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Abstract: Aggregation operators (AOs) are utilized to overcome the influence of uncertain and 
vague information in different fuzzy environments. A multi-attribute decision-making (MADM) 
technique plays a vital role in several fields of different environments such as networking analysis, 
risk assessment, cognitive science, recommender systems, signal processing, and many more do-
mains in ambiguous circumstances. In this article, we elaborated the notion of Aczel–Alsina t-norm 
(TNM) and t-conorm (TCNM) under the system of complex Pythagorean fuzzy (CPyF) sets 
(CPyFSs). Some basic operational laws of Aczel–Alsina TNM and TCNM are established including 
Aczel–Alsina sum, product, scalar multiplication, and power operations based on CPyFSs. We es-
tablished several AOs of CPyFSs such as CPyF Aczel–Alsina weighted average (CPyFAAWA), and 
CPyF Aczel–Alsina weighted geometric (CPyFAAWG) operators. The proposed CPyFAAWA and 
CPyFAAWG operators are symmetric in nature and satisfy the properties of idempotency, mono-
tonicity, boundedness and commutativity. To solve an MADM technique, we established an illus-
trative example to select a suitable candidate for a vacant post in a multinational company. To see 
the advantages of our proposed AOs, we compared the results of existing AOs with the results of 
newly established AOs. 

Keywords: complex pythagorean fuzzy values; aggregation operators; Aczel–Alsina t-norm;  
multi-attribute decision-making method 
 

1. Introduction 
The purpose of the MADM technique is to categorize and deal with problems using 

a variety of different criteria. The MADM methodology has become increasingly popular 
among decision-makers as a consequence of its numerous applications in a variety of dis-
ciplines, including operation research, engineering technology management science, etc., 
through collecting the information into a single useful form, AOs are essential in helping 
to address all MADM issues. The decision-makers in real decision making categorize the 
alternatives using a variety of evaluation techniques, such as interval numbers or crisp 
numbers. Due to the growing uncertainty involved and the ambiguities of data, it has 
become more challenging for decision makers to solve decision-making problems using 
precise numerical values. Zadeh [1] introduced the novel idea of the fuzzy set (FS) in 1965, 
by launching the membership value (MV), whose range lies between 0 and 1, to address 
this issue. In order to tackle decision-making problems involving uncertainties and ambi-
guities in the data more precisely than a crisp set, Zadeh’s creation of the FS gives decision 
making a plate form. To overcome the decision-making difficulties, Atanassov [2] en-
larged the concepts of FS in the form of intuitionistic FS (IFS) in which the sum of the MV 
and the non-membership value (NMV) lies on interval [0,1]. i.e 0 ≤ 𝛱𝛱 + 𝛯𝛯 ≤ 1, where 𝛱𝛱 ∈
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[0,1] represents MV and 𝛯𝛯 ∈ [0,1] represents NMV in an IFSs. In some scenarios, when 
IFSs failed to deal with uncertain and vague information in fuzzy system, Yager [3] pro-
vided an innovative idea of IFS in the form of Pythagorean FS (PyFS) in such a way that 
the sum of the square of MV and NMV lies on interval [0,1], i.e., 0 ≤ 𝛱𝛱2 + 𝛯𝛯2 ≤ 1. Several 
researchers have plenty of commentary the above-discussed fuzzy environment. Adlass-
nig [4] generalized the theory of FSs to formalize the uncertain information under the sys-
tem of medical diagnosis. Atanassov [5] also explored concepts of IFS in the framework 
of interval-valued IFS (IVIFS) with upper and lower cases of MV and NMV of an IVIFS. 
Mohd and Abdullah [6] proposed a study of several similarity measured distances based 
on PyFSs. 

It has been determined that the MCDM concerns were resolved, as the above current 
research in FS, IFS, and extended sets, such as PyFSs settings, are only capable of handling 
the vagueness and ambiguity of the data. All of these models are unable to address the 
lack of historical knowledge and data sensitivity. However, a complex data collection can 
handle both the periodicity and the uncertainty of the data at the same time. To deal with 
these circumstances, Ramot et al. [7,8] proposed the idea of a complex fuzzy set (CFS). 
They suggested that 𝛱𝛱𝑒𝑒𝑖𝑖𝛼𝛼𝛱𝛱, whose range is expanded from unit disc to a complex plane, 
where 𝛱𝛱 ∈ [0, 1] represents the MV of an amplitude term of a CFS and 𝛼𝛼𝛱𝛱 ∈ [0, 2𝜋𝜋] repre-
sents MV of phase terms of a CFS. Alkouri and Salleh [9] extended the theory of CFSs in 
the form of complex IFS (CIFS), having two aspects of MV and NMV in such a way that 
�𝛱𝛱𝑒𝑒𝑖𝑖𝑖𝑖,𝛯𝛯𝑒𝑒𝜋𝜋𝜋𝜋𝜋𝜋�, 𝑖𝑖 =  √−1. A CIFS satisfied the conditions 0 ≤ 𝛱𝛱 + 𝛯𝛯 ≤ 1 and 0 ≤ 𝛼𝛼 + 𝛽𝛽 ≤
2𝜋𝜋, where 𝛱𝛱 ∈ [0,1] and 𝛯𝛯 ∈ [0,1] represent the MV and NMV of amplitude terms, respec-
tively. In the same way, 𝛼𝛼 ∈ [0,2𝜋𝜋] and 𝛽𝛽 ∈ [0,2𝜋𝜋] represents the MV and NMV of phase 
terms, respectively. Ullah et al. [10] developed an innovative concept of CIFS in the frame-
work of complex PyFS (CPyFSs), and relaxed the condition of CIFS with the square of 
amplitude and phase terms of MV and NMV, respectively. Riaz and Hashmi [11] pro-
vided a new extension of FSs in the form of linear Diophantine FS to handle vagueness 
and uncertainty in the fuzzy system. Akram and Naz [12] introduced an innovative idea 
of PyFS in the framework of CPyFS to cope with uncertain information under an MADM 
approach. Khan et al. [13] utilized the theory of complex T-SFSs to provide some new 
averaging and geometric operators based on power aggregation tools. Ali et al. [14] ex-
plored the idea of complex q-ROFS and developed some new AOs to solve real life prob-
lem using an MADM technique. Mahmood [15] worked on a bipolar soft set to cope with 
uncertain and ambiguous information. We also studied some basic notions of the fuzzy 
environment related to our research work, which are not discussed in the above para-
graphs, seen in [15–18]. 

AOs are essential tools to cope with uncertain and vague information in different 
fuzzy environments. Several researchers worked on a distinct model of classical set theory 
and fuzzy systems. We studied some AOs developed by Xu [19] in the form of weighted 
averaging operators and some special cases based on IFSs. Wei [20] invented some AOs 
in the form of induced weighted geometric operators, and ordered weighted geometric 
operators and hybrid weighted geometric operators. Peng and Yuan [21] explored some 
inequalities and invented some AOs of PyF value (PyFV) in the form of generalized 
weighted averaging operators. Akram et al. [22] explored the idea of interval valued T-
FSs based on a Bonferroni mean operator, and established an MADM technique under the 
solar system. Khan et al. [23] extended the concepts of spherical FSs (SFSs) and introduced 
some new AOs of SFSs based on Dombi aggregation tools. Rahman et al. [24] presented a 
list of new AOs of PyFSs-like weighted averaging, and weighted geometric operators with 
some basic deserved characteristics. Mahmood et al. [25] presented some new AOs, an 
innovative concept of PyFS in the form of complex PyFS (CPyFS), to overcome the influ-
ence of vague and ambiguous information under the CPyFS system. Liu et al. [26] ex-
plored the concepts of IFS to deal with vague information, and also developed a list of 
new AOs by utilizing the concepts of Maclaurin symmetric mean operators. Ullah [27] 
utilized the concepts of Maclaurin symmetric mean operators and developed a list of new 
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AOs based on picture FS (PFS). Akram et al. [28] provided some new AOs of PyFS and 
also studied an MADM technique to complete a selection process for the textile industry. 
Chen [29] developed new approaches by utilizing the innovative concept of prioritized 
AOs based on IVIFS. Liu and Wang [30] presented a list of new AOs by using the concepts 
of Archimedean Bonferroni tools under the system of q-rung orthopair FS (q-ROFS) to 
solve a real-life problems based on MADM techniques. Hussain et al. [31] explored a list 
of new AOs and gave an illustrative example to solve an MADM problem for the selection 
of suitable tourism destinations. Garg [32] developed a series of new AOs with entropy 
weight vectors based on IF information. Akram and Shahzadi [33] worked on a new con-
cept of Yager AOs and gave an MADM technique under the system of q-ROFS. Jan et al. 
[34] introduced some new AOs under the system of linguistic cubic information to solve 
an MADM technique. Yang et al. [35] explored an innovative idea of the TOPSIS method 
and developed some new aggregation tools of Fermatean fuzzy integrated weighted dis-
tance to process fuzzy information. Mahmood [18] modified traditional Maclaurin sym-
metric mean operators and developed a list of new AOs in the environment of a bipolar 
complex fuzzy system. Ullah et al. [36] utilized the concepts of T-spherical FSs (T-SFSs) 
and provided some AOs of T-SFSs to solve an MADM problem. 

Menger [37] introduced a new concept of triangular norms based on probabilistic 
metric space in 1942. Klement [38] presented some new aggregated tools by utilizing the 
theory of t-norm (TNM) and t-conorm (TCNM) in different fuzzy information. To aggre-
gate the information in numerous mathematical structures, a series of triangular norms 
were constructed. Information aggregation is critical for solving various MADM issues. 
Many different types of TN and TCN have been applied to the increase in the average and 
geometric aggregation process. The invented TNMs and TCNMs are the Lukasiewicz 
TNM and TCNM [39], drastic TNM and TCNM [40], nilpotent TNM and TCNM [41], 
Frank TNM and TCNM [42], Archimedean TNM and TCNM [43], Einstein TNM and 
TCNM [44], probabilistic TNM and TCNM [45] and Dombi TNM and TCNM [46]. Re-
cently Mahmood et al. [47] proposed a new idea to cope with unpredictable and vague 
information by developing a list of AOs based on the Frank TNM and TCNM under a 
system of interval-valued picture FSs. Liu [48] explored the theory of algebraic and Ein-
stein AOs in the form of Hamacher AOs based on IVIF information. Garg [49] generated 
the concepts of PyFSs and developed some new approaches to geometric AOs by utilizing 
the operations of the Einstein TNM and TCNM in the environment of PyFSs. Liu and 
Wang [30] proposed a list of new AOs by using the fundamental operations of Archime-
dean Bonferroni operators under the system of q-ROFSs with an MADM technique. We 
also studied existing research work seen in the references [50,51]. 

