively at volume flow rate of 5 LPM compared to base structure. 

Figure 4. Validation of numerical results with experimental data.

3.2. Effect of Fin Structure
3.2.1. Temperature Performance

The maximum temperature of the battery pack with volume flow rate for different fin
structures is shown in Figure 5a. The maximum temperature decreases with increase in
volume flow rate for all cases of fin structures. Dubey et al. have also concluded that the
maximum temperature of the battery decreases with increase in volume flow rate because
the heat transfer coefficient improves with increase in volume flow rate [22]. The optimum
operating temperature for the battery pack is achieved at a volume flow rate of 3 LPM in
case of fin structure. All cases with volume flow rate higher than 3 LPM satisfy the criteria
of battery optimum operating temperature range. The triangular fin structure shows the
lowest maximum temperature of battery pack owing to the more uniform distribution
of working fluid within the channel compared to other fin structures. The maximum
temperatures decease by 2.41%, 2.57%, 4.45% in case of circular, rectangular, triangular fin
structures, respectively at volume flow rate of 5 LPM compared to base structure.
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Figure 5b presents the temperature difference of battery pack for various fin structures.
The temperature difference is calculated by subtracting the minimum point temperature of
battery from the maximum point temperature of the battery. The trends of temperature
difference are same with maximum temperature at each volume flow rate. The temperature
difference decreases with increase in volume flow rate for all cases. The temperature
differences of triangular fin structure are lower by 15.67%, 15.77%, 13.64%, 12.86% and
9.82% compared to base structure at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM
and 5 LPM, respectively.
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The variation of the average temperature of the battery pack with volume flow rate
for various fin structures is shown in Figure 5c. The average temperature of battery pack
represents the overall temperature of the battery pack which decreases with increase in
volume flow rate for all fin structures. The average temperature of the battery pack is in
the same trend as maximum temperature and temperature difference. The triangular fin
structure shows lower average temperature of battery pack compared to other fin structures
because of the uniform distribution of working fluid. The average temperatures of battery
pack are reported as 39.67 ◦C, 36.10 ◦C, 34.33 ◦C, 33.21 ◦C, and 32.44 ◦C at volume flow rates
of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively in case of triangular fin structure.
Compared to base structure, the average temperature of battery pack decreases by 5.57%,
4.32%, 3.29%, 2.60% and 2.10% at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM
and 5 LPM, respectively for triangular fin structure. Patil et al. have shown a decrease
in temperature with an increase in volume flow rate for battery pack with direct fluid
immersion cooling and tab cooling [27].

Figure 6 shows the temperature distribution within the computational geometry for
different fin structures. The working fluid carries larger amount of heat from battery cells
at the inlet and heat absorption amount decreases as the working fluid passes from inlet
to outlet of channel. Hence, the battery cells located near the inlet of the channel show
lower temperature compared to that located near the outlet. The maximum temperature
observed for the battery cells located near the outlet position and side wall. The symmetrical
temperature distribution is observed for all cases however, the presence of fins creates
mixing of flow. And the distribution of working fluid improves which results in enhanced
heat transfer between battery pack and working fluid compared to that without fins. To
understand the flow distribution, the velocity distribution of working fluid for the base
structure and triangular fin structure is depicted in Figure 7. Hasan et al. has also found
that the heat transfer increases because of mixing of flow created by fins [37].
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3.2.2. Nusselt Number and Pressure Drop

The trade-off comparison between Nusselt number and pressure drop with volume
flow rate for different fin structures is shown in Figure 8. The heat transfer coefficient
improves with increase in volume flow rate owing to the superior heat transfer rate at
the higher volume flow rate. The Nusselt number increases with increase in volume flow
rate because the Nusselt number depends on the heat transfer coefficient. Patil et al. have
shown an increase in Nusselt number with increase in volume flow rate [39]. The triangular
fin structure has reported the maximum value of Nusselt number followed by rectangular
and circular fin structures in decreasing order for all volume flow rates. The triangular
fin structure depicts the heat transfer coefficients of 3695.44 W/m2-K, 4690.40 W/m2-K,
5520.47 W/m2-K, 6244.25 W/m2-K and 6876.39 W/m2-K at volume flow rates of 1 LPM,
2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively. The Nusselt numbers of 316.75, 402.03,
473.18, 535.22, 589.41 are reported at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM
and 5 LPM, respectively for triangular fin structure. The Nusselt number for triangular fin
structure is increased by 23.4%, 19.53%, 16.08%, 13.53% and 11.57% at volume flow rates of
1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively compared to base structure.
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The higher volume flow rate results into the higher degree of flow mixing which
creates the higher flow resistance. Therefore, the pressure drop increases with increase in
volume flow rate for all fin structures. It is obvious that the base structure depicts the lower
values of pressure drop over the entire range of volume flow rate because of minimum flow
resistance. The triangular fin structure shows the higher flow resistance owing to the higher
degree of obstruction to fluid flow which results in maximum pressure drop compared
to circular and rectangular fin structures. The lowest pressure drops of 24.92 Pa, 55.98 Pa,
92.76 Pa, 134.78 Pa and 181.73 Pa are reported in case of base structure at volume flow rates
of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively. The highest pressure drops of
30.28 Pa, 67.29 Pa, 110.77 Pa, 160.14 Pa and 241.98 Pa are evaluated in case of triangular fin
structure at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively.
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3.2.3. Performance Evaluation Criteria

