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Abstract: In this study, we propose estimates for the confidence interval for the common mean
of several zero-inflated gamma (ZIG) distributions based on the fiducial generalized confidence
interval (GCI) and Bayesian and highest posterior density (HPD) methods based on the Jeffreys rule
or uniform prior. Their performances in terms of their coverage probabilities and expected lengths
are compared via a Monte Carlo simulation study. For almost all of the scenarios considered, the
simulation results show that the fiducial GCI performed better than the Bayesian and HPD methods.
Daily rainfall data from Chiang Mai Province, Thailand that contains several zero entries and follows
a ZIG distribution is used to test the efficacies of the methods in real-world situations.

Keywords: zero-inflated gamma distribution; common mean; fiducial generalized confidence interval;
Bayesian method
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1. Introduction

Chiang Mai in northern Thailand is a region with high mountains and forests. When it
comes to the rainy season, excess runoff water often floods villages at the foot of mountains.
The rainy season in Thailand lasts from May to October. Between August and September,
there is “heavy rain” to “very heavy rain”, which can cause flash flooding and river
bank overflows. However, predicting heavy precipitation and flooding is challenging
due to rainfall variability. Daily rainfall data from the region typically include zero and
positive values that fit a zero-inflated gamma (ZIG) distribution. Thus, to accurately predict
future catastrophic events, it is vital to measure the central tendency of rainfall in specific
places using statistical parameters such as the mean of a distribution. Therefore, the mean
of a ZIG distribution can be used to analyze rainfall data series for forecasting future
precipitation amounts.

The ZIG distribution can be used to fit data that contain both zero and positive values:
the positive values follow a gamma distribution, while the zero values follow a binomial
distribution. The ZIG distribution has been used to analyze right-skewed data with a high
clump-at-zero frequency in several fields. In meteorology, Kaewprasert et al. [1] used the
mean of a ZIG distribution to analyze mixed zero and non-zero rainfall data. In medicine,
Wang et al. [2] analyzed data on the HIV status of children recorded as non-responses (zero)
and positive responses by using the mean of a ZIG distribution.

The two types of statistical inference are parameter estimation and hypothesis test-
ing. The most often used interval estimation technique for a parameter is the confidence
interval enclosing the estimate’s minimum and maximum values. The confidence interval
for the mean of a ZIG distribution has been the focus of several studies. Muralidharan
and Kale et al. [3] estimated the confidence interval for the mean of a ZIG distribution
and applied it to analyze real rainfall data. Simultaneous confidence intervals for the
difference between the means of ZIG distributions were introduced by Ren et al. [4].
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Kaewprasert et al. [1] expanded the scope of this by comparing the difference between the
means of several ZIG distributions. Wang et al. [2] produced confidence interval estimates
for the mean of a gamma distribution with zero values.

The mean is frequently utilized in practice to gauge statistical significance in many
domains. The common mean is of interest when establishing inference for more than one
population when independent samples are collected from them. The process of building
the confidence interval for the common mean of several distributions has been studied
by many scholars. For example, Yan [5] established confidence interval estimation for
the common mean of several gamma populations by using fiducial inference and the
method of variance estimates recovery (MOVER). Maneerat and Niwitpong [6] estimated
the confidence interval for the common mean of several delta-lognormal distributions. As
previously indicated, although there have been numerous estimations of the confidence
interval for the common mean of several gamma and delta-lognormal distributions, the
common mean of several ZIG distributions has not yet been the subject of a study on
statistical inference.

The motivation for the study was to examine previously reported confidence interval
estimation methods for the common mean of several gamma distributions and extend
them to estimate the confidence interval for the common mean of several ZIG distributions.
Thus, we chose estimation methods used for the confidence interval for the common
mean and common coefficient of variation of several delta-lognormal distributions as
follows. Maneerat and Niwitpong [6] proposed using the fiducial generalized confidence
interval (GCI) and the highest posterior density (HPD) interval based on the Jeffreys rule
prior to estimate the confidence interval for the common mean of several delta-lognormal
distributions. Using the fiducial GCI and Bayesian approach based on the uniform prior
was proposed by Yosboonruang et al. [7] to estimate the confidence interval for the common
coefficient of variation of several delta-lognormal distributions.

Herein, we explored several confidence interval estimation methods for the common
mean of several ZIG distributions using the fiducial GCI approach and Bayesian and HPD
methods based on the Jeffreys rule or uniform prior. We used them to calculate the 95%
confidence interval for the common mean of three daily rainfall datasets (Chomthong, Mae
Taeng, and Doi Saket) in Chiang Mai, Thailand.