Aczel and Alsina [52] discovered some more reliable and flexible TNMs and TCNMs 
like the Aczel–Alsina TNM (AA-TNM) and the Aczel–Alsina TCNM (AA-TCNM) in 1982. 
We can overcome the impact of unreasonable and unpredictable information in different 
fuzzy environments. Babu and Ahmed [53] worked on several TNMs and TCNMs to clas-
sify the best TNM and TCNM from a family of TNMs and TCNMs. After evaluation, they 
found that AA-TNM and AA-TCNM are more suitable aggregation tools than other ones. 
To see the advantages and benefits of AA-TNM and AA-TCNM, several researchers uti-
lized these aggregation tools in their research works. Recently, Senapati et al. [54] explored 
the concepts of AA-TNM and AA-TCNM and established an illustrative example to solve 
an MAMD technique under the system of IFSs. Senapati et al. [55] also generalized the 
theory of AA-TNM and AA-TCNM and gave a list of new AOs based on IVIFSs. Naeem 
et al. [56] enlarged the concepts of AA-TNM and AA-TCNM with more extensive infor-
mation in the framework of picture FSs (PFSs). Hussain et al. [57] enlarged the concepts 
of T-SFSs and developed some new AOs using the basic operations of AA-TNM and AA-
TCNM. All of the aforementioned invented AOs to handle two tuple information; there is 
a chance of losing information during the aggregation process, whereby a decision maker 
cannot obtain original results for the decision’s purpose. A CPyFS contains more infor-
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mation than FSs, IFSs and PyFSs. Keeping in mind the significance of CPyFSs, we devel-
oped some innovative concepts of AA-TNM and AA-TCNM within the framework of 
CPyFSs. The main contributions of this article are in the following forms: 
(1) We presented some new AOs and fundamental operational laws of CPyFSs. We also 

generalized the basic idea of Aczel–Alsina TNM and TCNM, with their operational 
laws and illustrative examples. 

(2) By using the operational laws of Aczel–Alsina TNM and TCNM, we developed a list 
of new AOs like the CPyFAAWA operator and verified invented AOs with some 
deserved properties. 

(3) Furthermore, we also established the CPyFAAWAG operator based on the defined 
fundamental operational laws of Aczel–Alsina TNM and TCNM. 

(4) To find the feasibility and reliability of our invented methodologies, we explored 
some special cases, like CPyFAA ordered weighted (CPyFAAWAG), average 
(CPyFAAWAG) and CPyFAAOW geometric (CPyFAAOWG) operators, CPyFAA 
hybrid weighted (CPyFAAHW), average (CPyFAAHWA) and CPyFAAHW 
geometric (CPyFAAOWG) operators with some basic properties. 

(5) By utilizing our invented approaches, we solved an MADM technique. We 
established an illustrative example to select a suitable candidate for a vacant post at 
a multinational company. 

(6) To analyse the effectiveness of different parametric values of Ὺ on the results of our 
proposed approaches, we discussed an influence study.  

(7) We checked the reliability and flexibility of our invented approaches, by comparing 
the results of existing AOs with the results of our discussed technique. 
The structure of this manuscript is presented as follows and also displayed in the 

Figure 1: in Section 1, we thoroughly overviewed all previous history of our research 
work; in Section 2, we recall the notions of CFSs, CPyFSs and fundamental operations of 
CPyFSs. In Section 3, we studied the concepts of some existing AOs under the different 
environments of fuzzy systems. In Section 4, we introduced innovative concepts of Aczel–
Alsina operations under the system of CPyF information. In Section 5, we developed sev-
eral AOs of CPyFAAWA operators, and some special cases are also present here. In Sec-
tion 6, we enlarged the idea of CPyFSs and introduced some AOs in the form of CPy-
FAAWG operators with some deserved characteristics. In Section 7, we solved an MADM 
technique to find the reliability and flexibility of our invented AOs, and we gave an illus-
trative example to select a suitable candidate for a multinational company. In Section 8, 
we studied the advantages and verified our invented AOs by comparing the results of 
existing AOs with the results of our invented AOs. In Section 9, we summarized the whole 
article in a single paragraph. 
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Figure 1. Flow chart of this article. 

2. Preliminaries 
We recall the notions of CFS and CPyFSs, and also discussed some basic operations 

of CPyFSs. Further, we studied the notion of score and accuracy function to compare CPyF 
values (CPyFVs). 
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Definition 1 ([7]). Consider Ẁ to be a non-empty set, and a CFS 𝛬𝛬 is defined as: 

𝛬𝛬 =  ��𝑥𝑥,𝛱𝛱𝛬𝛬(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛬𝛬(𝜘𝜘)��: 𝑥𝑥 ∈ Ẁ�,   𝑖𝑖 =  √−1  

where 𝛱𝛱𝛬𝛬(𝜘𝜘) ∈  [0, 1] and 𝛼𝛼𝛬𝛬(𝜘𝜘) ∈  [0, 1] represents the membership value (MV) of amplitude 
terms and phase terms of 𝛬𝛬, respectively. A CFS must satisfy the condition: 

0 ≤ 𝛱𝛱𝛬𝛬(𝜘𝜘) ≤  1 and 0 ≤ 𝛼𝛼𝛬𝛬(𝜘𝜘) ≤  1.  

In the following Table 1, we define the symbols and their meanings. 

Table 1. Symbols and their meanings. 

Symbol Meaning Symbol Meaning 
Ẁ Non-empty set 𝑹𝑹˘ Score function 
𝛱𝛱 MV of amplitude term 𝐀𝐀˘ Accuracy function 
𝛼𝛼 MV of phase term 𝜴𝜴 CPyFV 
𝛯𝛯 NMV of amplitude term 𝕯𝕯 Weight vector 
𝛽𝛽 NMV of phase term Ŧ TNM 
ѱ Alternative Ṥ TCNM 
ʊ Attribute 𝓡𝓡 Decision matrix 

Definition 2 ([9]). A CPyFS 𝛬𝛬 on a Ẁ is defined as: 

𝛬𝛬 =  � 𝛱𝛱𝛬𝛬(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛬𝛬(𝜘𝜘)�,𝛯𝛯𝛬𝛬(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛬𝛬(𝜘𝜘)�: 𝑥𝑥 Ẁ�, 𝑖𝑖 =  √−1   

where 𝛱𝛱𝛬𝛬(𝜘𝜘) ∈  [0, 1] and 𝛼𝛼𝛬𝛬(𝜘𝜘) ∈  [0, 1] represents amplitude terms and phase terms of MV, 
respectively. Similarly 𝛯𝛯𝛬𝛬(𝜘𝜘) ∈  [0, 1] and 𝛽𝛽𝛬𝛬(𝜘𝜘) ∈  [0, 1] represents amplitude and phase terms 
of NMV, respectively. A CPyFS must satisfy these conditions: 

0 ≤ 𝛱𝛱𝛬𝛬2(𝑥𝑥) + 𝛯𝛯𝛬𝛬2(𝜘𝜘) ≤  1 and 0 ≤ �𝛼𝛼𝛬𝛬(𝜘𝜘)�2 + �𝛽𝛽𝛬𝛬(𝜘𝜘)�2 ≤  1  

For the sake of convenience, the pair 𝛬𝛬 = �𝛱𝛱(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼(𝜘𝜘)�,𝛯𝛯(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽(𝜘𝜘)�� is known as CPyFV. 

Definition 3 ([31]). Let 𝛺𝛺 = �𝛱𝛱(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼(𝜘𝜘)�,𝛯𝛯(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽(𝜘𝜘)�� be a CPyFV; then, the score func-
tion 𝑅𝑅˘(𝛺𝛺) of CPyFVs is given as: 

𝑅𝑅˘(𝛺𝛺) =
�𝛱𝛱(𝜘𝜘)�2 − �𝛯𝛯(𝜘𝜘)�2 + �𝛼𝛼(𝜘𝜘)�2 − �𝛽𝛽(𝜘𝜘)�2

2
 (1) 

and the accuracy function is given as: 

A˘(𝛺𝛺) =
�𝛱𝛱(𝜘𝜘)�2 + �𝛯𝛯(𝜘𝜘)�2 + �𝛼𝛼(𝜘𝜘)�2 + �𝛽𝛽(𝜘𝜘)�2

2
 (2) 

where 𝑅𝑅˘ (𝛺𝛺) ∈  [−1, 1] and 𝐴𝐴˘ (𝛺𝛺)  ∈  [0, 1]. 

Definition 4 ([33]). Let 𝛺𝛺1 = �𝛱𝛱1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼1(𝜘𝜘)�,𝛯𝛯1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽1(𝜘𝜘)��  and 𝛺𝛺2 =
�𝛱𝛱2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼2(𝜘𝜘)�,𝛯𝛯2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽2(𝜘𝜘)�� be two CPyFVs. Then 
i. If 𝑅𝑅˘(𝛺𝛺1) < 𝑅𝑅˘(𝛺𝛺2), then 𝛺𝛺1 < 𝛺𝛺2, 
ii. If 𝑅𝑅˘(𝛺𝛺1) = 𝑅𝑅˘(𝛺𝛺2), then we need to find out the accuracy function: 

i. If A˘(𝛺𝛺1) < 𝐴𝐴˘(𝛺𝛺2), then 𝛺𝛺1 < 𝛺𝛺2, 
ii. If A˘(𝛺𝛺1) = 𝐴𝐴˘(𝛺𝛺2), then 𝛺𝛺1 = 𝛺𝛺2. 

Definition 5 ([32]). Let 𝛺𝛺1 = �𝛱𝛱1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼1(𝜘𝜘)�,𝛯𝛯1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽1(𝜘𝜘)��  and 𝛺𝛺2 =
�𝛱𝛱2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼2(𝜘𝜘)�,𝛯𝛯2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽2(𝜘𝜘)�� be two CPyFVs. Then 
i. 𝛺𝛺1 ⊆ 𝛺𝛺2 if 𝛱𝛱1 ≤ 𝛱𝛱2,  𝛼𝛼1 ≤ 𝛼𝛼2,  𝛯𝛯1 ≥ 𝛯𝛯2 and  𝛽𝛽1 ≥ 𝛽𝛽2. 
ii. 𝛺𝛺1 ⊆ 𝛺𝛺2 if 𝛱𝛱1 = 𝛱𝛱2,  𝛼𝛼1 = 𝛼𝛼2,  𝛯𝛯1 = 𝛯𝛯2 and  𝛽𝛽1 = 𝛽𝛽2.  
iii. 𝜴𝜴𝟏𝟏

𝒄𝒄 = �𝜩𝜩𝟏𝟏(𝝒𝝒)𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐�𝜷𝜷𝟏𝟏(𝝒𝝒)�,𝜫𝜫𝟏𝟏(𝝒𝝒)𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐�𝜶𝜶𝟏𝟏(𝝒𝝒)��. 
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3. Existing Aggregation Operators 
In this part, we recall the existing concepts of Aczel–Alsina AOs under the system of 

IFS and PyFs. 

