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Abstract: In algorithm development, symmetry plays a vital part in managing optimization problems
in scientific models. The aim of this work is to propose a new accelerated method for finding
a common point of convex minimization problems and then use the fixed point of the forward-
backward operator to explain and analyze a weak convergence result of the proposed algorithm in
real Hilbert spaces under certain conditions. As applications, we demonstrate the suggested method
for solving image inpainting and image restoration problems.
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1. Introduction

In this study, let # be a real Hilbert space with an inner product (-, -) and the induced
norm || - ||. Let N be the set of all positive integers and R be the set of all real numbers.
The operator 7 : H — ‘H denotes the identity operator. Weak and strong convergence are
denoted by the symbols — and —, respectively.

In recent years, the convex minimization problem in the form of the sum of two convex
functions plays and important role in solving real-world problems such as in signal and
image processing, machine learning and medical image reconstruction, see [1-10], for
instance. This problem can be written in the following form:

minimize ¢1(z) + ¢2(z), 1)
zeH

where ¢; : H — R is a convex and differentiable function such that V¢, is £-Lipschitz
continuous and ¢, : H — R U {oo} is a convex and proper lower semi-continuous function.
Symmetry, or invariance, serves as the foundation for the solution of problem (1). The
solution set for problem (1) is equivalent to the fixed point Equation (2),

z= proxmz(I —oV¢r)(z), (2)

where ¢ > 0, prox, is the proximity operator of ¢p and V¢, stands for the gradient of ¢;.

It is known that if the step size o € (0,2/L), then proxmpz(I — oV¢y)(z) is nonexpansive.
For the past decade, many algorithms based on fixed point method were proposed to solve
the problem (1), see [4,8,11-15].
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Lions and Mercier proposed the forward-backward splitting (FBS) algorithm [6] as the
following:
2 = prox,, (T — ok V1)(z"), VkeN, @)

wherez! € Hand 0 < 03 < 2/L.
Combettes and Wajs [3] studied the relaxed forward-backward splitting (R-FBS) method
in 2005, which was defined as follows:

=2k — o Ve (2F), K=+ Bk(proxgk(p2 () =25, VkeN, 4)

where ¢ € (0, min(1, %)), ZLeRN, 0 € [e,% —¢| and By € [e,1].

An inertial technique is often used to speed up the forward-backward splitting pro-
cedure. As a result, numerous inertial algorithms were created and explored in order
to speed up the algorithms’ convergence behavior, see [14,16-18] for example. Beck and
Teboulle [17] recently published FISTA, a fast iterative shrinkage-thresholding algorithm to
solve the problem (1). The following are the characteristics of FISTA:

1+ /1+4¢2 Ch—1

t = =
k+1 9 k

7

ter1
1
yk = pI‘OX%(PZ (- ngbl)(zk), @)
Zk+1 — ]/k +0Ck(]/k _ykfl), k€N,

where z! = ¥ € RN, #; = 1. It is worth noting that ay is an inertial parameter that determines
the momentum y* — y*~1.

In this work, we are interested to construct a new accelerated algorithm for finding
a common element of the convex minimization problems (6) by using inertial and fixed
point techniques of forward-backward operators:

min ¢1(x) + ¢2(x), and min w(x) + wy(x), (6)
xeH xeH

where py : H - R, ¢1: H — R,wy : H — RU{c0o} and wy : H — RU {co} are convex

and proper lower semi-continuous function. Then, we prove a weak convergence result

of the proposed algorithm in real Hilbert spaces under certain conditions and illustrate

the theoretical results via some numerical experiments in image inpainting and image

restoration problems.

2. Preliminaries

Basic concepts, definitions, notations and some relevant lemmas for usage in the
following parts will be discussed in this section.

Let ¢ : H — RU {co} be a convex and proper lower semi-continuous function. The
proximity operator can be written in the equivalent form:

prox, = (Z + 0p) L H = H, @)
when d¢ is the subdifferential of ¢ given by
0p(z) :={ueH: ¢p(z)+uy—z)<¢ly), YyeH}, VzeH.