The outline of this study is organized as follows. Section 2 provides the methodologies
to estimate the confidence interval for the common mean of several ZIG distributions.
Section 3 reports the numerical computations using the methods in a Monte Carlo sim-
ulation study. Section 4 presents the empirical application of the proposed confidence
interval estimation methods using data on daily rainfall collected from three rain stations
in Chiang Mai, Thailand, in September 2020 and 2021. Finally, a discussion and conclusions
are offered in Sections 5 and 6, respectively.

2. Methods

Let Yi]-; i=12...,kkj=1,2,...,n; be random variables of size n; from k ZIG
distributions denoted as Yj; ~ Z1G(a;, b;, 6;). This distribution has three parameters: shape
parameter g;, rate parameter b;, and the proportion of zero values J;. For k populations of
observations, the distribution function of Yi]- is given by

dj Yij =0

, 1
6+ (1—6)G(yijzai,bi) i >0

F(yij; a;, b;, 6;) = {
where G (yij ;ai, bi) is a gamma distribution function, which can be denoted as Gjj when
Yi]- #0;i=12,...,kj=12,... AMi(1)- For Yl-]- = 0, the zero observations follow a binomial
distribution denoted as 1) ~ B(n;, J;). Furthermore, 1;) and ;(;) represent the numbers
of zero and non-zero values, respectively, where ;) + ;1) = n;. The population mean of
Yj; is given by

ni=(1-6)7 @
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Krishnamoorthy et al. [8] and Krishnamoorthy and Wang [9] used cube-root approxi-
mation X;; = Gl.l]./ 3, thereby ensuring that the Xl{js are approximately normally distributed,

which is denoted as X;; ~ N(p;, 0?) with mean and variance of y; and 07, respectively. It is
possible to represent y; and 07 in terms of 4; and b;, respectively, as follows:

1/3
(4w _1 2 1
w=5) (o) e = PYETER ®

By resolving the equations in the a; and b; sets above, we, respectively, arrive at

1/2

2
1 u? u? 1
= = 1 L 1 L —1 d by = ——MM . 4
: 9{< +2ff?) ! ( " 207 " 270l 2(02) @

3
2
Thus, the mean of a ZIG distribution is #; = (1 — ‘51‘)% =(1-9¢) (g’ + %i + (fiz) .
The unbiased estimators for y;, 0'i2, and J; are fi; = ni}l) Z]r-l;(ll) yil]-/ 3, [71-2 = n,(ll)—l
(1) 1/3_A,2 d5-: ] ) ivelv: th
Zj:1 Yif fii) ,and 6; = n()/n;, respectively; then
3

= (- Z s B LA 5
Ui—(_i)?i—(_i) ST\t ®)

. . 2 1/2
whered; = 1 (14 2 ) + [ (14 ) —1 and b= — 1
9 217[ 207 27ﬁ11/2(&]_2) /
Using the finding from Aitchison [10], Vannman [11] claimed that the minimal variance

unbiased estimators of the variance of #j; can be derived as

N

V(#;) ~

ni(a; +1) — amy) ( L3 d,-)z. ©)

(n; = 1)(an;qy +1)
According to Yan [5] and Maneerat and Niwitpong [6], the common mean of several
Z1G distributions can be defined as

- Ly wifl @
Z?:l wj
where w; = 1/V(#;). The confidence interval for the common mean of several ZIG

distributions can be estimated by using the suggested methods listed below.

2.1. The Fiducial GCI Method

Fisher [12] was the first to propose the fiducial approach. Meanwhile, Hannig [13]
conducted additional research into the fiducial approach and provided some general
results. The fiducial interval is the generalized pivotal quantity (GPQ), which may be
applied in generalized inference and can be viewed as the result of the fiducial framework.
A framework for this that shows the connection between the distribution and the parameter
was proposed by Hannig et al. [14] in the form of a fiducial GPQ.

