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Abstract: In this paper, we aim to study the neutral-type delayed Caputo fractional differential
equations of the form CDα(x(t)− g(t, xt)) = f (t, xt), t ∈ (t0, ∞), t0 ≥ 0 with order 0 < α < 1,
which can be used to describe the growth processes in real-life sciences at which the present growth
depends on not only the past state but also the past growth rate. Our ultimate goal in this study is to
concentrate on the convergence of the solutions to a predetermined constant by establishing a linkage
between the delayed fractional differential equation and an integral equation. In our analysis, the
sufficient conditions for the asymptotic results are obtained due to fixed point theory. The utilization
of the contraction mapping principle is a convenient approach in obtaining technical conditions that
guarantee the asymptotic constancy of the solutions.

Keywords: fractional; neutral equation; Caputo; asymptotic constancy; contraction
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1. Introduction

One of the current hot issues in applied mathematics is fractional calculus and frac-
tional dynamic equations, which have a 300-year history. Researchers have learned that
well-known mathematicians Liouville, Riemann, and Leibniz undertook research on frac-
tional calculus in the past. For more information, see [1–4]. Researchers have focused on
studying and developing the theory of fractional differential equations since the invention
of the fractional derivative.

It came out that there are several unique and intriguing situations where fractional
differential equations are favored over conventional differential equations. The applications
of fractional differential equations are what make them a daunting and fundamental topic
in the applied sciences, despite the fact that the theoretical solutions derived for them are
intriguing and communicate profound implications. Applications of fractional differential
equations have particularly found success in the fields of physics, biology, economics, and
the medical and biological sciences (see [5–9]). Similar to the theory of ordinary differential
equations, the theory of fractional differential equations has been separated into qualitative
and quantitative categories. Stability analysis is one of the key areas in the qualitative
examination of these equations. Numerous academics have thoroughly investigated the
stability of the solutions to fractional differential equations. As a result, the stability theory
of these equations has only recently been formed and still needs further refinement. We
cite [10–14] for more readings on these two categories.

Studies concentrating on the existence of particular solutions, such as positive, periodic,
nearly periodic, and affine periodic solutions, as well as oscillation of solutions, have gained
a prominent place in the extant literature in the qualitative study of ordinary differential
equations. Even if the idea of symmetry can be seen as a crucial component of the mathe-
matical motivation for these studies, it is still unspoken in the field. It should be underlined
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that there is a vast amount of literature on the asymptotic behavior of the solutions of
ordinary differential equations. There is also a substantial body of literature and comparable
investigations for both discrete and hybrid temporal domains. In [15], Burton examined
an ordinary differential equation with a delay which is used in biology and showed the
asymptotic constancy and periodicity of the solutions with the help of fixed point theory.
The authors of [16,17] were inspired by [15] and analyzed such equations, which are crucial
in population dynamics, with constant and functional delays on discrete and hybrid time
domains, respectively. To the best of our knowledge, the asymptotic constancy of fractional
equations’ solutions has not yet been studied, despite the fact that stability analysis of
fractional equations has grown rather quickly. Proposing sufficient conditions that assure
that solutions converge to a preset constant, namely the asymptotic constancy of solutions, is
an important topic from a mathematics perspective. By examining the asymptotic constancy
of solutions to fractional equations, this study aims to close this gap. Furthermore, in our
opinion, this study will launch a new line of inquiry based on symmetry-based asymptotic
analysis of fractional differential equations. Functional differential equations containing
the highest-order derivative in more than one term are called neutral differential equations.
There are few results regarding the theory of fractional neutral equations, and we refer to the
papers [18–22], which focus on the analysis of fractional neutral differential equations. We
highlight that fractional neutral differential equations are challenging to study due to their
complicated dynamics. However, their applications in various disciplines have intrinsically
compelled and imposed on us to give them the deserved attention. Inspired by [23], we
consider a neutral equation of order 0 < α < 1 with constant delay