Definition 6 ([55]). Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘),𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)� , ƺ = 1,2, … , ῃ be a collection of IF numbers, with 
weight vector 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ) , such that 𝔇𝔇ƺ ∈ [0,1], ƺ =
1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the IF Aczel–Alsina weighted averaging operator is given as: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ𝛺𝛺�

= 1 − 𝑒𝑒−�∑ 𝔇𝔇ƺ�−𝑙𝑙𝑙𝑙(1−𝛱𝛱𝛺𝛺)�Ὺῃ
ƺ=1 �

1
Ὺ

, 𝑒𝑒−�∑ 𝔇𝔇ƺ�−𝑙𝑙𝑙𝑙(𝛯𝛯𝛺𝛺)�Ὺῃ
ƺ=1 �

1
Ὺ

 
 

Definition 7 ([58]). Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘),𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)� , ƺ = 1,2, … , ῃ be the collection of PyF numbers 
with weight vector  𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ)  such that 𝔇𝔇ƺ ∈ [0,1], ƺ =
1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the PyF Aczel–Alsina weighted averaging operator is given as: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ𝛺𝛺�

=
�

1 − 𝑒𝑒−�∑ 𝔇𝔇ƺ�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺
2 ��

Ὺῃ
ƺ=1 �

1
Ὺ

, 𝑒𝑒−�∑ 𝔇𝔇ƺ�−𝑙𝑙𝑙𝑙(𝛯𝛯𝛺𝛺)�Ὺῃ
ƺ=1 �

1
Ὺ

 

 

Definition 8 ([58]). Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘),𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)� , ƺ = 1,2, … , ῃ be the collection of PyF numbers 
with weight vector  𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ)  such that 𝔇𝔇ƺ ∈ [0,1], ƺ =
1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the PyF Aczel–Alsina weighted geometric operator is given as: 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷�𝜴𝜴𝟏𝟏,𝜴𝜴𝟐𝟐, … ,𝜴𝜴ῃ� = ⨁
ƺ=𝟏𝟏

ῃ
�𝜴𝜴ƺ

𝕯𝕯ƺ�

= 𝒆𝒆−�∑ 𝕯𝕯ƺ�−𝒍𝒍𝒍𝒍(𝜫𝜫𝜴𝜴)�Ὺῃ
ƺ=𝟏𝟏 �

𝟏𝟏
Ὺ

,
�
𝟏𝟏 − 𝒆𝒆−�∑ 𝕯𝕯ƺ�−𝒍𝒍𝒍𝒍�𝟏𝟏−𝜩𝜩𝜴𝜴

𝟐𝟐 ��
Ὺῃ

ƺ=𝟏𝟏 �

𝟏𝟏
Ὺ

 

 

4. Aczel–Alsina Operations Based on CPyFSs 
By utilizing the notions of Aczel–Alsina TNM and TCNM, we explored some funda-

mental operational laws of CPyFSs. We also study the generalization of union and inter-
section of CPyFSs and established some operations of the Aczel–Alsina-like Aczel–Alsina 
sum, product, scalar multiplication and power role. Then, we have: 

Definition 9. Let 𝛺𝛺1 = �𝛱𝛱1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼1(𝜘𝜘)�,𝛯𝛯1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽1(𝜘𝜘)��  and 𝛺𝛺2 =
�𝛱𝛱2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼2(𝜘𝜘)�,𝛯𝛯2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽2(𝜘𝜘)�� be any two CPyFVs. The extension of intersection and the 
union of the given CPyFVs are defined as follows: 

i. 𝛺𝛺1 ∪Ŧ,Ṥ 𝛺𝛺2 = ��
Ṥ �𝛯𝛯1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽1(𝜘𝜘)�,𝛯𝛯2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽2(𝜘𝜘)�� ,
 Ŧ  �𝛱𝛱1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼1(𝜘𝜘)�,𝛱𝛱2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼2(𝜘𝜘)��

�   |𝜘𝜘 ∈ Ẁ� 

ii. 𝛺𝛺1 ∩Ŧ,Ṥ 𝛺𝛺2 = ��
Ŧ �𝛱𝛱1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼1(𝜘𝜘)�,𝛱𝛱2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼2(𝜘𝜘)�� ,

 Ṥ  �𝛯𝛯1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽1(𝜘𝜘)�,𝛯𝛯2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽2(𝜘𝜘)��
�  |𝜘𝜘 ∈ Ẁ� 

where TNM and TCNM are denoted by Ŧ and Ṥ, respectively. 

Definition 10. Consider 𝛺𝛺 = �𝛱𝛱𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺(𝜘𝜘)�,𝛯𝛯𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺(𝜘𝜘)�� , 𝛺𝛺1 =

�𝛱𝛱𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺1(𝜏𝜏)�,𝛯𝛯𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺1(𝜘𝜘)�� and 𝛺𝛺2 = �𝛱𝛱𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺2(𝜘𝜘)�,𝛯𝛯𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺2(𝜘𝜘)�� as 
the three CPyFVs, Ὺ ≥ 1 and 𝛹𝛹 > 0. Then, we have: 
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𝛺𝛺1⨁𝛺𝛺2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒
−��−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺1

2 ��
Ὺ
+ �−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−��−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺1

2 ��
Ὺ
+ �−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒−��−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺1��
Ὺ
+�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺2��

Ὺ
�

1
Ὺ

𝑒𝑒
2𝜋𝜋𝜋𝜋�−��−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺1��

Ὺ
+�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺2��

Ὺ
�

1
Ὺ
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

𝛺𝛺1⨂𝛺𝛺2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒𝑒

−��−𝑙𝑙𝑙𝑙�𝛱𝛱𝛺𝛺ƺ��
Ὺ
+�−𝑙𝑙𝑙𝑙�𝛱𝛱𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−��−𝑙𝑙𝑙𝑙�𝛼𝛼𝛺𝛺ƺ��

Ὺ
+�−𝑙𝑙𝑙𝑙�𝛼𝛼𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

�
1 − 𝑒𝑒

−��−𝑙𝑙𝑙𝑙�1−𝛯𝛯𝛺𝛺1
2 ��

Ὺ
+ �−𝑙𝑙𝑙𝑙�1−𝛯𝛯𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−��−𝑙𝑙𝑙𝑙�1−𝛽𝛽𝛺𝛺1

2 ��
Ὺ
+ �−𝑙𝑙𝑙𝑙�1−𝛽𝛽𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

𝛹𝛹𝛺𝛺 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒
−�𝛹𝛹��−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺

2 ��
Ὺ
��

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝛹𝛹��−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺

2 ��
Ὺ
��

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

 𝑒𝑒
−�𝛹𝛹�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�𝛹𝛹�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞
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𝛺𝛺𝛹𝛹 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒𝑒

−�𝛹𝛹�−𝑙𝑙𝑙𝑙�𝛱𝛱𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�𝛹𝛹�−𝑙𝑙𝑙𝑙�𝛼𝛼𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

�
1 − 𝑒𝑒

−�𝛹𝛹��−𝑙𝑙𝑙𝑙�1−𝛯𝛯𝛺𝛺
2 ��

Ὺ
��

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝛹𝛹��−𝑙𝑙𝑙𝑙�1−𝛽𝛽𝛺𝛺

2 ��
Ὺ
��

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

Example 1. Consider  𝛺𝛺 = �0.56𝑒𝑒2𝜋𝜋𝜋𝜋(0.35), 0.88𝑒𝑒2𝜋𝜋𝜋𝜋(0.47)� , 𝛺𝛺1 = �0.66𝑒𝑒2𝜋𝜋𝜋𝜋(0.05), 0.37𝑒𝑒2𝜋𝜋𝜋𝜋(0.67)� 
and 𝛺𝛺2 = �0.43𝑒𝑒2𝜋𝜋𝜋𝜋(0.08), 0.69𝑒𝑒2𝜋𝜋𝜋𝜋(0.24)� as the three CPyFVs. Then, we have: For Ὺ = 3 and 
𝛹𝛹 = 4: 

𝛺𝛺1⨁𝛺𝛺2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛
�

1 − 𝑒𝑒−��−𝑙𝑙𝑙𝑙(1−(0.66)2)�3+ �−𝑙𝑙𝑙𝑙(1−(0.43)2)�3�
1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜⎜
⎛�

1−𝑒𝑒
−��−𝑙𝑙𝑙𝑙�1−(0.05)2��

3
+ �−𝑙𝑙𝑙𝑙�1−(0.08)2��

3
�

1
3

⎠

⎟⎟
⎞

,

𝑒𝑒−��−𝑙𝑙𝑙𝑙(0.37)�
3+�−𝑙𝑙𝑙𝑙(0.69)�

3�
1
3

𝑒𝑒
2𝜋𝜋𝜋𝜋�−��−𝑙𝑙𝑙𝑙(0.67)�

3+�−𝑙𝑙𝑙𝑙(0.24)�
3�
1
3�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

= �0.2513𝑒𝑒2𝜋𝜋𝜋𝜋(0.0003), 0.3638𝑒𝑒2𝜋𝜋𝜋𝜋(0.2375)� 

 

𝛺𝛺1⨂𝛺𝛺2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒𝑒−��−𝑙𝑙𝑙𝑙(0.66)�

3+�−𝑙𝑙𝑙𝑙(0.43)�
3�
1
3

𝑒𝑒
2𝜋𝜋𝜋𝜋�𝑒𝑒−��−𝑙𝑙𝑙𝑙(0.05)�

3
+�−𝑙𝑙𝑙𝑙(0.08)�

3
�
1
3
�

,

�
1 − 𝑒𝑒−��−𝑙𝑙𝑙𝑙(1−(0.37)2)�3+ �−𝑙𝑙𝑙𝑙(1−(0.69)2)�3�

1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜⎜
⎛�

1−𝑒𝑒
−��−𝑙𝑙𝑙𝑙�1−(0.67)2��

3
+ �−𝑙𝑙𝑙𝑙�1−(0.24)2��

3
�

1
3

⎠

⎟⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

= �0.4163𝑒𝑒2𝜋𝜋𝜋𝜋(0.0301), 0.2951𝑒𝑒2𝜋𝜋𝜋𝜋(0.2611)� 
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4𝛺𝛺 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒−�4��−𝑙𝑙𝑙𝑙(1−(0.66)2)�3��
1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�4��−𝑙𝑙𝑙𝑙�1−(0.05)2��

3
��

1
3

⎠

⎟
⎟
⎟
⎞

,

 𝑒𝑒−�4�−𝑙𝑙𝑙𝑙(0.37)�
3�
1
3

𝑒𝑒
2𝜋𝜋𝜋𝜋�𝑒𝑒−�4�−𝑙𝑙𝑙𝑙(0.67)�

3
�
1
3
�

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

= �0.6706𝑒𝑒2𝜋𝜋𝜋𝜋(0.4328), 0.8316𝑒𝑒2𝜋𝜋𝜋𝜋(0.3366)� 

 

𝛺𝛺4 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ 𝑒𝑒−�4�−𝑙𝑙𝑙𝑙(0.66)�
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= �0.4333𝑒𝑒2𝜋𝜋𝜋𝜋(0.2200), 0.9518𝑒𝑒2𝜋𝜋𝜋𝜋(0.5720)� 

 

Theorem 1: Let 𝛺𝛺 = �𝛱𝛱𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺(𝜘𝜘)�,𝛯𝛯𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺(𝜘𝜘)�� , 𝛺𝛺1 =