Suppose Yjj; i = 1,2,...,k; j = 1,2,...,n; is a random sample from Z1G(a;, b;, 6;),
where 7; = (a;,b;, ;) is the parameter of interest. Therefore, the GPQ T(Y;;; yij, a;, b;, 6;)
can only be a function of 7;. This is called the fiducial GPQ, which satisfies the following
two conditions:

1. For each y;;, the conditional distribution of T(Yl-]- > Yij, ai, bi, J;) is free of the nuisance
parameter.
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2. For the observed value of T(Yj; yij, a;, b, 0;) at Y; = yij, t(yij; yij, ai, bi, 6;) = T

According to Krishnamoorthy et al. [8], this approach is based on the observation
that X;; ~ N(p;, 0?) approximates a gamma distribution. Let fi; and 67, respectively,
represent the observed sample mean and variance based on the X/ ;s that have been cube-
root transformed. This makes it possible to obtain the respective fiducial GPQs for y; and
o? as follows:

D A2
U (”i(l) - 1)‘71' (”i(l) - 1)01-
Ty, = fii d T,=~—+~_71",
Hi H + \/Vz ni(l) an (71.2 Vz (8)

: . 2
N — Ly 1/3 52 1 M) (173 _ 4 , , 2
where fi; = - Y Y07 = iy Yo (yl.]. — y1> , Ui ~N(0,1),and V; ~ Xy 1

In addition, the respective fiducial GPQs for a; and b; have the following forms:

1 T2
T-:* 1 Hi
()

Similarly, the fiducial GPQ for ; can be written as [15]

1/2

T2 \? 1
14 0) 1 Ty — — .
<+2Taz) } and i ogTl2T3/2 ©)
1 N0

1

1 1
Ts, ~ iBeta (”i(o) +1, ni(1)> + EBeta (ni(o),n,-(l) + 1). (10)

Meanwhile, the fiducial GPQ for j; is given by

i

3
Ta, Ty, Tz
Tp = (1—-Ts5) == = (1 =Ty, : : .

Subsequently, the fiducial GPQ for the estimated variance of 7; is given by

ni(Tui + 1) — Tuinl‘(l) Ta_ 2
Tyipy = 1-Ts5)=) .
V() (n;— 1)(Toyr) + 1) <( 5) T, ) (12)

i

Therefore, we can estimate the confidence interval for the common mean of k ZIG
distributions (7) using its fiducial GPQ as follows:

k
T, — Liz1 Tw; Ty,

i T,

where Ty, = 1/TA(771')'
Thus, the 100(1 — 7)% fiducial GCI for 7j becomes

CIFCC! = [LECCT, UFCCl] = [Ty(v/2), Ty(1 - 7/2)]. 14)

where Tj(7) denotes the 9" percentiles of Tj. This process is specified in Algorithm 1.

Algorithm 1 The fiducial GCI method

Generate Yj; ~ Z1G(a;, b;,6:);i=1,2,...,k;j=1,2,...,n;.
Generate U; ~ N(0,1) and V; ~ X%i(l)_l independently.
Compute fiducial GPQs Ty,, Ty, and Ty,

Compute Ty, and Ty, , leading to obtaining Tj.

Repeat steps (1)—(4) 2000 times.

Compute the 95% fiducial GCI for Tj; using Equation (14).

SN b=
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2.2. The Bayesian Methods
Suppose that Yj; # 0;i = 1,2,...,k; j = 1,2,..., 1), then Y1/3 = Xjj ~ N(uj, 7).
Likelihood function p(xl] | ui, 0%) for x;j and the prior dlstrlbutlon Wthh is used to explain

conditional probability, make up the Bayesian statistical approach. Therefore, the likelihood
function of k normally distributed samples is given by

k o 1 (1)
Py | o) < TT(07) ™2 exp | =55 Y (= )| (15)
i=1 7i =1

For the ZIG distribution, the joint likelihood function of k individual samples is
given by

i

k 1i(1)
1; ; _ 4@ 1 2
p(ii | mis 0?,8;) o H(Si O(1 =) (07) =72 exp [—202 2 (yll/s Vi) 1 (16)
i=1 i j=1
The common mean for several ZIG distributions can be estimated using the Bayesian

approach based on a variety of priors, two of which are derived in the following subsections.

2.2.1. The Jeffreys Rule Prior
Introduced by Harvey and Van Der Merwe [16], the Jeffreys rule prior can be written as

k
1
P(Mpayey < [T 56 21— 6)'2 17)
i=1"i

Adding the likelihood functions in Equations (16) and (17) results in the posterior
distribution of # becoming

-1/2 _ _ mi)+3 2
(77|y1])Baye] ‘XHl 1 l © (1*5i)n1(])+1/2(‘7‘2) 2 exp[ 2(172 (%1]/3 .”):|

+1/2)-1 /i N
o1, 5, (1) 372 1\/2? P( w}z(l‘i_yi)z)
"i(1)+1 (18)