CDα(x(t)− g(t, xt)) = f (t, xt), t ∈ (t0, ∞),

and study the asymptotic constancy of its solutions. This approach enables us to adapt
the possible outcomes of this study to biological models with a constant life span that
are widely studied in biomathematics. By a quick literature review, it is possible to find
significant biological models with a delay, such as the hematopoiesis model

d
dt
(x(t)− cx(t− τ)) = −a(t)x(t) + b(t)e−β(t)x(t−τ), t ∈ R,

and red blood cell production model

d
dt
(x(t)− cx(t− τ)) = −a(t)x(t) + b(t)

1
1 + xn(t− τ)

, n > 0, t ∈ R

(see [24,25], and references therein). The fractional analogues of the aforementioned equa-
tions have already gained importance in mathematics, because fractional differential equa-
tions are typically used to model real-world issues and are best suited for doing so. It
is obvious that a connection between the equation we focus on and potential fractional
analogs of neutral biological models may be made with ease. As a result, the major find-
ings of our research have excellent application potential and will therefore advance the
qualitative theory of fractional differential equations.

The next section is devoted to the presentation of the main results and illustrative
examples. Also, a precise summary about fractional derivatives and integrals is provided
in the Appendix A for the readers who are not familiar with fractional calculus.

2. Main Results
2.1. Setup

We consider the following neutral Caputo fractional differential equation with delay

CDα(x(t)− g(t, xt)) = f (t, xt), t ∈ (t0, ∞), (1)
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with order 0 < α < 1, where f , g : (t0, ∞)×R→ R, and xt(s) = x(t + s) if s ∈ [t0 − τ, t0]
for τ > 0. We set ξ : [t0 − τ, t0]→ R as a continuous function, and the solution x of (1) is
presented by xξ = x(t, t0, ξ) with xξ(t) = ξ(t) on [t0 − τ, t0].

Lemma 1. The function x is a solution of (1) if and only if it satisfies the integral equation

x(t) = ξ(t0)− g(t0, ξ) + g(t, xt) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, xs)ds. (2)

Proof. This result can be obtained by applying the Caputo derivative on both sides of (2).
For more on the details of its proof, we refer to ([23], Lemma 3.1).

For the rest of this paper, we make the following assumptions:

A1 For a constant β,
f (t, β) = −C

t0
Dα

t g(t, β).

A2 The function g is Lipschitz in its second argument, i.e.,

|g(t, x1)− g(t, x2)| ≤ L1|x1 − x2|, for all x1, x2 ∈ R.

A3 There exists a continuous function p : [t0, ∞)→ R+, so that the inequality

| f (t, x1)− f (t, x2)| ≤ p(t)|x1 − x2|

holds for all x1, x2 ∈ R.

A4 There exists a constant γ ∈ (0, 1), so that L1 + L2 < γ for L2 = ‖w(t)‖, where

w(t) =
1

Γ(α)

t∫
t0

(t− s)α−1 p(s)ds,

and
‖w‖ = sup

t∈(t0,∞)

|w(t)|.

Lemma 2. For a constant β,

h(β) = g(t, β) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, β)ds (3)

is a constant.

Proof. We apply Caputo derivative on h

C
t0

Dα
t [h(β)] =C

t0
Dα

t

g(t, β) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, β)ds

,

and use the identity (
C
t0

Dα
t (t0 Iα

t g)
)
(t) = g(t), α > 0
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to obtain

C
t0

Dα
t [h(β)] =C

t0
Dα

t [g(t, β)] +C
t0

Dα
t [t0 Iα

t ( f (t, β))]

=C
t0

Dα
t [g(t, β)] + f (t, β)

= 0

by A1. This indicates that h(β) is a constant, and the proof is complete.

2.2. Asymptotic Results

Theorem 1. The unique solution xξ of (1) satisfies the asymptotic property

lim
t→∞

x(t, t0, ξ) = β,

where
β = ξ(t0)− g(t0, ξ) + h(β), (4)

and h(β) is given by (3).