�𝛱𝛱𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺1(𝜘𝜘)�,𝛯𝛯𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺1(𝜘𝜘)�� and 𝛺𝛺2 = �𝛱𝛱𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺2(𝜘𝜘)�,𝛯𝛯𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺2(𝜘𝜘)�� be 
three CPyFVs. Then we have: 
(1) 𝛱𝛱𝛺𝛺1⨁𝛱𝛱𝛺𝛺2 = 𝛱𝛱𝛺𝛺2⨁𝛱𝛱𝛺𝛺1 

(2) 𝛱𝛱𝛺𝛺1⨂𝛱𝛱𝛺𝛺2 = 𝛱𝛱𝛺𝛺2⨂𝛱𝛱𝛺𝛺1 

(3) 𝛹𝛹�𝛱𝛱𝛺𝛺1⨁𝛱𝛱𝛺𝛺2� = 𝛹𝛹𝛱𝛱𝛺𝛺1⨁𝛹𝛹𝛱𝛱𝛺𝛺2 ,𝛹𝛹 > 0 

(4) (𝛹𝛹1 + 𝛹𝛹2)𝛱𝛱𝛺𝛺 = 𝛹𝛹1𝛱𝛱𝛺𝛺⨁𝛹𝛹2𝛱𝛱𝛺𝛺,𝛹𝛹1,𝛹𝛹2 > 0 

(5) �𝛱𝛱𝛺𝛺1⨂𝛱𝛱𝛺𝛺2�
𝛹𝛹 = 𝛱𝛱𝛺𝛺1

𝛹𝛹 ⨂𝛱𝛱𝛺𝛺2
𝛹𝛹 ,𝛹𝛹 > 0 

(6) 𝛱𝛱𝛺𝛺
𝛹𝛹1⨂𝛱𝛱𝛺𝛺

𝛹𝛹2 = 𝛱𝛱𝛺𝛺
(𝛹𝛹1+𝛹𝛹2),𝛹𝛹1,𝛹𝛹2 > 0 

Proof. Given that 𝛺𝛺 = �𝛱𝛱𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺(𝜘𝜘)�,𝛯𝛯𝛺𝛺(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺(𝜘𝜘)�� , 𝛺𝛺1 =

�𝛱𝛱𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺1(𝜘𝜘)�,𝛯𝛯𝛺𝛺1(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺1(𝜘𝜘)��  and 𝛺𝛺2 = �𝛱𝛱𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺2(𝜘𝜘)�,𝛯𝛯𝛺𝛺2(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺2(𝜘𝜘)�� 
are the three CPyFVs, and 𝛹𝛹,𝛹𝛹1,𝛹𝛹2 > 0, we have: 
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(1) 𝛱𝛱𝛺𝛺1⨁𝛱𝛱𝛺𝛺2 =
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= 𝛱𝛱𝛺𝛺2⨁ 𝛱𝛱𝛺𝛺1. 

(2) We can prove this easily by following Property 1. 
(3) Now, we have to prove this property 𝛹𝛹�𝛱𝛱𝛺𝛺1⨁𝛱𝛱𝛺𝛺2� = 𝛹𝛹𝛱𝛱𝛺𝛺1⨁𝛹𝛹𝛱𝛱𝛺𝛺2 ,𝛹𝛹 > 0. We know 

that 
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= 𝛹𝛹𝛱𝛱𝛺𝛺1⨁ 𝛹𝛹𝛱𝛱𝛺𝛺2  

(4) Now we have to prove (𝛹𝛹1 + 𝛹𝛹2)𝛱𝛱𝛺𝛺 = 𝛹𝛹1𝛱𝛱𝛺𝛺 + 𝛹𝛹2𝛱𝛱𝛺𝛺,𝛹𝛹1,𝛹𝛹2 > 0. We have that 
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𝛹𝛹1𝛱𝛱𝛺𝛺⨁ 𝛹𝛹2𝛱𝛱𝛺𝛺 =
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⎜
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,
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⎜
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2 ��
Ὺ
��

1
Ὺ
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⎟
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⎞

,

 𝑒𝑒−�𝛹𝛹2�−𝑙𝑙𝑙𝑙(𝛯𝛯𝛺𝛺)�Ὺ�
1
Ὺ
𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
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⎟
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�(𝛹𝛹1+𝛹𝛹2)��−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺
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Ὺ
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2 ��
Ὺ
��

1
Ὺ

⎠

⎟
⎟
⎟
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,

 𝑒𝑒−�(𝛹𝛹1+𝛹𝛹2)�−𝑙𝑙𝑙𝑙(𝛯𝛯𝛺𝛺)�Ὺ�
1
Ὺ
𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�(𝛹𝛹1+𝛹𝛹2)�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺��
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⎟
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⎟
⎟
⎟
⎞

  

= (𝛹𝛹1 + 𝛹𝛹2)𝛱𝛱𝛺𝛺.  

(5) We must now prove that �𝛱𝛱𝛺𝛺1⨂𝛱𝛱𝛺𝛺2�
𝛹𝛹 = 𝛱𝛱𝛺𝛺1

𝛹𝛹 ⨂𝛱𝛱𝛺𝛺2
𝛹𝛹 ,𝛹𝛹 > 0. We have that 

�𝛱𝛱𝛺𝛺1⨂ 𝛱𝛱𝛺𝛺2�
𝛹𝛹 =
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=
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= 𝛱𝛱𝛺𝛺1
𝛹𝛹 ⨂ 𝛱𝛱𝛺𝛺2

𝛹𝛹 .  

(6) In order to prove that 𝛱𝛱𝛺𝛺
𝛹𝛹1⨂𝛱𝛱𝛺𝛺

𝛹𝛹2 = 𝛱𝛱𝛺𝛺
(𝛹𝛹1+𝛹𝛹2),𝛹𝛹1,𝛹𝛹2 > 0, we have that 
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= 𝜫𝜫𝜴𝜴
(𝜳𝜳𝟏𝟏+𝜳𝜳𝟐𝟐).  

□ 

5. Complex Pythagorean Fuzzy Aczel–Alsina Weighted Averaging Operators 
A CPyFS contains more extensive information than IFSs and PyFSs because a CPyFS 

has the two aspects of MV and NMV in terms of amplitude and phase terms. We develop 
a list of new AOs of CPyFSs by utilizing the basic operational laws of Aczel–Alsina TNM 
and TCNM. 

Definition 11. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the 

family of CPyFVs and its corresponding weight vectors 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ =
1,2,3, … ῃ), such that 𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the CPyFAAWA operator 
is defined as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ𝛺𝛺ƺ� = 𝔇𝔇1𝛺𝛺1⨁𝔇𝔇2𝛺𝛺2⨁, … ,⨁𝔇𝔇ῃ𝛺𝛺ῃ (3) 

Theorem 2. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the 

family of CPyFVs and its corresponding weight vectors 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ =
1,2,3, … ῃ), such that 𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the CPyFAAWA operator 
is particularized as: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ�

=
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⎜
⎛�

1−𝑒𝑒
−�∑ 𝔇𝔇ƺ

ῃ
ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛼𝛼ƺ2��

Ὺ
�

1
Ὺ

⎠

⎟⎟
⎟
⎞

,

 𝑒𝑒−�∑ 𝔇𝔇ƺ
ῃ
ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯ƺ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�∑ 𝔇𝔇ƺ

ῃ
ƺ=1 �−𝑙𝑙𝑙𝑙(𝛽𝛽)�

Ὺ
�

1
Ὺ

⎠

⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 

(4) 

Proof. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the family 

of CPyFVs. By using an induction method, we prove Theorem 1 based on Aczel–Alsina 
operations. For ῃ = 2, we have: 
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𝔇𝔇1𝛱𝛱𝛺𝛺1 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺1
2 ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺1

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺1��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺1��

Ὺ
�

1
Ὺ

⎠

⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

𝔇𝔇2𝛱𝛱𝛺𝛺2 =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺2
2 ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺2��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺2��

Ὺ
�

1
Ὺ

⎠

⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

By Definition 11, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2) = ⨁
ƺ=1

2
�𝔇𝔇ƺ𝛺𝛺ƺ� = 𝔇𝔇1𝛺𝛺1⨁𝔇𝔇2𝛺𝛺2 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1− 𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺1

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺1

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺1��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺1

��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⨁

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1− 𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺2��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺2

��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺1

2 ��
Ὺ
+𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺1

2 ��
Ὺ
+𝔇𝔇2�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺2

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺1��
Ὺ
+𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺2��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�𝔇𝔇1�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺1��

Ὺ
+𝔇𝔇2�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺2��

Ὺ
�

1
Ὺ

⎠

⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�∑ 𝔇𝔇ƺ2
ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺ƺ

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�∑ 𝔇𝔇ƺ2

ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺ƺ
2 ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒
−�∑ 𝔇𝔇ƺ2

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�∑ 𝔇𝔇ƺ2

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

.  

is true for ῃ = 2. 
Consider that ῃ = 𝑘𝑘. Then, 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺𝑘𝑘) = ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ𝛺𝛺ƺ� = 𝔇𝔇1𝛺𝛺1⨁𝔇𝔇2𝛺𝛺2⨁, … ,⨁𝔇𝔇𝑘𝑘𝛺𝛺𝑘𝑘  

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�∑ 𝔇𝔇ƺ𝑘𝑘
ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺ƺ

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘

ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺ƺ
2 ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,   

For a further process, we have to show that this is true for ῃ = 𝑘𝑘 + 1. We have that 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺𝑘𝑘 ,𝛺𝛺𝑘𝑘+1) = 𝔇𝔇1𝛺𝛺1⨁𝔇𝔇2𝛺𝛺2⨁, … ,⨁𝔇𝔇𝑘𝑘𝛺𝛺𝑘𝑘⨁𝔇𝔇𝑘𝑘+1𝛺𝛺𝑘𝑘+1

= ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ𝛺𝛺ƺ�⨁(𝔇𝔇𝑘𝑘+1𝛺𝛺𝑘𝑘+1)  

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘

ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺ƺ
2 ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘

ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺ƺ
2 ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

 𝑒𝑒

−�∑ 𝔇𝔇ƺ𝑘𝑘
ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎜
⎛

𝑒𝑒

−�∑ 𝔇𝔇ƺ𝑘𝑘
ƺ=1 �−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺ƺ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⨁

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �

1 − 𝑒𝑒
−�𝔇𝔇𝑘𝑘+1�−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺𝑘𝑘+1

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�𝔇𝔇𝑘𝑘+1�−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺𝑘𝑘+1

2 ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

𝑒𝑒
−�𝔇𝔇𝑘𝑘+1�−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺𝑘𝑘+1��

Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�𝔇𝔇𝑘𝑘+1�−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺𝑘𝑘+1��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

�
1 − 𝑒𝑒

−�∑ 𝔇𝔇ƺ𝑘𝑘+1
ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛱𝛱𝛺𝛺ƺ

2 ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛�

1−𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘+1

ƺ=1 �−𝑙𝑙𝑙𝑙�1−𝛼𝛼𝛺𝛺ƺ
2 ��

Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

 𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘+1

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎛
𝑒𝑒
−�∑ 𝔇𝔇ƺ𝑘𝑘+1

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛽𝛽𝛺𝛺ƺ��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞
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We observed that  ῃ = 𝑘𝑘 + 1  holds. Therefore, this theorem is proved and completed 
for ∀,ῃ. □ 

Theorem 3: Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be all the 

same CPyFVs, ∀, ƺ = 1,2, … , ῃ. Then, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = 𝛺𝛺. 