The behavior of PEC with various volume flow rates and fin structures is presented
in Figure 9. The Nusselt number and friction factor show trade-off relation hence, both
parameters are integrated in terms of PEC in order to find the best combination for the
optimum overall performance of battery pack with dielectric fluid immersion cooling. The
Nusselt number increases and the friction factor decreases with increase in volume flow
rate for all fin structures. The decrease in friction factor is dominant compared to increase
in Nusselt number with increase in volume flow rate. Therefore, the PEC as the ratio of
Nusselt number to friction factor decreases with increase in volume flow rate for all fin
structures. Despite of the higher pressure drop and friction factor, the superior value of
Nusselt number results in the maximum PEC for triangular fin structure at all volume flow
rates. The lowest value of PEC is obtained for rectangular fin structure at the higher volume
flow rate because of increase in pressure drop at the higher volume flow rate. The PEC of
1.157, 1.124, 1.094, 1.072 and 1.055 are evaluated for triangular fin structure at volume flow
rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively.
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3.3. Effect of Fin Dimension

In the previous section, it is concluded that the triangular fin structure shows supe-
rior heat transfer characteristics for battery pack with dielectric fluid immersion cooling.
Therefore, the triangular fin structure is recommended as the best fin structure to achieve
the optimum cooling performance of dielectric fluid immersion cooling for battery pack.
Furthermore, the base length and height of the triangular fin structure are varied in order
to evaluate the influence of fin dimensions on heat transfer characteristics of battery pack
with dielectric fluid immersion cooling. Figure 10 shows the various combinations of fin
dimensions considered for triangular fin structure. In this section, the effect of fin dimen-
sions of triangular fin structure on maximum temperature, temperature difference, average
temperature, Nusselt number, pressure drop and PEC of battery pack with dielectric fluid
immersion cooling are discussed.
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3.3.1. Temperature Performance

Figure 11a shows the variation of maximum temperature of battery pack with volume
flow rate for various A/B ratios of triangular fin structure. In all cases, the increase in
volume flow rate enhances the heat transfer rate from the battery pack. Hence, with
an increase in volume flow rate, the maximum temperature of the battery pack decreases
for all A/B ratios of triangular fin structure. The triangular fin structure with A/B ratio of
1.15 shows the highest values of maximum temperature over the entire range of volume
flow rate. With the increase in A/B ratio, the maximum temperature decreases; however it
is not valid for all volume flow rates because after a certain flow rate value, there exists
a critical A/B ratio which shows the lowest maximum temperature. The lowest maximum
temperatures of 43.59 ◦C, 39.41 ◦C, and 37.12 ◦C are reported for triangular fin structure
with A/B ratio of 5.731 at volume flow rates of 1 LPM, 2 LPM, and 3 LPM, respectively.
Whereas, at the higher volume flow rates of 4 LPM and 5 LPM, the lowest maximum
temperature is reported for triangular fin structure with A/B ratio of 4.304 which are
35.82 ◦C and 35.07 ◦C, respectively.

Figure 11b shows the effect of triangular fin structure with various A/B ratios on
temperature difference of battery pack. The temperature difference also decreases with
increase in volume flow rate because of an increase in the heat removal rate from the
battery pack with rise in volume flow rate. The triangular fin structure with A/B ratio of
1.15 depicts the higher temperature difference owing to the higher maximum temperature.
Unlike maximum temperature, the lowest temperature difference is observed for triangular
fin structure with A/B ratio of 4.304 at all volume flow rates. The A/B ratio of 4.304 is
observed as a critical point such that the A/B ratio above or below this value shows an
increase in temperature difference for all volume flow rates. The highest temperature
differences of 16.57 ◦C, 13.02 ◦C, 11.54 ◦C, 10.35 ◦C and 9.7 ◦C are evaluated for A/B ratio
of 1.15 at volume flow rates of 1 LPM to 5 LPM, respectively. The lowest temperature
differences of 15.86 ◦C, 11.42 ◦C, 9.49 ◦C, 8.48 ◦C and 7.95 ◦C are evaluated for A/B ratio of
4.304 at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively.