(”i(l)*l)f’iz> :
5 _"i(1)+1_1 1 52
X (07) 2 exp(_(”/m ) >,

20i2

2
Ao 1 1/3 AD 1 1/3 ~
where fi; = o Z] 1 Yif and 0?7 = i) T (y” yi) . Subsequently, the respec-
tive marginal posterior distributions of y;, O'i , and 0; are obtained as
B N
P | 02,y ~ N, 0F /i)
PN |y~ 1G((mi0y +1)/2, (nya) — 1)62/2) (19)

1
5Z(Buy€] | yZ] ~ Beta(ni(o) + 1/2/ ni(l) + 3/2)

In addition, the respective Bayesian derivations for a; and b; based on the Jeffreys rule
prior have the following forms:

(Baye.J)\2
(Baye.]) 1 (Vz )
g - 9{ (1 T 2B |

1

(V(Bﬂye ])) 2 12
(1 + 720. Baye ) ) -1 } (20)
i

1
b'(Baye.]) _ . 1)
1/2 3/2
i 27 (al(Baye,])> ((TiZ(BayE.]))

and
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Thus, the Bayesian estimation for #j; based on the Jeffreys rule prior is given by

Baye.]
A(Buye.]) _ (1 _5(Buye.]))a§ veJ)
1 i b(Baye.I)

1

22
(Baye.]) (Baye.])\o 3 (22)

= (1 — 5(Buye'1)) ‘ui _|_ (Vl ) + U?(Bﬂye-])
1 2 4 i .

Meanwhile, the Bayesian estimation for the variance of 7j; based on the Jeffreys rule
prior is given by

(Baye.)) (Baye.)) e.]
(g e = Mt << ey )> 23
(ni_l)(a(Bﬂyef) i )+1) b(Baye])

1 1

Therefore, we can construct the Bayesian credible interval for the common mean of
several ZIG distributions based on the Jeffreys rule prior as

Ei'(:l (Baye.]) nl(Bayf-I )

jBave) _ i
k aye.
Yi-1 wi Y

(24)

where wi(BayE] 1/V(#%;) (Baye]),

Thus, the 100(1 — )% Bayesian credible interval for 77 based on the Jeffreys rule
prior is

crg™e) = [Lge) u ) = [ EweD (y2), B (1~ 4 /2)]. 25)

where 7(B%eJ) («y) denotes the v percentiles of 7j(B%ve-)),

2.2.2. The Uniform Prior

Due to the uniform prior’s constant function for the prior probability, Bolstad and Cur-
ran [17] presented the uniform priors of p(y; )Baye u 1, p(o; )Buye u o 1,and p(é )Buyg_u o 1.
Subsequently, the posterior distribution of 7j based on the umform prior becomes

7 k n; , i) L) »
P(’? | yij)Baye.u S | | 51‘ (0)(1 - (51-)”1(1) (0'12) Texp| -z (yilj/3 _ ﬂi)
i=1 .

k ) _ i ]
o TTo 0 (1 — gyt 1 VI o ( 20 (- ﬁz‘)2>
) (26)

. 2
where fI; = % 5 Z] 1 yll/ Sand o 07 = 1 — 27’(]1) (yll/ - ﬁ,) . Consequentially, the respec-

tive marginal posterior distributions of yi, 07, and 6; can be obtained as

Baye.U 1]
( aye.U) | U'izlyij ~ N(,’Miro'zz/ni(l))

2 Ba U
PP |y 1G () — 2)/2, (miqyy
(5( aye.U) | Yij ~ Beta(n,»(o) +1, (1) + 1).

1

—1)67/2) (27)

1
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In addition, the Bayesian uniform priors for 4; and b; have the following respec-

tive forms:
1/2
(Baye.U)y2 Baye.U)\2 \ 2
(Bayen) _ 1 ()" "))
a; - 9{ <1 + ZUiZ(Baye.LI) + 1+ ZUiZ(Baye.U) 1 (28)
b(Baye.U) _ 1 (29)

and

1

Thus, the Bayesian estimate for 7j; based on the uniform prior is given by

et — (1 — glBaell)y QEBW'U)
! ! bgBaye.U)
(Baye.Ul) (Baye.U) \o 3 (30)
= (1 — oPaveth)y (Vi n (i ) n U;(Baye.u)) '
! 2 4 1

Subsequently, the Bayesian estimate for the variance of #}; based on the uniform prior
is given by