Proof. First, we show that the mapping h given in (3) is a contraction. For β1, β2 ∈ R,
we have

|h(β1)− h(β2)| =

∣∣∣∣∣∣g(t, β1)− g(t, β2) +
1

Γ(α)

t∫
t0

(t− s)α−1( f (s, β1)− f (s, β2))ds

∣∣∣∣∣∣
≤ |g(t, β1)− g(t, β2)|+

1
Γ(α)

t∫
t0

(t− s)α−1| f (s, β1)− f (s, β2)|ds

≤ L1|β1 − β2|+
1

Γ(α)

t∫
t0

(t− s)α−1 p(s)|β1 − β2|ds

= |β1 − β2|

L1 +
1

Γ(α)

t∫
t0

(t− s)α−1 p(s)ds


< γ|β1 − β2|.

Thus, h is a contraction.
Next, we define the mapping

M1(β) = ξ(t0)− g(t0, ξ) + h(β), (5)

which is a contraction due to the mapping h. Therefore, it has a unique fixed point β.
Subsequently, we construct the following set

Φ = {φ : [t0 − τ, ∞)→ R, φ(t)→ β as t→ ∞, φ(t) = ξ(t) for all t ∈ [t0 − τ, t0]}, (6)

which is a Banach space endowed by the supremum norm.
For φ ∈ Φ, we define the mapping M2 as follows:

(M2φ)(t) =


ξ(t), t ∈ [t0 − τ, t0]

ξ(t0)− g(t0, ξ) + g(t, φt) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, φs)ds, t > t0
. (7)
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We need to prove that M2 : Φ→ Φ. To achieve this task, we show that

lim
t→∞

g(t, φt) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, φs)ds

 = h(β)

whenever φ(t)→ β as t→ ∞. Consider∣∣∣∣∣∣g(t, φt) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, φs)ds− h(β)

∣∣∣∣∣∣
=

∣∣∣∣∣∣g(t, φt) +
1

Γ(α)

t∫
t0

(t− s)α−1 f (s, φs)ds− g(t, β)− 1
Γ(α)

t∫
t0

(t− s)α−1 f (s, β)ds

∣∣∣∣∣∣
≤ |g(t, φt)− g(t, β)|+ 1

Γ(α)

t∫
t0

(t− s)α−1| f (s, φs)− f (s, β)|ds

≤ L1|φt − β|+ 1
Γ(α)

t∫
t0

(t− s)α−1 p(s)|φs − β|ds

≤ (L1 + L2)ε < γε < ε,

since |φt − β| < ε for sufficiently large t. Then, we conclude that (M2φ)(t)→ β as t→ ∞,
and consequentially, M2 : Φ → Φ. Finally, we show that M2 is a contraction. To see this,
we suppose ϕ, ψ ∈ Φ, and write

|(M2 ϕ)(t)− (M2ψ)(t)| ≤ |g(t, ϕt)− g(t, ψt)|

+
1

Γ(α)

t∫
t0

(t− s)α−1| f (s, ϕs)− f (s, ψs)|ds

≤ L1‖ϕ− ψ‖+ ‖ϕ− ψ‖
Γ(α)

t∫
t0

(t− s)α−1 p(s)ds

≤ (L1 + L2)‖ϕ− ψ‖ < γ‖ϕ− ψ‖.

Thus, M2 has a unique fixed point in Φ. As a result, the solution xξ of (1) satisfies the
asymptotic property xξ(t)→ β as t→ ∞.

Theorem 2. Every initial function ξ corresponding to xξ of (2) is stable; that is, for every ε > 0,
there exists a δ > 0, such that

|x(t, t0, ξ1)− x(t, t0, ξ2)| < ε whenever |ξ1 − ξ2| < δ

for t ≥ t0. Moreover, if x(t, t0, ξ1)→ β1 and x(t, t0, ξ2)→ β2 as t→ ∞, then |β1 − β2| < ε.