Proof: Show that 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ are all the 

same CPyFVs, for ƺ = 1,2, … , ῃ. Then, 
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= 𝛺𝛺.  

Hence, 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = 𝛺𝛺  

□ 

Theorem 4. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ 𝑡𝑡𝑡𝑡 be the 

family of CPyFVs, and consider 𝛺𝛺− = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ� and 𝛺𝛺+ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ�. 
Then, the associated value 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺𝑘𝑘) is defined as: 

𝛺𝛺− ≤ 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝛺𝛺+  

Proof. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ  as a collection of 

CPyFVs. Let 𝛺𝛺− = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ� = �𝛱𝛱𝛺𝛺−(𝜘𝜘),𝛯𝛯𝛺𝛺−(𝜘𝜘)�  and 𝛺𝛺+ =
𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ� = �𝛱𝛱𝛺𝛺+(𝜘𝜘),𝛯𝛯𝛺𝛺+(𝜘𝜘)�  such that 𝛱𝛱𝛺𝛺−(𝜘𝜘) = min �𝛱𝛱𝛺𝛺ƺ

− (𝜘𝜘)� ,𝛱𝛱𝛺𝛺+(𝜘𝜘) =

max �𝛱𝛱𝛺𝛺ƺ
+ (𝜘𝜘)� and 𝛯𝛯𝛺𝛺−(𝜘𝜘) = max �𝛯𝛯𝛺𝛺ƺ

− (𝜘𝜘)� ,𝛯𝛯𝛺𝛺+(𝜘𝜘) = min �𝛯𝛯𝛺𝛺ƺ
+ (𝜘𝜘)�. Then, the associated value 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� must satisfy the following conditions: 
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This shows that: 
𝛺𝛺− ≤ 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝛺𝛺+  

□ 

Theorem 5. If 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ and 𝛺𝛺ƺ′ =

�𝛱𝛱𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒
2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ′

(𝜘𝜘)�
,𝛯𝛯𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒

2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ′
(𝜘𝜘)�

� , ƺ = 1,2, … , ῃ are two CPyFSs and if 𝛺𝛺ƺ ≤ 𝛺𝛺ƺ′ ,∀, (ƺ =

1,2, … , ῃ), then we have: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1′ ,𝛺𝛺2′ , … ,𝛺𝛺ῃ′ �  

Proof. We can prove this by using the steps of Theorem 2. □ 

Example 2. Consider 𝛺𝛺1 = �0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.15), 0.61𝑒𝑒2𝑖𝑖𝑖𝑖(0.22)�,𝛺𝛺2 =
�0.17𝑒𝑒2𝑖𝑖𝑖𝑖(0.37), 0.27𝑒𝑒2𝑖𝑖𝑖𝑖(0.54)�,𝛺𝛺3 = �0.63𝑒𝑒2𝑖𝑖𝑖𝑖(0.45), 0.16𝑒𝑒2𝑖𝑖𝑖𝑖(0.67)�  and 𝛺𝛺4 =
�0.36𝑒𝑒2𝑖𝑖𝑖𝑖(0.29), 0.49𝑒𝑒2𝑖𝑖𝑖𝑖(0.24)�  are four CpyFVs with corresponding weight vector 𝔇𝔇 =
(0.20, 0.35, 0.30, 0.15). Then, the aggregated values of CPyFAAWA operator are given for Ὺ = 3. 

Solution. Since we have: for ƺ = 1, 2, 3, 4 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺4) =
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3
�

1
3

⎠

⎟⎟
⎟
⎞

,

 𝑒𝑒−�∑ 𝔇𝔇ƺ4
ƺ=1 �−𝑙𝑙𝑙𝑙�𝛯𝛯ƺ��

3
�

1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎛
𝑒𝑒
−�∑ 𝔇𝔇ƺ4

ƺ=1 �−𝑙𝑙𝑙𝑙(𝛽𝛽)�
3
�

1
3

⎠

⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛�

1 − 𝑒𝑒
−��

(0.20)�−𝑙𝑙𝑙𝑙(1−(0.46)2)�3+(0.35)�−𝑙𝑙𝑙𝑙(1−(0.17)2)�3+

(0.30)�−𝑙𝑙𝑙𝑙(1−(0.63)2)�3+(0.15)�−𝑙𝑙𝑙𝑙(1−(0.36)2)�3
��

1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
�⃓

1−𝑒𝑒

−

⎝

⎜
⎛
�

(0.20)�−𝑙𝑙𝑙𝑙�1−(0.15)2��
3
+(0.35)�−𝑙𝑙𝑙𝑙�1−(0.37)2��

3
+

(0.30)�−𝑙𝑙𝑙𝑙�1−(0.45)2��
3
+(0.15)�−𝑙𝑙𝑙𝑙�1−(0.29)2��

3 �

⎠

⎟
⎞

1
3

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

,

 𝑒𝑒
−��

(0.20)�−𝑙𝑙𝑙𝑙(0.61)�
3+(0.35)�−𝑙𝑙𝑙𝑙(0.27)�

3+

(0.30)�−𝑙𝑙𝑙𝑙(0.16)�
3+(0.15)�−𝑙𝑙𝑙𝑙(0.49)�

3 ��

1
3

𝑒𝑒

2𝜋𝜋𝜋𝜋

⎝

⎜
⎜
⎜
⎜
⎛

𝑒𝑒

−��
(0.20)�−𝑙𝑙𝑙𝑙(0.22)�

3
+(0.35)�−𝑙𝑙𝑙𝑙(0.54)�

3
+

(0.30)�−𝑙𝑙𝑙𝑙(0.67)�
3
+(0.15)�−𝑙𝑙𝑙𝑙(0.24)�

3 ��

1
3

⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

= �0.5417𝑒𝑒2𝑖𝑖𝑖𝑖(0.3927), 0.2480𝑒𝑒2𝑖𝑖𝑖𝑖(0.3424)�  

We explore our invented AOs and presented new AOs of CPyF using an Aczel–Alsina-
order weighted averaging (CPyFAAOWA) operator based on Aczel–Alsina operations. 

Definition 12. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the 

family of CPyFVs, and its corresponding weight vectors 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ =
1,2,3, … ῃ),  such that 𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ  and  ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the CPyFAAOWA 
operator is particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� =⊕ƺ=1
ῃ �𝔇𝔇ƺ𝛺𝛺Ϧ(ƺ)� = 𝔇𝔇1𝛺𝛺Ϧ(1)⨁𝔇𝔇2𝛺𝛺Ϧ(2)⨁, … ,⨁𝔇𝔇ῃ𝛺𝛺Ϧ(ῃ) (5) 

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)�  is a permutation of (ƺ = 1, 2, 3, … ῃ)  and  𝛺𝛺Ϧ(ƺ−1) ≥
𝛺𝛺Ϧ(ƺ),∀, ƺ = 1,2,3, … ῃ. 

Theorem 6. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs and its corresponding weight vector 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ), 
such that 𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ  and  ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the associated values of the 
CPyFAAOWA operator are particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ �
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−�∑ 𝔇𝔇ƺ

ῃ
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Ὺ
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Ὺ
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⎝

⎜
⎜
⎜
⎜
⎛�
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ῃ
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Ὺ
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Ὺ
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⎟
⎟
⎟
⎟
⎞
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 𝑒𝑒
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ῃ
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Ὺ
�

1
Ὺ

𝑒𝑒
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⎜
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⎛
𝑒𝑒
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ῃ
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��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 
(6) 



Symmetry 2023, 15, 68 22 of 35 
 

 

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)� is the set of permutations of (ƺ = 1, 2, 3, … , ῃ) and 𝛺𝛺Ϧ(ƺ−1) ≥
𝛺𝛺Ϧ(ƺ),∀, ƺ = 1,2,3, … ῃ. 

Proof. We can prove this by using the steps of Theorem 3. □ 

Theorem 7. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)��, to be the family of all same 

CPyFVs, ∀, ƺ = 1,2, … , ῃ. Then we have: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = 𝛺𝛺  

Proof. We can prove this theorem easily. □ 

Theorem 8. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ  be the family of 

CPyFVs, and 𝛺𝛺− = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ� and 𝛺𝛺+ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ�. Then, we have: 
𝛺𝛺− ≤ 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝛺𝛺+   

Proof. We can prove this theorem easily by following the steps of Theorem 4. □ 

Theorem 9. Consider that 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)��, and 𝛺𝛺ƺ′ =

�𝛱𝛱𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒
2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ′

(𝜘𝜘)�
,𝛯𝛯𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒

2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ′
(𝜘𝜘)�

� , ƺ = 1,2, … , ῃ  are two CPyFSs; if 𝛺𝛺ƺ ≤ 𝛺𝛺ƺ′ ,∀, (ƺ =

1,2, … , ῃ), then we have: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1′ ,𝛺𝛺2′ , … ,𝛺𝛺ῃ′ �  

Proof. We can prove this theorem easily. □ 

Theorem 10. If 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)��,  and 𝛺𝛺ƺ′ =

�𝛱𝛱𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒
2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ′

(𝜘𝜘)�
,𝛯𝛯𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒

2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ′
(𝜘𝜘)�

� , ƺ = 1,2, … , ῃ  are the two CPyFSs, and if 𝛺𝛺ƺ ≤

𝛺𝛺ƺ′ ,∀, (ƺ = 1,2, … , ῃ), then we have: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1′ ,𝛺𝛺2′ , … ,𝛺𝛺ῃ′ �  

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)� is the set of permutations of �𝛺𝛺ƺ′: ƺ = 1, 2, 3, … , ῃ�. 

Proof. We can prove this theorem easily. □ 

We also discussed another extension, like the CPyFAA hybrid averaging (CPy-
FAAHA) operator of the CPyFAAWA and CPyFAAOWA operators, based on Aczel–
Alsina operations. 

Definition 13. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ  is the 

family of CPyFVs. Then, a CPyFAAHA operator is particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨁
ƺ=1

ῃ
�Яƺ𝒳𝒳Ϧ(ƺ)� = Я1𝒳𝒳Ϧ(1)⨁Я2𝒳𝒳Ϧ(2)⨁, … ,⨁Яῃ𝒳𝒳Ϧ(ῃ) (7) 
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where the corresponding weight vector of CPyFAAHA operator is denoted by Я =
�Я1,Я2,Я3, … ,Яῃ�

𝑇𝑇 , such that Яƺ ∈ [0,1], ƺ = 1,2, … , ῃ  and ∑ Яƺ = 1ῃ
ƺ=1 and 𝒳𝒳ƺ = 𝑘𝑘𝑘𝑘ƺ𝛺𝛺ƺ, (ƺ =

1,2,3, … ῃ) is the set of any permutations �𝒳𝒳Ϧ(1),𝒳𝒳Ϧ(2),𝒳𝒳Ϧ(3), … ,𝒳𝒳Ϧ(ƺ)� of CPyFVs. The associated 
weight vector of CPyFVs of 𝛺𝛺ƺ  is represented by 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇 , such that 𝔇𝔇ƺ ∈
[0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 ;  𝒳𝒳Ϧ(ƺ−1) ≥ 𝒳𝒳Ϧ(ƺ),∀, ƺ = 1, 2, 3, … ῃ and a balancing coeffi-
cient are denoted by 𝑘𝑘. 