B U B u ave. 2
oo Gaetry _ (a4 1) — ™ ) (e al™ et
V(#:) Baye D) (1-9; ) el | (31)
(= 1) (2" ) +1) b

i

Therefore, we can construct the Bayesian estimate for the confidence interval for the
common mean of several ZIG distributions based on the uniform prior as

Baye.U) ,(Baye.U
ﬁ(Baye.U) — 25:1 wz( ! )771‘( veth

Yy wz(

Baye.U) 4 (32)

where wl(Baye‘U) _ 1/‘7(771')(3@8”).
Thus, the 100(1 — )% Bayesian credible interval for 77 based on the uniform prior can
be written as
Baye.U __ r;Baye.U 5 Bayely _ r~(Baye.U) ~(Baye.U) (1 _
CI; = [Lﬁ Uy =17 (7/2),1 (1—1/2)]. (33)
where 7(B%eU) (4) denotes the yth percentiles of 77(Fave-t).,

2.3. The HPD Interval

In the previous section, the Bayesian statistical approach is made up of the prior
distribution, which is used to define the conditional probability, and likelihood function
p(yij | A), where A = (y;, 0?,6;). Therefore, the posterior distribution of A is given by

p(A i) < p(M)p(yij | A). (34)

When posterior distribution p(A | y;;) is not symmetric, Box and Tiao [18] introduced
the HPD interval with the characteristic that the probability density of each point inside
the interval is greater than that of every point outside of it. Consequently, region W in the
parameter space of A is known as the HPD region of the content (1 — 7). These are the two
conditions that comprise this situation:
1. Pr(A€W|y,-]-):1—’y.
2. ForAdy € Wand Ay € W, p(A1 | yi5) > p(A2 | i)
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Similar to the studies of Maneerat and Niwitpong [6], Yosboonruang et al. [7], Chen
and Shao [19], and Noyan and Pham-Gia [20], we applied the HPDinterval package in the R
software suite for Step (6) in Algorithm 2 to respectively compute the HPD intervals based
on the Jeffreys rule or uniform prior for 7 as follows:

CIFPPT = [LEPPT, ulPPT) = (717D (. /2), PP D (1 /2)] (35)

and
CI#PD'U — [L1[7—IPD.U’ u%—IPD.U] — [ﬁ(HPD.U) (,)//2)’17(HPDU)<1 _ ,)//2)] (36)

Algorithm 2 The Bayesian credible interval base on the Jeffreys rule or uniform prior

1. Generate Yjj ~ ZIG(a;, by, 61); i = 1,2, k= 1,2, my.
Compute 1; and 67.

3.  Generate VEB“W']), UiZ(B“ye-I)’ and 5i(Buye.])

U-iz(B“W-U)’ and 51(Baye.u)

as given in Equation (19) and yl(Buye'u),

as given in Equation (27) based on the Jeffreys rule or uniform
prior, respectively.

4. Compute ﬁl(Baye'] ) and V (7;)(Bave) to obtain 77(B%¥e)) as given in Equation (24), and

ﬁl.(Bay ) and V (7;)(Baved) to obtain 7j(B%eU) as given in Equation (32), respectively.

5. Repeat steps (1)—(4) 2000 times.
6. Compute the 95% Bayesian credible interval based on the Jeffreys rule or uniform
prior for 7 as given in Equations (25) and (33), respectively.

3. The Monte Carlo Simulation Study and Results
3.1. Simulation Results

This was conducted using the R statistical program to investigate the effectiveness of
the estimation methods for the confidence interval for the common mean of several ZIG
distributions. The metrics used for the comparison are the coverage probability (CP), which
is the percentage of times that the real parameter value is contained within the confidence
interval for #; lower and upper error probabilities (LEP and UEDP, respectively); and the
expected length (EL), which is the average length of the confidence interval for 7. The
confidence interval estimation method that performs best for a particular scenario is the
one with a coverage probability close to or greater than the nominal confidence level of 0.95
and the shortest expected length, while the required values of LEP and UEP are balanced at
0.025. The number of generated random samples was fixed at 10,000 replications with 2000
pivotal quantities for the fiducial GCI, the Bayesian, and HPD methods. We set the sample
sizes (n;), the proportion of zero values (¢;), and the shape parameter (a;) as reported in
Tables 1 and 2 for k = 3 and k = 5, respectively. Finally, rate parameter (b;) was set as 1.0.
In this study, the criterion to compare the efficiencies of the confidence intervals (Cls) are
CPs and ELs, where CP is the percentage of time that the true parameter value is contained
within the interval, and EL is the average length of the CIs. First, the confidence intervals
were considered by the CPs. Since the nominal confidence level was 0.95, then the Cls
which provided CPs equal to or more than 0.95 are selected. After that, the ELs of these Cls
are considered to find the shortest length to be the best CL
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Table 1. The coverage probabilities and expected lengths for estimating the 95% confidence interval for the common mean of several ZIG distributions (k = 3).