Proof. Let M(1)
2 and M(2)

2 be the mappings defined as in (7) corresponding to ξ1 and ξ2,
respectively. By Theorem 1, they have unique fixed points x(1) and x(2), i.e.,

M(1)
2 x(1) = x(1) and M(2)

2 x(2) = x(2)
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with the limit results x(1)(t)→ β1 and x(2)(t)→ β2 as t→ ∞. Then, we consider∣∣∣x(1)(t)− x(2)(t)
∣∣∣ = ∣∣∣(M(1)

2 x(1)
)
(t)−

(
M(2)

2 x(2)
)
(t)
∣∣∣

≤ |ξ1(t0)− ξ2(t0)|+ |g(t0, ξ1)− g(t0, ξ2)|

+
∣∣∣g(t, x(1)t

)
− g
(

t, x(2)t

)∣∣∣
+

1
Γ(α)

t∫
t0

(t− s)α−1
∣∣∣ f(s, x(1)s

)
− f

(
s, x(2)s

)∣∣∣ds

≤ |ξ1(t0)− ξ2(t0)|+ L1|ξ1 − ξ2|+ L1

∣∣∣x(1)t − x(2)t

∣∣∣
+ L2

∥∥∥x(1) − x(2)
∥∥∥.

This yields to∥∥∥x(1) − x(2)
∥∥∥ ≤ (1 + L1)‖ξ1 − ξ2‖+ (L1 + L2)

∥∥∥x(1) − x(2)
∥∥∥

< (1 + L1)‖ξ1 − ξ2‖+ γ
∥∥∥x(1) − x(2)

∥∥∥
and ∥∥∥x(1) − x(2)

∥∥∥ <
1 + L1

1− γ
‖ξ1 − ξ2‖.

If we set δ = ε 1−γ
1+L1

, then the first part of the proof is complete.

Next, to prove the second assertion, we employ the limit results x(1) → β1 and
x(2) → β2 as t→ ∞ . We write

|β1 − β2| =
∣∣∣β1 − x(1)(t) + x(1)(t)− x(2)(t) + x(2)(t)− β2

∣∣∣
≤
∣∣∣β1 − x(1)(t)

∣∣∣+ ∥∥∥x(1) − x(2)
∥∥∥+ ∣∣∣β2 − x(2)(t)

∣∣∣
< ε

when t→ ∞. The proof is complete.

Next, we give the following examples as an implementation of our asymptotic result.

Example 1. We set α = 1
3 and consider the neutral fractional differential equation with delay

CD
1
3

(
x(t)− 1

4
e−x(t−h)

)
= e−t arctan(x(t− h)), t ∈ (1, ∞), (8)

where the solution of (8) is represented by xξ = ξ(t) on [1− h, 1] with ξ(1) = 0. If we compare (1)
with (8), then we deduce that

g(t, x(t)) =
1
4

e−x(t),

and
f (t, x(t)) = e−t arctan(x(t)).

We fix β = 0, and this results in (4) to hold true. Moreover, f (t, 0) = 0 = −C
1 D

1
3
t g(t, 0),

which means A1 is satisfied. Next, we observe that the conditions A2 and A3 are fulfilled, since∣∣∣∣14 e−x1 − 1
4

e−x2

∣∣∣∣ ≤ 1
4
|x1 − x2|,
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and ∣∣e−t arctan(x1)− e−t arctan(x2)
∣∣ ≤ e−t|x1 − x2|,

with L1 = 1
4 and p(t) = e−t. It remains to show that A4 holds. To achieve this task, we introduce

w(t) =
1

Γ
(

1
3

) t∫
1

(t− s)−2/3e−sds, (9)

and obtain

w(t) =
3
√
−1 + t

(
Γ
(

1
3

)
− Γ

(
1
3 , 1− t

))
et
(

Γ
(

1
3

)
3
√
−1 + t

) ,

where Γ(., .) stands for the incomplete gamma function. We obtain w(t) < 0.3 for all t > 1 (see
Figure 1). Thus, one may set L2 = ‖w(t)‖ < 0.3, and this yields to γ = 0.55. Consequentially,
Theorem 1 implies the solution xξ of (8) has the asymptotic property

lim
t→∞

x(t, 1, ξ) = 0.

Figure 1. Plot of the function w(t).