We notice that prox;, = P¢, where C C H is a nonempty closed convex set, dc is
the indicator function and P¢ : H — C is the orthogonal projection operator on C. The
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subdifferential operator d¢ is a maximal monotone (for additional information, see [19]),
and the solution of (1) is a fixed point of the operator below:

z € Argmin(¢p; + ¢p) <=z = ProX,, (Z—-0Ve¢1)(2),

where ¢ > 0, and Argmin(¢; + ¢») is solution set for problem (1).
The following Lipschitz continuous and nonexpansive operators are considered. An
operator T : H — H is called Lipschitz continuous if there exists £ > 0 such that

ITx =Tyl < Lllx—yll, Vx,yeH.

When 7 is 1-Lipschitz continuous, it is referred to as nonexpansive. If z = Tz, a pointz € ‘H
is called fixed point of T and Fix(7 ) denotes the set of fixed points for 7.

The operator Z — T is called demiclosed at zero if any sequence {z¥} converges weakly
to z and the sequence {zF — 7z"} converges strongly to zero, then z € Fix(7). If T is a
nonexpansive operator, then Z — 7 is known to be demiclosed at zero [20].

Let 7 : H — Hand {7 : H — H} be such that @ # Fix(T) C N, Fix(7x). Then,
{7} is said to satisfy NST-condition (I) with T~ [21] if for each bounded sequence {z¥} C H,

lim [z — 732" = 0 implies lim ||z — 72¢| = o.
k—reo k—o0

The following basic property on H will be used in the study (see [22]): forall x,y € H
and v € [0,1],

Iy + (1= yll? = vllxl>+ @ = Nyl? =@ = n)lx =yl ®

I £ yl|? = [lx]1* £+ 2(x, y) + ly|I*. ©)

Lemma 1 ([18]). Let ¢ : H — R be a convex and differentiable function such that V¢, is
L-Lipschitz continuous and ¢ : H — R U {oo} be a convex and proper lower semi-continuous

function. Let Ty := prox, o, (Z — ANV ¢r) and T := prox,, (I — AV¢1), where A, A €
(0,2/ L) with Ay — A. Then {T;} satisfies NST-condition (I) with T .

Lemma 2 ([14]). Let {z"} and {a;} be two sequences of non-negative real numbers such that
< (14 ag) 2 + w2, vR> L

Then ZK+1 < & - ]_[;‘:1(1 +2a;), where & = max{z',z2}. Moreover, if Y5> 1 ax < oo, then {zF}
is bounded.

Lemma 3 ([23]). Let {z"} and {w*} be two sequences of non-negative real numbers such that
K< R gk
forallk > 1. If Y5>, wk < oo, then limy_,, 2F exists.

Lemma 4 ([24]). Let {z*} be a sequence in H and @ # @ C H that satisfies
() Forevery z* € ©, limy_,, ||z — z*|| exists;
(I wy(Z5) C O, where wy(2¥) is the set of all weak-cluster points of {z*}.

Then, {ZF} converges weakly to a point in ©.

3. Main Results

In this section, we suggest an inertial forward-backward splitting algorithm to solve
common points of convex minimization problems and prove weak convergence of the
proposed algorithm. Assumptions that will be used throughout this section are as follows:

» ¢ and w; are convex and differentiable functions from H to RR;
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» V¢ and Vw; are Lipschitz continuous with constants £1 and £,, respectively;
» ¢ and w; are convex and proper lower semi-continuous functions from H to R U {oo};
> O:= Argmin(¢; + ¢o) N Argmin(wq + wy) # @.

Remark 1. Let Uy := prox,,, (Z -0 V1) and U = ProX,, (Z—0V).If 0<o0y,0<
2/ L, then Uy and U are nonexpansive operators with Fix(U ) = Argmin(¢; + ¢2) = N2 3 Fix(Uy).
Moreover, if oy — o, then Lemma 1 asserts that {Uy } satisfies NST-condition (I) with U.