The variation of average temperature of the battery pack with volume flow rate
for different A/B ratios of triangular fin structure is shown in Figure 11c. The average
temperature of battery pack also decreases with increase in volume flow rate. Except the
lower flow rate of 1 LPM, the triangular fin structure with A/B ratio of 4.304 depicts the
lowest values of average temperature. For other volume flow rates ranging from 2 LPM
to 5 LPM, with increase or decrease in A/B ratio beyond the value of 4.304, the average
temperature increases. The highest average temperatures of 39.67 ◦C, 36.10 ◦C, 34.33 ◦C,
33.21 ◦C and 32.43 ◦C are observed for triangular fin structure with A/B ratio of 1.15 at
volume flow rates of 1 LPM to 5 LPM, respectively. At 1 LPM volume flow rate, the lowest
average temperature of 38.09 ◦C is observed for triangular fin structure with A/B ratio of
5.731. However, at volume flow rates of 2 LPM to 5 LPM, the lowest average temperatures
of 34.88 ◦C, 33.35 ◦C, 32.40 ◦C and 31.76 ◦C are evaluated for triangular fin structure with
A/B ratio of 4.304.
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The temperature distribution for triangular fin structure with various ratios of A/B
is shown in Figure 12. The original triangular fin structure with A/B ratio of 1.15 is con-
sidered as reference with which other combinations are compared. From the figure, it
can be observed that the triangular fin structure with A/B ratio of 1.15 shows the higher
temperature regions of the battery pack. However, the lowest maximum temperature
regions are noticed for triangular fin structure with A/B ratio of 4.304 followed by increas-
ing maximum temperature regions for triangular fin structure with A/B ratios of 3.082,
5.731 and 2.064, respectively.
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3.3.2. Nusselt Number and Pressure Drop

Figure 13 presents the variation in Nusselt number and pressure drop with change
in volume flow rate for various A/B ratios of triangular fin structure. The decrease in
maximum temperature and average temperature of battery pack with volume flow rate
indicates that the higher amount of heat is transferred to working fluid with an increase
in volume flow rate. Therefore, the heat transfer coefficient increases with increases in
volume flow rate which results in the higher Nusselt number at the higher volume flow rate.
The average temperature of battery pack has significant impact on Nusselt number hence,
the Nusselt number follows the same trend as of average temperature. The triangular fin
structure with A/B ratio of 4.304 shows maximum values of Nusselt number at all volume
flow rates except at the lower volume flow rate of 1 LPM. The maximum Nusselt numbers
of 467.54, 544.52, 607.72 and 662.50 are evaluated at volume flow rates of 2 LPM, 3 LPM,
4 LPM and 5 LPM, respectively for triangular fin structure with A/B ratio of 4.304. At
a volume flow rate of 1 LPM, the triangular fin structure with A/B ratio of 5.731 shows
maximum Nusselt number of 372.15.

The increase in volume flow rate increases the disturbance in working fluid which
results into increase in pressure drop. The triangular fin structure with A/B ratio of
1.15 shows the lowest pressure drop at all volume flow rates because of less obstruction
to the flow of working fluid compared to other fin structures. At each volume flow rate,
the pressure drop increases with increase in A/B ratio owing to the larger obstruction at
the larger value of A/B ratio. The lowest pressure drops of 30.28 Pa, 67.29 Pa, 110.77 Pa,
156.38 Pa and 214.99 Pa are observed for triangular fin structure with A/B ratio of 1.15 at
volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively. The maximum
pressure drops of 43.04 Pa, 94.25 Pa, 153.47 Pa, 220.13 Pa and 293.91 Pa are reported for
triangular fin structure with A/B ratio of 5.731 at volume flow rates of 1 LPM, 2 LPM,
3 LPM, 4 LPM and 5 LPM, respectively. However, the triangular fin structure with A/B
ratio of 4.304 shows the pressure drops of 38.05 Pa, 83.81 Pa, 137.06 Pa, 197.39 Pa and
264.33 Pa at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively
which all are lower than maximum pressure drop.
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3.3.3. Performance Evaluation Criteria

The variation of PEC with volume flow rate for different A/B ratios of triangular
structure is presented in Figure 14. The PEC for triangular fin structure with various A/B
ratios is calculated with reference to triangular fin structure with A/B ratio of 1.15. The
Nusselt number increases with increase in volume flow rate; however, the friction factor
also increases with increase in volume flow rate. The dominance of increase in friction
factor is significant over the increase of Nusselt number for increase in volume flow rate.
Therefore, in the case of triangular fin structure with all A/B ratios, the PEC decreases with
increase in volume flow rate. The triangular fin structure with A/B ratio of 4.304 shows
maximum values of PEC for all volume flow rates. The higher pressure drops result in
higher values of friction factor; hence, triangular fin structure with A/B ratio of 5.731 shows
minimum values of PEC at all volume flow rates. The maximum PEC values of 1.082, 1.081,
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1.072, 1.059 and 1.049 are evaluated at volume flow rates of 1 LPM, 2 LPM, 3 LPM, 4 LPM
and 5 LPM, respectively for triangular fin structure with A/B ratio of 4.304.
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The comparison of present results with results from the literature for battery immersion
cooling is depicted in Table 5. Dubey et al. have proposed battery maximum temperature
of 44 ◦C at a 2C discharge rate for immersion cooling. The reason for the higher maximum
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temperature of the battery pack is low -temperature uniformity in case of immersion cooling
because of the non-uniform distribution of coolant around the battery pack [22]. In the
present case, the lowest maximum temperature of the battery pack is achieved as 35.07 ◦C
for immersion cooling with the best fin structure and dimensions.