FGCI Baye.] Baye.U HPD.J HPD.U
" 0 i LEP CP(EL) UEP LEP CP(EL)  UEP LEP  CP(EL)  UEP LEP CP(EL) UEP LEP CP(EL)  UEP
12.05 0.0000 09399  0.0601  0.0000 09565  0.0435  0.0000 09363 00637 0.0001 09689  0.0310 0.0000 09503  0.0497
(2.3165) (3.1680) (3.2583) (3.0892) (3.1848)
12.55 0.0000 09486  0.0514  0.0000 0.9653  0.0347  0.0000 0.9478  0.0522  0.0002 09754  0.0244  0.0000 09616  0.0384
0o (2.4154) (3.3053) (3.3994) (3.2230) (3.3230)
<3 13.05 0.0000 09503  0.0497  0.0000 0.9674 00326  0.0000 09513 00487  0.0001 09763  0.0236  0.0000 09640  0.0360
(2.5156) (3.4421) (3.5403) (3.3563) (3.4604)
13.55 0.0000 09591  0.0409  0.0000 09729  0.0271  0.0000 09578  0.0422  0.0000 0.9819  0.0181  0.0000 09706  0.0294
(2.6141) (3.5759) (3.6783) (3.4867) (3.5952)
5.05 0.0001 09501  0.0498  0.0000 0.9772  0.0228  0.0000 0.9643  0.0357 0.0000 09760  0.0240  0.0000  0.9643  0.0357
(1.1504) (1.5916) (1.5923) (1.5779) (1.5786)
5.55 0.0003 09617  0.0380  0.0000 09837 00163 0.0000 09760  0.0240  0.0001 09829  0.0170  0.0000 09747  0.0253
20 05 (1.2718) (1.7612) (1.7620) (1.7459) (1.7468)
3 8 6.03 0.0000 09691  0.0309 0.0000 09881  0.0119 0.0000 09822 00178 0.0000 09871  0.0129  0.0000 09813  0.0187
(1.3934) (1.9312) (1.9319) (1.9146) (1.9153)
6.53 0.0001 09781  0.0218  0.0000 09937  0.0063 0.0000 09897  0.0103  0.001  0.9930  0.0069  0.0000 09881  0.0119
(1.5191) (2.1050) (2.1058) (2.0869) (2.0875)
3.03 0.0009 09209  0.0782  0.0004 09680  0.0316 00002 09564 00434  0.0004 09618  0.0378  0.0000 0.9449  0.0551
(0.6162) (0.8653) (0.8541) (0.8542) (0.8424)
3.55 0.0010 09432  0.0558  0.0000 09792  0.0208 0.0000 09704 0.0296  0.0001 0.9743  0.0256  0.0000 09632  0.0368
07 (0.7282) (1.0243) (1.0109) (1.0112) (0.9972)
/3 4.0, 0.0003 09579  0.0418  0.0001 09889  0.0110 0.0000 09818  0.0182  0.0000 0.9858  0.0142  0.0000 09755  0.0245
(0.8382) (1.1802) (1.1650) (1.1652) (1.1492)
454 0.0002 09723  0.0275  0.0000 09929  0.0071  0.0000 09878  0.0122  0.0000 0.9895  0.0105  0.0000 09835  0.0165
(0.9536) (1.3420) (1.3244) (1.3249) (1.3063)
12.05 0.0000 09496  0.0504  0.0000 0.9622  0.0378  0.0000 0.9460  0.0540  0.0000 09717  0.0283  0.0000 09587  0.0413
(1.8086) (2.5059) (2.5511) (2.4595) (2.5063)
12.55 0.0000 0.9503  0.0497  0.0000 09685  0.0315  0.0000 09549  0.0451  0.0002 0.9772  0.0226  0.0000 09661  0.0339
%0 0o (1.8866) (2.6136) (2.6605) (2.5649) (2.6139)
3 3 13.05 0.0000 09557  0.0443  0.0000 09718  0.0282  0.0000 09567 0.0433  0.0001 09796  0.0203  0.0000 09682  0.0318
(1.9636) (2.7213) (2.7698) (2.6705) (2.7213)
13.5; 0.0000 09663  0.0337  0.0000 09769  0.0231  0.0000 0.9650 0.0350  0.0000 0.9833 00167  0.0000 09744  0.0256
(2.0414) (2.8280) (2.8785) (2.7752) (2.8281)
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Table 1. Cont.