Algorithm 1: Given: z°,z! € H. Choose {ax}, {B}, {7k}, {ox} and {0} }.
Fork=1,2,...,do

w* =2 g (z

v = w* + Br(prox,,, (T — oV )w* — wb);
k+1 _ (

k Zk_l);

z 1— ) ProX, 4, (T — ok V1 )k + 75 ProX,-, (T - a,wal)yk,

end for.

Next, the convergence result of Algorithm 1 can be shown as follows:

Theorem 1. Let {z*} be the sequence created by Algorithm 1. Suppose that {ar }, {Bx}, {7k}, {0}
and {0} } are the sequences which satisfy the following conditions:

(A1) By € [a,b] C (0,1),7 € [c,d] C (0,1) Vk € N, for some a,b,c,d € R witha < b and
c<d;

(A2) oy > 0,Vk € Nand Y17 | ay < oo;

(A3) 0 < oy,0 <2/Lq,0<0f,0" <2/L, Vk € Nsuch that o — o and o — ¢* ask — oco.

Then, the following holds:
i) |2 -z < 8]_[5-‘:1(1 + 2aj), where € = max{||z! —z*||, ||2* — z*||} and z* € ©.
(ii) {zF} converges weakly to common point in @ := Argmin(¢; + ¢o) N Argmin(w; + w;).

Proof. Define operators Uy, Ty, U, T : H — H as follows:

le = prOXUk(PZ (I — Uchpl), U = proxmpz (I — U'V(Pl),
T := ProX, ., (Z - 0ogVwr) and T := prox,.,, (Z — c*Vwy).

Then, Algorithm 1 can be written as follows:

wh = 2K 4 (25 — 2571); (10)
k _ _k k ky.
Y =w + Br(Upw" — w"); (11)
= (1 = U + 9 Try (12)
Let z* € ©. By (10), we have
loo* — 2| < 125 = 2*[| + al|2F — 2571 (13)

By (11)—(13) and the nonexpansiveness of U and 7, we have
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|21 — 25| < (1= ) thew” — 27| + el| T/ = 2|
< (1=l =2+ wlly* -2
< (1= )k = 27|+ e (1 = B o — 27 + Belltha® — 2
< ot =2
< l2F = 2]+ el = 271 (14)
This implies
I =2 < (1 a2 = 2 + el |7 = 7). (15)

When we apply Lemma 2 to the Equation (15), we obtain |21 —z*|| < £ H};l (1+24),

where & = max{||z! — z*|, ||z? — z*||}. Hence, the proof of (i) is now complete.

By (15) and condition (A2), we have that {z¥} is bounded. This implies Y3 ; ot [|2F —
ZF-1|| < 0. By (14) and Lemma 3, we obtain that limy_,, ||z — z*|| exists. By (9) and (10),
we obtain

[ = 2*|2 < (|25 = 2 + ag12* — 25?4 2| 2 — 2| 2F - 2. (16)
By (8), (11) and the nonexpansiveness of U, we obtain
Iy =217 = (1= B)[[w" — 2*[* + Bellthw® — 2> — Bi(1 — i) | w* — Uy |
< o = 272 = Bi(1 = Br)[[wo" — U > (17)
By (8), (12), (16), (17) and the nonexpansiveness of Uy and T, we have
127 — 2512 < (1= ) [Uw® = 212 + vl Tr* = 27117 — 3 (1= v | Tay* — g2
< (1= yo)llwh =217 + wlly* = 2 = 11 = 1) | Ty — tga®|?
<l — 2P = peBi(1 = Bio) " — Uhaw™ || = i (1 = 7i0) | Tay* — Upew® |2
<25 = 2% |2 + ag 12 = 2P+ 20| 2F - 2|25 - 25|
— Bi (1 = Bio) @ — U || = i (1 = ) | Ta* — Ugw® || (18)