Theorem 11. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs. Then, the CPyFAAHA operator is particularized as: 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪�𝜴𝜴𝟏𝟏,𝜴𝜴𝟐𝟐, … ,𝜴𝜴ῃ� =

⎝
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⎜
⎜
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⎜
⎜
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�
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𝒆𝒆
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ῃ
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⎟
⎟
⎟
⎟
⎟
⎟
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 (8) 

Proof. We can prove this theorem analogously. □ 

6. Complex Pythagorean Fuzzy Aczel–Alsina Weighted Geometric Aggregation Oper-
ators 

By utilizing the theory of Aczel–Alsina operations, we explored the concept of 
CPyFSs in the framework of CPyFAAWG operators with some reversed properties. To 
support our proposed technique, we established a numerical example. 

Definition 14. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the 

family of CPyFVs and weight vector 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇 of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ), such that 
𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the CPyFAAWG operator is particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨂
ƺ=1

ῃ
�𝛺𝛺ƺ

𝔇𝔇ƺ� = 𝛺𝛺1
𝔇𝔇1⨂𝛺𝛺2

𝔇𝔇2⨂, … ,⨂𝛺𝛺ῃ
𝔇𝔇ῃ (9) 

Theorem 12: Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ  to be the 

family of CPyFVs and weight vector 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇 of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ), such that 
𝔇𝔇ƺ ∈ [0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the associated value of the CPyFAAWG operator 
is also a CPyFV, and we have: 
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1
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⎜
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∑ 𝔇𝔇ƺ𝑘𝑘
ƺ=1 �−𝑙𝑙𝑙𝑙�1−�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�

2
��

Ὺ

⎠

⎟
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1
Ὺ

⎠

⎟
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⎟
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⎟
⎞

,
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⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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 (10) 

Theorem 13. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)��, to be the set of all same 

CPyFVs, ∀, ƺ = 1, 2, … ,ῃ. Then, we have: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = 𝛺𝛺  

Proof: We can prove this theorem by following the steps of Theorem 3. □ 

Theorem 14. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs, and 𝛺𝛺− = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ�  and  𝛺𝛺+ = 𝑚𝑚𝑚𝑚𝑚𝑚�𝛺𝛺1,𝛺𝛺2,𝛺𝛺3, … ,𝛺𝛺ῃ� . Then, the 
associated value 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺𝑘𝑘) has that 

𝛺𝛺− ≤ 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝛺𝛺+  

Proof. The proof of this theorem is similar to that of Theorem 4. □ 

Theorem 15. If 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)��  and 𝛺𝛺ƺ′ =

�𝛱𝛱𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒
2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ′

(𝜘𝜘)�
,𝛯𝛯𝛺𝛺ƺ′(𝜘𝜘)𝑒𝑒

2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ′
(𝜘𝜘)�

� , ƺ = 1,2, … , ῃ are two CPyFSs, and if 𝛺𝛺ƺ ≤ 𝛺𝛺ƺ′,∀, (ƺ =

1,2, … , ῃ), then, we have: 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1′ ,𝛺𝛺2′ , … ,𝛺𝛺ῃ′ �  

Proof. We can prove this theorem easily. □ 

Example 3. Consider 𝛺𝛺1 = �0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)�,  𝛺𝛺2 =
�0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)�,𝛺𝛺3 = �0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)�  and 𝛺𝛺4 =
�0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)�  are four CPyFVs with corresponding weight vector 𝔇𝔇 =
(0.20, 0.35, 0.30, 0.15). Then, the aggregated values of CPyFAAWG operators is given as Ὺ = 3. 

Solution. Since we have: for ƺ = 1, 2, 3, 4 
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⎛ 𝑒𝑒−�∑ 𝔇𝔇ƺ4

ƺ=1 �−𝑙𝑙𝑙𝑙�𝛱𝛱ƺ��
3
�
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⎜
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=
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⎜
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⎜
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⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎛

 𝑒𝑒
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(0.20)�−𝑙𝑙𝑙𝑙(0.55)�
3+(0.35)�−𝑙𝑙𝑙𝑙(0.17)�

3+

(0.30)�−𝑙𝑙𝑙𝑙(0.55)�
3+(0.15)�−𝑙𝑙𝑙𝑙(0.47)�
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1
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𝑒𝑒
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⎜
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−��
(0.20)�−𝑙𝑙𝑙𝑙(0.29)�

3
+(0.35)�−𝑙𝑙𝑙𝑙(0.27)�

3
+

(0.30)�−𝑙𝑙𝑙𝑙(0.78)�
3
+(0.15)�−𝑙𝑙𝑙𝑙(0.57)�

3 ��
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⎟
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1 − 𝑒𝑒
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(0.20)�−𝑙𝑙𝑙𝑙(1−(0.46)2)�3+(0.35)�−𝑙𝑙𝑙𝑙(1−(0.45)2)�3+

(0.30)�−𝑙𝑙𝑙𝑙(1−(0.18)2)�3+(0.15)�−𝑙𝑙𝑙𝑙(1−(0.47)2)�3
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3
+
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= �0.2768𝑒𝑒2𝑖𝑖𝑖𝑖(0.3459), 0.4340𝑒𝑒2𝑖𝑖𝑖𝑖(0.6149)�  

Now, we explored the AOs of the CPyFAAWG operator, and also studied some special cases of the 
CPyFAAWG operator in the framework of a CPyF Aczel–Alsina ordered weighted geometric (CPy-
FAAOWG) operator, based on Aczel–Alsina operations. 

Definition 15. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs and weight vectors 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ),  such that 𝔇𝔇ƺ ∈
[0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then, the associated values of the CPyFAAOWG operator 
are particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨂
ƺ=1

ῃ
�𝛺𝛺Ϧ(ƺ)

𝔇𝔇ƺ � = 𝛺𝛺Ϧ(1)
𝔇𝔇1 ⨂𝛺𝛺Ϧ(2)

𝔇𝔇2 ⨂, … ,⨂𝛺𝛺Ϧ(ῃ)
𝔇𝔇ῃ  (11) 

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)�  is the set of permutations of (ƺ = 1,2,3, … ῃ)  and  𝛺𝛺Ϧ(ƺ−1) ≥
𝛺𝛺Ϧ(ƺ),∀, ƺ = 1, 2, 3, … ῃ. 

Theorem 16. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs and weight vectors 𝔇𝔇ƺ = (𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛)𝑇𝑇  of 𝛺𝛺ƺ(ƺ = 1,2,3, … ῃ),  such that 𝔇𝔇ƺ ∈
[0,1], ƺ = 1,2, … , ῃ and ∑ 𝔇𝔇ƺ = 1ῃ

ƺ=1 . Then associated values of the CPyFAAOWG operator are 
also a CPyFV, and we can write them in the following way: 
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(12) 

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)� is the set of permutations of (ƺ = 1, 2, 3, … , ῃ) and 𝛺𝛺Ϧ(ƺ−1) ≥
𝛺𝛺Ϧ(ƺ),∀, ƺ = 1,2,3, … ῃ. 

Proof. We can prove this theorem easily. □ 

Now, we explored the AOs of the CPyFAAWG operator, and also studied some spe-
cial cases of the CPyFAAWG operator in the framework of CPyF Aczel–Alsina hybrid 
geometric (CPyFAAHG) operator, based on Aczel–Alsina operations. 

Definition 16. Consider 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ to be the 

family of CPyFVs. Then, a CPyFAAHG operator is particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ� = ⨂
ƺ=1

ῃ
�Яƺ𝒳𝒳Ϧ(ƺ)� = Я1𝒳𝒳Ϧ(1)⨂Я2𝒳𝒳Ϧ(2)⨂, … ,⨂Яῃ𝒳𝒳Ϧ(ῃ) (13) 

where �Ϧ(1),Ϧ(2),Ϧ(3), … ,Ϧ(ƺ)� is the set of permutations of (ƺ = 1,2,3, … ῃ) with the weight 
vector Я = �Я1,Я2,Я3, … ,Яῃ�

𝑇𝑇 , such that Яƺ ∈ [0,1], ƺ = 1,2, … , ῃ and ∑ Яƺ = 1ῃ
ƺ=1 . A balancing 

coefficient is denoted by  𝑘𝑘  and 𝒳𝒳ƺ = 𝑘𝑘Яƺ𝛺𝛺ƺ, (ƺ = 1,2,3, … ῃ)  with  𝒳𝒳Ϧ(ƺ−1) ≥ 𝒳𝒳Ϧ(ƺ),∀, ƺ =
1,2,3, … ῃ. 

Theorem 17. Let 𝛺𝛺ƺ = �𝛱𝛱𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝛺𝛺ƺ(𝜘𝜘)�,𝛯𝛯𝛺𝛺ƺ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝛺𝛺ƺ(𝜘𝜘)�� , ƺ = 1,2, … , ῃ be the family of 

CPyFVs. Then, the CPyFAAHG operator is particularized as: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝛺𝛺1,𝛺𝛺2, … ,𝛺𝛺ῃ�

=

⎝
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 (14) 

Proof: We can prove this theorem analogously. □ 

7. Evaluation of an MADM Technique Using Our Proposed Methodologies 
An MADM technique may be solved by utilizing our proposed methodologies under 

the system of CPyF information. Consider ѱ = {ѱ1,ѱ2,ѱ3, … ,ѱ𝑛𝑛} is the set of alternative 
with the associated weight vector of ѱ,𝔇𝔇 = {𝔇𝔇1,𝔇𝔇2,𝔇𝔇3, … ,𝔇𝔇𝑛𝑛}, such that 𝔇𝔇ƺ ∈ [0,1], ƺ =
1, 2, 3, … ,𝑛𝑛, and ∑ 𝔇𝔇ƺ = 1𝑛𝑛

ƺ=1 . The decision maker assigns some characteristics to select 
suitable alternatives like ʊ = {ʊ1, ʊ2, ʊ3, … , ʊ𝑛𝑛}. Consider that ℛ = (𝒴𝒴𝓃𝓃ℴ)𝓂𝓂×𝓃𝓃 is the decision 
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matrix and 𝒴𝒴𝓃𝓃ℴ = 𝜒𝜒𝓃𝓃ℴ = �𝛱𝛱𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)�,𝛯𝛯𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)��  denotes the CPyF 
numbers (CPyFVs), where 𝛱𝛱𝛺𝛺ƺ ∈ [0,1] and 𝛯𝛯𝛺𝛺ƺ ∈ [0,1] represent the MV and NMV of al-
ternatives, sequentially. The following decision matrix is constructed by the decision 
maker: 

ℛ = (𝒴𝒴𝓃𝓃ℴ)𝓂𝓂×𝓃𝓃 = �

𝜒𝜒11 𝜒𝜒12 ⋯ 𝜒𝜒1𝑛𝑛
𝜒𝜒21 𝜒𝜒22 ⋯ 𝜒𝜒2𝑛𝑛
⋮

𝜒𝜒𝑚𝑚1
⋮

𝜒𝜒𝑚𝑚2
⋱

… 𝜒𝜒𝑚𝑚𝑚𝑚

�  

In the above decision matrix, each 2-tuple 
�𝜫𝜫𝝌𝝌𝓷𝓷𝓷𝓷(𝝒𝝒)𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐�𝜶𝜶𝝌𝝌𝓷𝓷𝓷𝓷(𝝒𝝒)�,𝜩𝜩𝝌𝝌𝓷𝓷𝓷𝓷(𝝒𝝒)𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐�𝜷𝜷𝝌𝝌𝓷𝓷𝓷𝓷(𝝒𝝒)�� , has two aspects MV and NMV of 

CPyFVs in the environment of CPyF information. To select a suitable alternative, we uti-
lized our proposed methodologies of CPyFAAWA and CPyFAAWG operators based on 
Aczel–Alsina operations. We evaluated the given decision matrix by using the following 
steps of the algorithm. 