FGCI Baye.] Baye.U HPD.J HPD.U
" 0 i LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP
5.05 0.0000 09489  0.0511  0.0000 09764  0.0236  0.0000 09679 00321  0.0000 09755  0.0245  0.0000 09650  0.0350
(0.9017) (1.2595) (1.2592) (1.2483) (1.2483)
5.55 0.0000 09610  0.0390  0.0000 09835 00165 0.0000 09759  0.0241  0.0000 09829 00171  0.0000 09745  0.0255
05 (0.9968) (1.3904) (1.3903) (1.3783) (1.3782)
~3 6.0; 0.0000 09744 00256 00000 09897 00103 0.0000 09844 00156  0.0000 09883  0.0117  0.0000 09832  0.0168
(1.0920) (1.5256) (1.5253) (1.5121) (1.5121)
6.5 0.0000 09810 00190 00001 09926  0.0073  0.0000 09878 00122  0.0001 09920  0.0079  0.0000 09862  0.0138
50 (1.1899) (1.6589) (1.6587) (1.6442) (1.6441)
¥ 3.03 0.0004 09119 00877  0.0003 09667 00330  0.0001 09526  0.0473  0.0002 09587  0.0411  0.0001 09446  0.0553
(0.4784) (0.6746) (0.6687) (0.6668) (0.6608)
3.5, 0.0005 09423 00572 00000 09792  0.0208  0.0000 09697 00303  0.0000 09736  0.0264 0.0000 09624  0.0376
07 (0.5665) (0.7984) (0.7916) (0.7891) (0.7821)
/3 4.05 0.0001 09679  0.0320 00000 09881 00119  0.0000 09831 00169  0.0000 09851  0.0149  0.0000 09786  0.0214
(0.6546) (0.9229) (0.9148) (0.9120) (0.9039)
454 0.0001 09770  0.0229  0.0000 0.9929  0.0071  0.0000 09892  0.0108  0.0000 09900  0.0100  0.0000  0.9855  0.0145
(0.7427) (1.0481) (1.0391) (1.0359) (1.0266)
12.0; 00000 09343  0.0657  0.0000 09556  0.0444  0.0000 09408  0.0592  0.0000 09639  0.0361  0.0000 09513  0.0487
(1.2868) (1.8010) (1.8172) (1.7760) (1.7926)
1255  0.0000 09465  0.0535  0.0000 09629  0.0371  0.0000 09504  0.0496  0.000 09693  0.0307  0.0000 09593  0.0407
0o (1.3415) (1.8780) (1.8950) (1.8521) (1.8691)
<3 13.0; 00000 09569  0.0431  0.0000 09673  0.0327  0.0000 09548  0.0452  0.0000 09736  0.0264  0.000 0.9633  0.0367
(1.3969) (1.9550) (1.9729) (1.9280) (1.9460)
1355  0.0000 09647 00353  0.0000 09718  0.0282  0.0000 09593 00407  0.0001 09779  0.0220  0.0000 09662  0.0338
100 (1.4520) (2.0316) (2.0500) (2.0035) (2.0223)
’ 5.0 0.0000 09221 00779 00000 09571  0.0429  0.0000 09462  0.0538  0.0000 09540  0.0460  0.0000 09413  0.0587
(0.6429) (0.9018) (0.9019) (0.8938) (0.8939)
5.55 0.0000 09444 00556  0.0000 0.9758  0.0242  0.0000 09679  0.0321  0.0000 09744  0.0256  0.0000 0.9658  0.0342
05 (0.7110) (0.9983) (0.9984) (0.9894) (0.9895)
3 6.03 0.0000 09667 00333 00000 09824 00176  0.0000 09767 00233  0.0000 09820 0.0180  0.0000 09742  0.0258
(0.7789) (1.0946) (1.0948) (1.0849) (1.0850)
6.5 0.0000 09787 00213 00000 09893  0.0107 0.000 09858 00142  0.0000 09895  0.0105 0.0000 09850  0.0150
(0.8484) (1.1929) (1.1931) (1.1822) (1.1825)
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Table 1. Cont.