From (18) and by condition (A1), (A2), Y5>, ax||zF — zF71|| < oo and limy_,, ||zF — z*|
exists, we obtain

lim || Tey* — Up®|| = lim ||w* — Uw®|| = 0 and lim ||y* — ¥ = 0. (19)
k—oc0 k—o00 k—oc0
From (19), we obtain
1Ty —yFIl < I Ty — || + [t — || + [|w* = y¥[| = 0 as k=0, (20)
From (10) and Y2 ; a||zF — 2F71|| < o0, we have
[k — 28| = a||2F = 2F7Y| = 0 as k — oco. (21)

Since {z¥} is bounded, we have wy(zF) # @ . By (19) and (21), we obtain wy,(zF) C
wi(w*) C wy(y¥). By Condition (A3) and Remark 1, we know that {24} and {7;} satisfies
NST-condition (I) with ¢/ and 7T, respectively. From (19), (20) and by using the demiclosed-
ness of Z — U and T — T, we obtain wy,(z*) C Fix() NFix(7T) = ©. From Lemma 4, we
conclude that {z¥} converges weakly to a point in ®. This completes the proof. []
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Open Problem: Can we choose the step size 0} and 0}’ that does not depend on the
Lipschitz constant of the gradient of the function £ and £,, respectively, and the obtained
convergence result of the proposed algorithm?

If we set ¢1 = w1, ¢ = wp and oy = ¢} for all k > 1, then Algorithm 1 is reduced to
Algorithm 2.

Algorithm 2: Given: z%,z! € H. Choose {a;}, {Bi}, {7} and {oi}.
Fork=1,2,...,do

wk _ Zk + DCk(Zk o Zkfl)’,
vk =k + Br(prox,,, (T — o V) wk — wh);
2 = (1— ) prox, 4, (2 — o Ve )wk + vy ProXg 4, (Z — A

end for.

The following result is immediately obtained by Theorem 1.

Corollary 1. Let {z} be the sequence created by Algorithm 2. Suppose that {ay}, {Bx}, {7« } and

{0y } are the sequences which satisfy the following conditions:

(A1) By € [a,b] C (0,1),7 € [c,d] C (0,1) Vk € N, for some a,b,c,d € R witha < b and
c<d;

(A2) oy > 0,Vk € Nand Y37 | ay < oo;

(A3) 0 < 0y, 0 < 2/Lq,Vk € Nsuch that o, — 0 as k — oo.

Then the following hold:

i) || -z < 51‘[}‘21(1 +2a;), where £ = max{||z! — z*||, |22 — z*||} and
z* € Argmin(¢; + ¢1).

(ii)  {zF} converges weakly to a point in Argmin(¢p; + 7).

4. Applications

For this part, we apply the Algorithm 1 to solving constrained image inpainting
problems (22) and apply the Algorithm 2 to solving image restoration problems (24). As
image quality metrics, we utilize the peak signal-to-noise ratio (PSNR) in decibel (dB) [25],
which is formulated as follows:

2552
PSNR := 1010g10<>,
il —zl3

where z and M are the original image and the number of image samples, respectively. All
experimental simulations are performed in MATLAB\R2022a on a PC with an Intel Core-i5
processor and 4.00 GB of RAM running Windows 8 64-bit.

4.1. Image Inpainting Problems

In this experiment, we apply the Algorithm 1 to solving the following constrained
image inpainting problems [13]:

1
min | PA(z°) = Pa(2)[IE + 7llz]+, (22)
zeC 2

where 20 € R"™*" is a given image, {z?j}(i,j)e A are observed, A is a subset of the index

set {1,2,3...,m} x {1,2,3...,n}, which indicates where data are available in the image
domain and the rest are missed, C = {z € R"*" | z;; > 0} and define P, by

0 . .
PA(ZO) _ { Zij’ (l,]) € A,

0, otherwise.
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In Algorithm 1, we set