7.1. Algorithim 
Step 1: Collect the information in the form of CPyFVs and display in a decision matrix 
using the decision maker. 
Step 2: The set of attributes is of two types: beneficial factor attributes and cost factor at-
tributes. A normalized matrix of a decision matrix ℛ = (𝒴𝒴𝓃𝓃ℴ)𝓂𝓂×𝓃𝓃 is denoted by the ℛ′ =
(𝒴𝒴𝓃𝓃ℴ′ )𝓂𝓂×𝓃𝓃. We can obtain them in the following way: 

𝒴𝒴𝓃𝓃ℴ′ = �
𝒴𝒴𝓃𝓃ℴ for benefit attributes

(𝒴𝒴𝓃𝓃ℴ)′ for cost attributes �  

We can obtain a normalized matrix  ℛ′ = (𝒴𝒴𝓃𝓃ℴ′ )𝓂𝓂×𝓃𝓃 =
�𝛯𝛯𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)�,𝛱𝛱𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)�� of a decision matrix ℛ = (𝒴𝒴𝓃𝓃ℴ)𝓂𝓂×𝓃𝓃  using the 

complement of the 2-tuple �𝛱𝛱𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛼𝛼𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)�,𝛯𝛯𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)𝑒𝑒2𝜋𝜋𝜋𝜋�𝛽𝛽𝜒𝜒𝓃𝓃ℴ(𝜘𝜘)��. There is no need to 
transform the decision matrix into a normalized matrix if all attributes are of different 
kinds and there is no involved cost-type attribute. 
Step 3: Investigate the given information ℛ = (𝒴𝒴𝓃𝓃ℴ)𝓂𝓂×𝓃𝓃 of the alternatives in the form of 
a CPyF system, using proposed AOs of CPyFAAWA and CPyFAAWG operators. 

CPyFAAWA (𝒴𝒴𝓃𝓃1′ ,𝒴𝒴𝓃𝓃2′ ,𝒴𝒴𝓃𝓃3′ , … ,𝒴𝒴𝓃𝓃ℴ′ ) = ⨁
ƺ=1

ῃ
�𝔇𝔇ƺ,𝒴𝒴𝓃𝓃ƺ′ �  
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CPyFAAWG�Ω1,Ω2, … ,Ωῃ� = ⨂
ƺ=1

ῃ
�Ωƺ

𝔇𝔇ƺ�  



Symmetry 2023, 15, 68 28 of 35 
 

 

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛ e

−�∑ 𝔇𝔇ƺk
ƺ=1 �−ln�ΠΩƺ��

Ὺ
�

1
Ὺ

e

2πi

⎝

⎜
⎜
⎜
⎛
e
−�∑ 𝔇𝔇ƺk

ƺ=1 �−ln�αΩƺ(ϰ)��
Ὺ
�

1
Ὺ

⎠

⎟
⎟
⎟
⎞

,

�
1 − e

−�∑ 𝔇𝔇ƺk
ƺ=1 �−ln�1−�ΞΩƺ�

2
��

Ὺ
�

1
Ὺ

e

2πi

⎝

⎜
⎜
⎜
⎜
⎜
⎛�

1−e

−�∑ 𝔇𝔇ƺk
ƺ=1 �−ln�1−�βΩƺ(ϰ)�

2
��

Ὺ

�

1
Ὺ

⎠

⎟
⎟
⎟
⎟
⎟
⎞

,
 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

  

Step 4: After evaluation of the given information by the decision maker, we find the score 
values by using the consequences of CPyFAAWA and CPyFAAWG operators. 
Step 5: To find out suitable alternative, we have to perform the task of ordering and 
ranking the score values obtained by the previous step. 

7.2. Exmaple 
A multinational company want to fill their vacant post of a general manager. Con-

sider 𝑥𝑥𝑛𝑛 ;𝑛𝑛(1, 2, 3, 4, 5) be the set of five different applicants. The decision maker wants to 
complete the selection process according to the following attributes. 𝐽𝐽1  represents the 
qualification of the applicants, 𝐽𝐽2 represents the experience of the applicants, 𝐽𝐽3 represents 
the behavior and character of the applicants and 𝐽𝐽4 represents the personality of the appli-
cants. The decision maker explored the selection process by using the weight vector 𝔇𝔇 =
(0.30, 0.25, 0.35, 0.10) for the applicants. The decision maker presented information in the 
form of CPyFVs and depicted in the decision matrix of Table 2. 

Table 2. Decision matrix using the information of the CPyFVs. 

 𝑱𝑱𝟏𝟏 𝑱𝑱𝟐𝟐 
𝒙𝒙𝟏𝟏 �0.55𝑒𝑒2𝑖𝑖𝑖𝑖(0.29), 0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.71)� �0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)� 
𝒙𝒙𝟐𝟐 �0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.33), 0.09𝑒𝑒2𝑖𝑖𝑖𝑖(0.41)� �0.17𝑒𝑒2𝑖𝑖𝑖𝑖(0.27), 0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.61)� 
𝒙𝒙𝟑𝟑 �0.45𝑒𝑒2𝑖𝑖𝑖𝑖(0.61), 0.88𝑒𝑒2𝑖𝑖𝑖𝑖(0.28)� �0.67𝑒𝑒2𝑖𝑖𝑖𝑖(0.45), 0.62𝑒𝑒2𝑖𝑖𝑖𝑖(0.45)� 
𝒙𝒙𝟒𝟒 �0.36𝑒𝑒2𝑖𝑖𝑖𝑖(0.71), 0.46𝑒𝑒2𝑖𝑖𝑖𝑖(0.67)� �0.36𝑒𝑒2𝑖𝑖𝑖𝑖(0.68), 0.36𝑒𝑒2𝑖𝑖𝑖𝑖(0.56)� 
𝒙𝒙𝟓𝟓 �0.48𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.19𝑒𝑒2𝑖𝑖𝑖𝑖(0.37)� �0.56𝑒𝑒2𝑖𝑖𝑖𝑖(0.67), 0.19𝑒𝑒2𝑖𝑖𝑖𝑖(0.37)� 

 𝐽𝐽3 𝐽𝐽4 
𝒙𝒙𝟏𝟏 �082𝑒𝑒2𝑖𝑖𝑖𝑖(0.27), 0.43𝑒𝑒2𝑖𝑖𝑖𝑖(0.61)� �0.56𝑒𝑒2𝑖𝑖𝑖𝑖(0.81), 0.23𝑒𝑒2𝑖𝑖𝑖𝑖(0.09)� 
𝒙𝒙𝟐𝟐 �0.39𝑒𝑒2𝑖𝑖𝑖𝑖(0.36), 0.35𝑒𝑒2𝑖𝑖𝑖𝑖(0.55)� �0.19𝑒𝑒2𝑖𝑖𝑖𝑖(0.46), 0.53𝑒𝑒2𝑖𝑖𝑖𝑖(0.47)� 
𝒙𝒙𝟑𝟑 �0.55𝑒𝑒2𝑖𝑖𝑖𝑖(0.78), 0.18𝑒𝑒2𝑖𝑖𝑖𝑖(0.28)� �0.49𝑒𝑒2𝑖𝑖𝑖𝑖(0.47), 0.29𝑒𝑒2𝑖𝑖𝑖𝑖(0.38)� 
𝒙𝒙𝟒𝟒 �0.47𝑒𝑒2𝑖𝑖𝑖𝑖(0.58), 0.42𝑒𝑒2𝑖𝑖𝑖𝑖(0.38)� �0.8𝑒𝑒2𝑖𝑖𝑖𝑖(0.48), 0.53𝑒𝑒2𝑖𝑖𝑖𝑖(0.45)� 
𝒙𝒙𝟓𝟓 �0.57𝑒𝑒2𝑖𝑖𝑖𝑖(0.61), 0.38𝑒𝑒2𝑖𝑖𝑖𝑖(0.63)� �0.47𝑒𝑒2𝑖𝑖𝑖𝑖(0.57), 0.47𝑒𝑒2𝑖𝑖𝑖𝑖(0.48)� 

7.3. Method of the Selection Process 
The decision maker evaluates given information by using our proposed methodolo-

gies based on the following steps in the algorithm. 
Step 1: Collection of information in the form of CPyFVs and displayed in Table 2 by the 
decision maker. 
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Step 2: In this step, perform the transformation of the decision matrix into the normalizer 
matrix. There is no need to perform such a task because there is no cost factor involved in 
the set of attributes/characteristics for the section model. 
Step 3: Investigate the given information by using proposed AOs of CPyFAAWA and 
CPyFAAWG operators. The consequences of such as are displayed in the following Table 
3. 

Table 3. Consequences of CPyFAAWA and CPyFAAWG operators. 

CPyFAAWA CPyFAAWG 
�𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟔𝟔𝟔𝟔𝟔𝟔𝟔𝟔),𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏)� �0.5554𝑒𝑒2𝑖𝑖𝑖𝑖(0.3292), 0.4398𝑒𝑒2𝑖𝑖𝑖𝑖(0.6357)� 
�𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑),𝟎𝟎.𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟒𝟒𝟒𝟒𝟒𝟒𝟒𝟒)� �0.2681𝑒𝑒2𝑖𝑖𝑖𝑖(0.3276), 0.4196𝑒𝑒2𝑖𝑖𝑖𝑖(0.5471)� 
�𝟎𝟎.𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕),𝟎𝟎.𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝒆𝒆𝟐𝟐𝟐𝟐𝟐𝟐(𝟎𝟎.𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑)� �0.5199𝑒𝑒2𝑖𝑖𝑖𝑖(0.5509), 0.7965𝑒𝑒2𝑖𝑖𝑖𝑖(0.3774)� 
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Step 4: Evaluate score values by using the consequences of the CPyFAAWA and 
CPyFAAWG operators, using Definition 11 and the Definition14. The results shown in 
Table 4. 