Table 5. Comparison of present results with previous studies.

Authors Configuration Results

Sundin et al. [19] 68 Ah battery cell with single phase immersion cooling 30 ◦C at 2C discharge rate

Li et al. [21] 18650 lithium-ion battery cell (Single cell) with phase change
immersion cooling 34.5 ◦C at 7C discharge rate

Dubey et al. [22] 21700 cylindrical battery pack with immersion cooling 44 ◦C at 2C discharge rate

Patil et al. [27] 50 V battery pack (pouch cell), immersion cooling with baffles
At 3C discharge rate,

31.7 ◦C for 3 LPM
28 ◦C for 10 LPM

Le et al. [28] Lithium-ion battery pack, immersion cooling with baffles 35.06 ◦C at 5C discharge rate for
optimized structure

Present study 18650 lithium-ion battery pack, immersion cooling,
fin structures

35.07 ◦C at 5C discharge rate for best
fin structure

In the present work, optimum fin structure and fin dimensions are suggested to achieve
the enhanced thermal performance of dielectric fluid immersion cooling for effective
thermal management of high energy density lithium-ion batteries in electric vehicles. The
electrical performance of the battery is affected by the thermal performance; hence, in future
work, the focus will be on investigating the combined thermal and electrical performance
characteristics of lithium-ion battery with dielectric fluid immersion cooling. The coupled
numerical analysis will be conducted in the future to study the overall behavior of lithium-
ion battery pack with dielectric fluid immersion cooling under actual operating conditions
for electric vehicles.

4. Conclusions

The heat transfer characteristics of a cylindrical battery pack with dielectric fluid
immersion cooling are numerically studied, considering various fin structures and dimen-
sions. The maximum temperature, temperature difference, average temperature, Nusselt
number, pressure drop and PEC are evaluated for base structure, circular, rectangular and
triangular fin structures under the influence of various volume flow rates. The following
key findings are summarized from the present work.

(a) The maximum temperature, temperature difference and average temperature of the
battery pack are lower for the triangular fin structure at each volume flow rate. The
lowest maximum temperature of the battery pack is evaluated as 45.55 ◦C, 41.21 ◦C,
38.11 ◦C, 36.61 ◦C and 36.76 ◦C for triangular fin structure at volume flow rates of
1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively.

(b) The triangular fin structure shows higher values of Nusselt number and pressure
drop compared to other fin structures. The maximum Nusselt number of 589.41 and
pressure drop of 241.98 Pa are evaluated for triangular fin structure at a volume flow
rate of 5 LPM.

(c) The PEC as the combined effect of Nusselt number and pressure drop is maximum
for triangular fin structure at all volume flow rates. The triangular fin structure shows
maximum PEC values of 1.156, 1.124, 1.094, 1.072 and 1.055 at volume flow rates of
1 LPM, 2 LPM, 3 LPM, 4 LPM and 5 LPM, respectively.

(d) The triangular fin structure is recommended as the best fin structure to achieve
the superior heat transfer characteristics of battery packs with dielectric fluid
immersion cooling.
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(e) The triangular fin structure with an A/B ratio of 4.304 shows the lowest values of
maximum temperature, temperature difference and average temperature as 35.07 ◦C,
7.95 ◦C and 31.76 ◦C, respectively, at 5 LPM volume flow rate.

(f) The maximum Nusselt number of 662.50 is evaluated for triangular fin structure with
an A/B ratio of 4.304 with a pressure drop of 264.33 Pa, which is lower than the
maximum pressure drop of 293.91 Pa for triangular fin structure with an A/B ratio of
5.731 at 5 LPM volume flow rate.

(g) The triangular fin structure with an A/B ratio of 4.304 shows maximum PEC at all
volume flow rates from 1 LPM to 5 LPM with corresponding values of 1.082, 1.081,
1.072, 1.059 and 1.049. The A/B ratio of 4.304 is suggested as the optimum dimensions
for triangular fin structure as it shows the enhanced heat transfer characteristics of
battery pack with dielectric fluid immersion cooling.
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