$1(2) = %IIPA(ZO) ~ Pa(2)lIF ¢2(2) = 7llzll, wi(z) =0 and wa(z) = de(2),

where T > 0 is regularization parameter, || - || is the Frobenius matrix norm and || - ||« is the
nuclear matrix norm. Then, ¢1(z) is convex differentiable and V1 (z) = Px (z°) — Pa(z)
with 1-Lipschitz continuous. We note that the proximity operator of ¢, (z) can be computed
by the singular value decomposition (SVD), see [26], and the proximity operator of w;(z) is
the orthogonal projection onto the closed convex set C. Therefore, Algorithm 1 is reduced
to Algorithm 3 which can be used for solving constrained image inpainting problems (22),
we have the following algorithm:

Algorithm 3: Given: z°,z' € H. Choose {a;}, {Bt}, {7«}, and {0t }.
Fork = 1,2,...,d2]k

= 2F 4 (2F — 21,
Y = @ + Br(prox,,, (T — o Ve )w* — wh);
k+1 _ (

z 1= 7%) Prox,, 4, (T — x Ve )" + 1 Pey”,

end for.

In the standard Gallery, we marked and fixed the damaged portion of the image, and
we compared Algorithm 3 with different inertial parameters settings. The following are the
details of the parameters for Algorithm 3:

ﬁk:k+l'7k:k+1'ak: L otherwise,

0.9k 0.01k { or if 1<k<M
2k

where M is a positive integer depending on the number of iterations of Algorithm 3.
The regularization parameter was set to T = 0.01 and the stopping criterion is as
follows:
1251 — 2|
1211

where ¢ is a given small constant. The number of iterations is indicated by Iter., and CPU
time is indicated by CPU (second). We use the parameters selection cases I-V in Table 1 to
evaluate the performance of Algorithm 3. Table 2 displays the results that were achieved.
We observe from Table 2 that when the stopping criterion e = 10> or at the 2000th iteration,
Algorithm 3 with inertial parameter (Case V) outperforms the other cases in terms of PSNR
performance. We may infer from Table 2 that Algorithm 3 is more effective at recovering
images when inertial parameters are added. The test image and the restored images are
shown in Figures 1 and 2.

<g,

Figure 1. Test image.
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Table 1. The different inertial parameters settings.

Cases Inertial Parameters
! Pk =0
1I Pk = 0.5
111 px =09
1 1+4/1+482
v pk:ttijrtlzllthrl:Tk
v Pr = Fig

Table 2. Results of comparing the selection of inertial parameters in terms of number of iterations,
CPU time, PSNR, and the stopping criteria for Algorithm 3.

oy Inertial Parameters Iter. CPU PSNR (dB) e
Case I 2000 148.6537 23.1486 4.6305 x 107
Case Il 2000 148.7307 27.1841 5.4313 x 107>
0.5 Case III 1225 91.3319 33.1603 9.9616 x 10~°
Case IV 2000 148.1541 33.3112 1.8945 x 105
Case V 878 65.1786 33.3264 9.9611 x 10~°
Casel 2000 147.9165 27.1766 5.4335 x 107>
Case II 2000 148.2205 32.1462 2.5990 x 107>
1 Case I1I 682 50.4207 33.2415 9.9935 x 10~°
Case IV 1692 125.4178 33.3025 9.9841 x 107°
Case V 852 62.9013 33.3276 9.9929 x 10~°
Casel 2000 150.4054 29.2670 4.8888 x 107>
Case Il 2000 147.7252 32.9289 1.2150 x 107°
1.3 Case III 542 40.1375 33.2605 9.9835 x 10~°
Case IV 1485 109.8176 33.3038 9.9924 x 10~°
Case V 835 61.5336 33.3123 9.9484 x 10~°

(a) PSNR = 16.6947

4

(b) Itr.=2000 : PSNR=29.2670  (c) Itr.=2000 : PSNR=32.9289

4 (Y]]

Figure 2. The painted image and restored images. (a) The painted image; (b—f) Images that have
been recovered for cases I through V with o = 1.3, respectively.