Table 4. Ranking and ordering of the score values. 

Operators 𝑺𝑺(𝒙𝒙𝟏𝟏) 𝑺𝑺(𝒙𝒙𝟐𝟐) 𝑺𝑺(𝒙𝒙𝟑𝟑) 𝑺𝑺(𝒙𝒙𝟒𝟒) 𝑺𝑺(𝒙𝒙𝟓𝟓) Ranking and Ordering 
CPyFAAWA 0.3942 0.0097 0.3304 0.2130 0.2347 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
CPyFAAWG −0.0904 −0.1481 −0.1015 −0.0067 0.1176 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥2 

Step 5: To analyse suitable applicants, we arranged score values and performed ranking 
and ordering of the score values in Table 4. We can see that 𝑥𝑥1  and 𝑥𝑥5  are suitable 
applicants obtained by CPyFAAWA and CPyFAAWG operators. We also explored 
obtained score values in the following graphical representation of Figure 2. 

 
Figure 2. The score values of the CPyFAAWA and CPyFAAWG operators. 

7.4. Influence Study 
We deploy several parameters Ὺ inside the approaches we have mentioned to char-

acterize the alternatives and to demonstrate the influence of various parameter Ὺ magni-
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tudes. Tables 5 and 6 report the ordering consequences of the CPyFAAWA and CPy-
FAAWG operator-based option selections. It is obvious that as the magnitude Ὺ for the 
CPyFAAWA and CPyFAAWG operators increases; the score values of the alternatives 
continue rising, but the best option stays the same. This suggests that the provided strat-
egies have the property of isotonicity and that the decision makers can choose the most 
appropriate value based on their preferences. Furthermore, we see that the results gener-
ated by the alternatives seem to be consistent, even when the value varies throughout the 
demonstration, illustrating the stability of the recommended operators. 

Table 5. The ordering and ranking of the obtained consequences of CPyFAAWA operators. 

 𝑺𝑺(𝒙𝒙𝟏𝟏) 𝑺𝑺(𝒙𝒙𝟐𝟐) 𝑺𝑺(𝒙𝒙𝟑𝟑) 𝑺𝑺(𝒙𝒙𝟒𝟒) 𝑺𝑺(𝒙𝒙𝟓𝟓) Ordering and Ranking 
Ὺ = 𝟏𝟏 0.2169 −0.0383 0.2275 0.1062 0.2082 𝑥𝑥3 ≻ 𝑥𝑥1 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
Ὺ = 𝟑𝟑 0.3942 0.0097 0.3304 0.2130 0.2347 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
Ὺ = 𝟏𝟏𝟏𝟏 0.5562 0.0771 0.4259 0.3534 0.2733 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟐𝟐𝟐𝟐 0.6004 0.1024 0.4524 0.3967 0.2874 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟕𝟕𝟕𝟕 0.6228 0.1164 0.4663 0.4222 0.2957 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟏𝟏𝟎𝟎𝟎𝟎 0.6260 0.1184 0.4683 0.4259 0.2970 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟏𝟏𝟓𝟓𝟓𝟓 0.6285 0.1201 0.4699 0.4288 0.2981 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟐𝟐𝟐𝟐𝟐𝟐 0.6297 0.1209 0.4707 0.4303 0.2986 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟐𝟐𝟐𝟐𝟐𝟐 0.6307 0.1215 0.4713 0.4314 0.2991 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟑𝟑𝟑𝟑𝟑𝟑 0.6311 0.1218 0.4716 0.4320 0.2993 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟑𝟑𝟑𝟑𝟑𝟑 0.6317 0.1222 0.4719 0.4326 0.2995 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 
Ὺ = 𝟒𝟒𝟒𝟒𝟒𝟒 0.6320 0.1224 0.4722 0.4330 0.2997 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥4 ≻ 𝑥𝑥5 ≻ 𝑥𝑥2 

We also illustrate the consequences of CPyFAAWA and CPyFAAWG operators as 
the geometrical representation of Figures 3 and 4, respectively. 

 
Figure 3. The results of CPyFAAWA operators for Ὺ. 
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Figure 4. The results of CPyFAAWG operators for Ὺ. 

Table 6. The ordering and ranking of the obtained consequences of CPyFAAWG operators. 

 𝑺𝑺(𝒙𝒙𝟏𝟏) 𝑺𝑺(𝒙𝒙𝟐𝟐) 𝑺𝑺(𝒙𝒙𝟑𝟑) 𝑺𝑺(𝒙𝒙𝟒𝟒) 𝑺𝑺(𝒙𝒙𝟓𝟓) Ordering and Ranking 
Ὺ = 𝟏𝟏 0.0089 −0.0982 0.0436 0.0485 0.1721 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥3 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 
Ὺ = 𝟑𝟑 −0.0904 −0.1481 −0.1015 −0.0067 0.1176 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥2 
Ὺ = 𝟏𝟏𝟏𝟏 −0.1653 −0.2190 −0.2223 −0.1033 0.0403 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥2 
Ὺ = 𝟐𝟐𝟐𝟐 −0.1911 −0.2487 −0.2566 −0.1474 0.0043 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟕𝟕𝟕𝟕 −0.2070 −0.2666 −0.2760 −0.1724 −0.0208 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟏𝟏𝟎𝟎𝟎𝟎 −0.2094 −0.2691 −0.2788 −0.1760 −0.0249 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟏𝟏𝟓𝟓𝟓𝟓 −0.2114 −0.2712 −0.2811 −0.1788 −0.0284 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟐𝟐𝟐𝟐𝟐𝟐 −0.2124 −0.2722 −0.2822 −0.1802 −0.0301 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟐𝟐𝟐𝟐𝟐𝟐 −0.2131 −0.2730 −0.2831 −0.1814 −0.0315 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟑𝟑𝟑𝟑𝟑𝟑 −0.2135 −0.2734 −0.2836 −0.1819 −0.0322 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟑𝟑𝟑𝟑𝟑𝟑 −0.2140 −0.2739 −0.2841 −0.1825 −0.0330 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 
Ὺ = 𝟒𝟒𝟒𝟒𝟒𝟒 −0.2142 −0.2742 −0.2844 −0.1829 −0.0335 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 ≻ 𝑥𝑥3 

8. Comparative Study 
To classify the validity and feasibility of our proposed methodologies, we applied 

several existing AOs to demonstrate information given by the decision makers and dis-
played in Table 2: the AOs of CPyF-weighted average, (CPyFWA) and CPyF-weighted 
geometric (CPyFWG) operators by Mahmood et al. [25], AOs of CPyF Dombi-weighted 
average and CPyF Dombi-weighted operators by Akram et al. [59], AOs of PyF Aczel–
Alsina-weighted average (PyFAAWA) and PyF Aczel–Alsina-weighted geometric (Py-
FAAWG) given by Hussain et al. [58], AOs of interval-valued CPyFWA (IVCPyFWA) and 
interval-valued CPyFWG (IVCPyFWG) operators by Ali et al. [60], AOs of PyF-weighted 
average (PyFWA) and PyF-weighted geometric (PyFWG) operators by Rahman et al. [24], 
and AOs of PyF Einstein-weighted (PyFEW) average (PyFEW) and geometric (PyFEWG) 
operators by Garg, 2016 [61]. The results of aforementioned existing AOs operators are 
shown in the following Table 7. 

Furthermore, we also illustrate the results of existing AOs as a graphical representa-
tion in Figure 5, which is shown above Table 7. 
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Table 7. The results of existing AOs and our proposed methodologies. 

Aggregation Operators Environment Ranking and Ordering 
CPyFAAWA CPyFVs 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
CPyFAAWG CPyFVs 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥2 
CPyFWA [25] CPyFVs 𝑥𝑥3 ≻ 𝑥𝑥1 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
CPyFWG [25] CPyFVs 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥3 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 

CPyFDWAA [59] CPyFVs 𝑥𝑥1 ≻ 𝑥𝑥3 ≻ 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥2 
CPyFDWGA [59] CPyFVs 𝑥𝑥5 ≻ 𝑥𝑥4 ≻ 𝑥𝑥3 ≻ 𝑥𝑥1 ≻ 𝑥𝑥2 

PFAAWA/PFAAWG [58] PyFVs Failed 
IVCPyFWA/IVCPyFWA [60] IVCPyFVs Failed 

PyFWA/PyFWG [24] PyFVs Failed 
PyFEWA/PyFEWG [61] PyFVs Failed 

 
Figure 5. The results of the comparative analysis. 

9. Conclusions 
Decision-making problems are widespread throughout multiple sectors, including 

marketing, business and technology. There are a lot of difficulties that decision makers 
face during the aggregation process due to insufficient information. We used an innova-
tive concept of CPyFSs and developed a list of new AOs based on Aczel–Alsina opera-
tions: a CPyFS that has extensive information, including two aspects of MV and NMV in 
the form of amplitude and phase terms. The main purposes of this article are as follows. 
(1) The main contribution of this article is to present some new AOs and fundamental 

operational laws of CPyFSs. We generalized the basic idea of Aczel–Alsina TNM and 
TCNM with operational laws and illustrative examples. 

(2) By using the operational laws of Aczel–Alsina TNM and TCNM, we developed a list 
of new AOs, like the CPyFAAWA operator, and verified invented AOs with some 
deserved properties. 

(3) Furthermore, we also established the CPyFAAWAG operator based on the defined 
fundamental operational laws of Aczel–Alsina TNM and TCNM. 
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(4) To find the feasibility and reliability of our invented methodologies, we explored 
some special cases like CPyFAA-ordered weighted (CPyFAAOW), average (CPy-
FAAOWA) and CPyFAAOW geometric (CPyFAAOWG) operators, and CPyFAA 
hybrid-weighted (CPyFAAHW), average (CPyFAAHWA) and CPyFAAHW geo-
metric (CPyFAAHWG) operators with some basic properties. 

(5) By utilizing our invented approaches, we solved an MADM technique. We estab-
lished an illustrative example to select a suitable candidate for the vacant post of a 
multinational company. 

(6) To analyze the effectiveness of different parametric values of Ὺ on the results of our 
proposed approaches, we discussed an influence study. 

(7) We checked the reliability and flexibility of our invented approaches by comparing 
the results of existing AOs with the results of our discussed technique. 
The aforementioned operators and approaches will be gradually applied to a range 

of applications, such as networking analysis, risk assessment, cognitive science, recom-
mender systems, signal processing and many more domains in ambiguous circumstances. 
Additionally, the interrelationships between the pairs of attributes throughout the aggre-
gation process are not taken into consideration in the current study, but they will be in 
future ones. To better understand the information in our daily lives, we will also try to 
establish some more generalized information measurements. We will explore our in-
vented methodologies within the framework of multi-criteria development in the system 
of the fuzzy environment [62]. We will also explore the concepts of our proposed ap-
proaches within the framework of bipolar-valued hesitant fuzzy information [63]. More-
over, we will also explore our current work within the framework of interval type-2 fuzzy 
systems with quantized output tools [64]. 
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