Example 2. Fix α = 3
4 , and consider the following neutral equation with delay

CD
3
4

(
x(t)− 1

2
cos(1− x(t− h))

)
= e−5t sin(1− x(t− h)), t ∈ (1, ∞), (10)

where we define the solution of (10) as on xξ = ξ(t) = 1 [1− h, 1]. A direct comparison of (1) with
(10) results in

g(t, x(t)) =
1
2

cos(1− x(t)),

and
f (t, x(t)) = e−5t sin(1− x(t)).

We set β = 1, and consequentially, h(1) = 1
2 . Then, one may easily verify that the Equation (4)

holds. Additionally, the condition A1 is satisfied since

f (t, 1) = 0 = −C
1 D

3
4
t g(t, 1),

and the conditions A2 and A3 hold with L1 = 1
2 , and p(t) = e−5t, respectively. Next, we define

w(t) =
1

Γ
( 3

4
) t∫

1

(t− s)−1/4e−5sds,
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and direct computation gives the result

w(t) =
e−5t(t− 1)3/4(Γ( 3

4
)
− Γ

( 3
4 , 5− 5t

))
(5− 5t)3/4Γ

( 3
4
) .

Here, we obtain w(t) < 0.1 for t ∈ (1, ∞) (see Figure 2); therefore, we can take L2 = 0.1.
Thus, the condition A4 is also satisfied. Subsequently, Theorem 1 implies that the solution xξ of (10)
has the long-term behavior

lim
t→∞

x(t, 1, ξ) = 1.

Figure 2. Plot of the function w(t).

3. Conclusions

In the present work, we concentrate on nonlinear neutral-type Caputo fractional differ-
ential equations with delay and study their asymptotic behavior under certain conditions.
In our analysis, we rewrite the neutral fractional equation as an integral equation and
then employ the contraction mapping principle to prove that the solution of the equation
converges to a constant known in advance under sufficient conditions. To the best of our
knowledge, our manuscript is the first one that focuses on the asymptotic constancy of
solutions for fractional differential equations; thus, we believe our outcomes contribute to
the ongoing theory of fractional differential equations. It should be pointed out that there
are numerous promising research directions with symmetry background to accomplish a
concrete survey on the qualitative analysis of fractional equations.
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Appendix A

In this part, we provide the essential definitions and concepts regarding fractional
calculus for the sake of readership. For an elaborative reading on fractional calculus and
fractional differential equations, we suggest the pioneering books [26–29]. The provided
content in this part can be found in cited monographs.
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Definition A1. For a function f , the fractional integral of order α > 0 with the lower limit t0 is
given by

t0 Iα
t f =

1
Γ(α)

t∫
t0

f (s)

(t− s)1−α
ds, (A1)

where Γ is the conventional gamma function.

Definition A2. The Riemann–Liouville fractional derivative of a continuous function f with order
α > 0 is defined as

t0 Dα
t f (t) =

1
Γ(n− α)

 dn

dtn

t∫
t0

(t− s)n−α−1 f (s)ds

,

where n ∈ N, n− 1 < α < n.

Remark A1. It is evident that the Riemann–Liouville fractional derivative has a singularity at
the point t0, which requires defining the initial condition of the fractional differential equation at
a point different than t0. Caputo proposed an alternative fractional derivative to solve the issue,
mentioned above.

Definition A3. Let α > 0 with n− 1 < α < n, n ∈ N. The Caputo fractional derivative of a
function f is introduced as

C
t0

Dα
t f (t) =

1
Γ(n− α)

t∫
t0

(t− s)n−α−1 f (n)(s)ds, (A2)

where f (n) stands for the nth-order derivative of f . Subsequently, if 0 < α < 1, then (A2) reduces to

C
t0

Dα
t f (t) =

1
Γ(1− α)

t∫
t0

f ′(s)
(t− s)α ds. (A3)

It should be emphasized that t0 Dα
t f (t) =C

t0
Dα

t f (t) if f (t0) = 0. Moreover, the Riemann–
Liouville fractional derivative and the Caputo fractional derivative are the left-inverses of
the fractional integral operator given in (A1), that is

(t0 Dα
t (t0 Iα

t f ))(t)) = f (t)

and (
C
t0

Dα
t (t0 Iα

t f )
)
(t)) = f (t),

for α > 0 and t > t0.
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