To solve a general convex optimization problem, model the sum of three convex
functions in the form:

min ¢1(x) + p2(x) + P3(x), (23)
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where ¢1 : H — R, ¢ : H — RU {oo} and ¢3 : H — R U {oo} are convex and proper lower
semi-continuous function and ¢ is a differentiable function with a £-Lipschitz continuous
gradient. Cui et al. introduced an inertial three-operator splitting (iTOS) algorithm [13] which
can be applied to solving constrained image inpainting problems (22).

Next experiment, we set ¢1(z) = %HPA (29) — Pa(2)|12, ¢2(z) = T|z||+, and ¢3(z) =
d¢(z), for Algorithm 4 (iTOS algorithm) and use the parameters selection as in Table 3 to
evaluate the performance. Table 3 displays the results that were achieved. We observe
from Tables 2 and 3 that when the stopping criterion e = 10> or at the 2000th iteration, the

Algorithm 3 with inertial parameter (Case V) outperforms all cases of the iTOS algorithm
in terms of PSNR performance.

Algorithm 4: An inertial three-operator splitting (iTOS) algorithm [13].
Letz%,z! € Hand A € (0, 2¢), where & € (0,1). Fork > 1, let

W =2 (-2

]/553 = prox,,, wk;
y’é)z = prox,,, (Zy]q‘,3 — yk — /\chl(ygs));

=0k + Bih, — vhy),

k—l).

7

where {a;} is nondecreasing withk > 1,0 < ap < a < land forallk > 1, and
B,a,b > 0 such that

2 _
a*(1+a)+aa b a[a(1+a)+ab+a],where&:2i

b>
1—a?

< Br <
and0<p=<hes i adFa) Fab1d

™

Table 3. Results of comparing the selection of parameters in terms of number of iterations, CPU time,
PSNR, and the stopping criteria for iTOS algorithm.

Oy Parameters Iter. CPU PSNR (dB) £
ap =016, =14 2000 150.3057 25.3434 5.5297 x 107>
ap =02,8, =08 2000 152.3218 23.0876 4.6797 x 107>
0.5 ar =0.5,8, =03 2000 151.0935 21.4506 3.5078 x 107>
ap =08, =04 2000 161.5143 27.0492 5.5804 x 107>
ar =098, =05 2000 163.1106 30.4406 3.9901 x 10~°
ap =018, =14 2000 150.6947 30.2252 4.7538 x 107>
ar =02,8, =08 2000 150.9510 27.0585 5.5603 x 107>
1 ap =0.5,8, =03 2000 164.3304 23.9033 5.0955 x 107>
ar =088, =04 2000 156.7255 30.9755 4.0485 x 107>
ar =09, =05 2000 158.6223 25.3198 7.2758 x 107°
ap =01,8=14 2000 149.7497 30.9921 4.0100 x 10~°
ar =02,6, =08 2000 151.2015 29.0476 5.2936 x 107>
1.3 ar =0.5,8, =03 2000 153.6181 25.3584 5.5326 x 10
ap =08, 6, =04 2000 155.3317 30.3421 3.9970 x 107>
ar =09,B, =05 2000 155.7551 229716 9.3178 x 10>

4.2. Image Restoration Problems

In this experiment, we apply the Algorithm 2 to solving the image restoration problems
by using the LASSO model [25]:

. (1 2
min< = [|Bz —€l||5 4+ 7|z , 24
min { 3Bz — el + vzl @
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where 7 > 0, || - ||1 is the [;-norm and || - || is the Euclidean norm.

In Algorithm 2, we set ¢;(z) = %l — Bz||§ and ¢»(z) = 7||z||1, where € is the
observed image and B = RW, when R and W are the kernel matrix and 2-D fast Fourier
transform, respectively.

We will use two test photos (Pepper and Bird, with sizes of 512 x 512 and 288 x 288,
respectively) to exhibit two scenarios of blurring processes in Table 4 and add a random
Gaussian white noise 10~°, with the original and blurred images shown in Figure 3.

Table 4. Processes of blurring in Detail.

Scenarios Kernel Matrix
I Gaussian blur of filter size 9 x 9 with standard deviation 6 = 17
11 Motion blur specifying with motion length of 21 pixels and motion orientation 15°

We examine and compare the efficiency of our algorithms (Algorithm 2 := ALG 2)
to that of FBS, R-FBS and FISTA algorithms. The image restoration performance of the
examined methods is next tested by setting as described in (25) and using blurred images
as starting points. For all algorithms, the maximum number of iterations is set at 300. The
regularization parameter in the LASSO model (24) is set to T = 10~°. The following are the
parameters for the studied algorithms under consideration:

O = (25)

1
Z/ ﬁk =" = k+1’ 7 otherwise,

N

0.9k {ﬁ if 1<k<M
k=9 1

where M is a positive integer depending on the number of iterations of Algorithm 2.
Figures 4—7 present the deblurring test images by the studied algorithms. In Figure
8, we see that the graph of PSNR of Algorithm 2 is higher than the others, which means
that the efficiency of restored images by Algorithm 2 is better than the other methods. The
number of iterations is indicated by Iter., and CPU time is indicated by CPU (second).

(b) Noise and Blurring I : (c) Noise and Blurring II :
(a) Original Image "Pepper"  PSNR = 24.9234 PSNR = 22.5437

-

(e) Noise and Blurring I : (f) Noise and Blurring II :
(d) Original Image "Bird" PSNR = 24.0485 PSNR = 20.8343

Figure 3. The deblurring images of Pepper and Bird.



Symmetry 2023,15,7 11 0f 14

(a) FBS : PSNR = 31.0502 (b) R-FBS : PSNR = 31.0161
Iter. = 300 : CPU = 60.6599 Iter. = 300 : CPU = 63.7107

P

(c) FISTA : PSNR = 35.9609 (d) ALG 2 : PSNR = 37.4027
Iter. = 300 : CPU = 61.4995 Iter. = 300 : CPU = 98.4046

Figure 4. The PSNR, Iter. and CPU of the FBS, R-FBS, FISTA and ALG 2 for scenario I of the Pepper.

(a) FBS : PSNR = 30.0248 (b) R-FBS : PSNR = 29.9726
Iter. = 300 : CPU = 58.2310 Iter. = 300 : CPU = 64.7440

3

(c) FISTA : PSNR = 38.5825 (d) ALG 2 : PSNR = 40.0226
Iter. = 300 : CPU = 62.6794 Iter. = 300 : CPU = 90.0035

Figure 5. The PSNR, Iter. and CPU of the FBS, R-FBS, FISTA and ALG 2 for scenario II of the Pepper.
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(a) FBS : PSNR = 31.6556 (b) R-FBS : PSNR = 31.6111
Iter. = 300 : CPU = 14.9200 Iter. =300 : CPU =16.173

(c) FISTA : PSNR = 37.9241 (d) ALG 2 : PSNR = 39.6178
Iter. = 300 : CPU = 15.8337 Iter. = 300 : CPU = 25.3616

Figure 6. The PSNR, Iter. and CPU of the FBS, R-FBS, FISTA and ALG 2 for scenario I of the Bird.

(a) FBS : PSNR = 29.8541 (b) R-FBS : PSNR = 29.7941
Iter. =300 : CPU = 14.8847 Iter. =300 : CPU =16.1327

(c) FISTA : PSNR = 37.5210 (d) ALG 2 : PSNR = 39.2515
ITter. =300 : CPU = 15.6691 Iter. =300 : CPU =25.1109

Figure 7. The PSNR, Iter. and CPU of the FBS, R-FBS, FISTA and ALG 2 for scenario II of the Bird.
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Figure 8. The PSNR graphs of the studied algorithms: (a,b) for Pepper; (c,d) for Bird.

5. Conclusions

In this research, an inertial forward-backward splitting algorithm for solving a com-
mon point of convex minimization problems is developed. We investigated the weak
convergence of the suggested algorithm based on the fixed point equation of the forward-
backward operator under some suitable control conditions. Finally, we use numerical
simulations to show the benefits of the inertial terms in the studied algorithms for the
constrained image inpainting problems (22) and the image restoration problems (24).
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