s FGCI Baye.] Baye.U HPD.J HPD.U
" ! i LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP
3.03 0.0001  0.8809  0.1190  0.0001  0.9449  0.0550  0.0000  0.9319  0.0681  0.0000 09358  0.0642  0.0000 09205  0.0795
(0.3393) (0.4797) (0.4776) (0.4747) (0.4726)
3.55 0.0000 09280  0.0720  0.0000 09691  0.0309  0.0000 09594  0.0406  0.0001 09622  0.0377  0.0000 09505  0.0495
100 07 (0.4022) (0.5677) (0.5652) (0.5618) (0.5592)
3 /3 4.05 0.0000 09579  0.0421  0.0000 09819 00181  0.0000 09762  0.0238  0.0000 09780  0.0220  0.0000 09695  0.0305
(0.4650) (0.6564) (0.6534) (0.6495) (0.6466)
454 0.0000 09737  0.0263 00000 09911  0.0089  0.000 0987 00133  0.0000 09889 00111  0.0000 09824  0.0176
(0.5282) (0.7461) (0.7429) (0.7384) (0.7351)
1203  0.0000 09882  0.0118  0.0000 09581  0.0419  0.0000 09408  0.0592  0.0000 09706  0.0294  0.0000 09554  0.0446
(2.3137) (3.1706) (3.2610) (3.0919) (3.1877)
1255 0.0000 09906  0.0094  0.0000 09650  0.0350  0.0000 09450  0.0550  0.0000 09751  0.0249  0.0000 09587  0.0413
0o (2.4129) (3.3027) (3.3973) (3.2204) (3.3207)
=3 1305  0.0000 09933  0.0067  0.0000 09710  0.0290 0.0000 09530  0.0470  0.002 09804  0.0194  0.0000 0.9667  0.0333
(2.5129) (3.4409) (3.5386) (3.3551) (3.4588)
135;  0.0000 09931  0.0069  0.0000 09736 00264 0.0000 09575 0.0425  0.0000 09808  0.0192  0.0000 0.9699  0.0301
(2.6116) (3.5757) (3.6782) (3.4871) (3.5955)
5.03 0.0000 09933  0.0067 00000 09766  0.0234  0.0000 09662 00338  0.0001 09756  0.0243  0.0000 09643  0.0357
(1.1438) (1.5928) (1.5933) (1.5791) (1.5796)
30, 5.55 0.0000 09960  0.0040  0.0000 09856  0.0144  0.0000 09784  0.0216  0.000 09848  0.0152  0.0000 09772  0.0228
504, 05 (1.2663) (1.7614) (1.7622) (1.7463) (1.7470)
100, ~3 6.03 0.0000 09983  0.0017  0.0000 09901  0.0099  0.0000 09845 00155  0.0000 09890  0.0110  0.0000  0.9835  0.0165
(1.3889) (1.9300) (1.9309) (1.9134) (1.9142)
6.53 0.0000 09987 00013  0.0000 09916  0.0084  0.0000 09860 00140  0.0000 09909  0.0091  0.0000 09851  0.0149
(1.5109) (2.0987) (2.0995) (2.0807) (2.0814)
3.0 0.0000 09867 00113 00003 09676  0.0321  0.0000 09545 00455  0.0002 09608  0.0390  0.0000 09444  0.0556
(0.6079) (0.8625) (0.8511) (0.8514) (0.8394)
3.55 0.0000 09927 00073  0.0000 09818 00182  0.0000 09743 00257  0.0000 09765  0.0235  0.0000 0.9659  0.0341
07 (0.7194) (1.0253) (1.0120) (1.0123) (0.9982)
/3 4.05 0.0000 09973  0.0027 00002 09880  0.0118  0.000 09811 00189  0.0001 09843  0.0156  0.0000 09752  0.0248
(0.8318) (1.1796) (1.1642) (1.1646) (1.1485)
45, 0.0000 09986  0.0014 00000 09930  0.070  0.0000 09889 00111  0.0000 09917  0.0083  0.0000 09845  0.0155
(0.9441) (1.3400) (1.3225) (1.3230) (1.3046)
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Table 2. The coverage probabilities and expected lengths for estimating the 95% confidence interval for the common mean of several ZIG distributions (k = 5).

FGCI Baye.] Baye.U HPD.J HPD.U
" 0 i LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP
1205  0.0000 09628  0.0372  0.0000 09635  0.0365 0.0000 09426  0.0574  0.0000 09738  0.0262  0.0000 09601  0.0399
(2.3170) (3.1723) (3.2623) (3.0934) (3.1891)
1255 0.0000 09720  0.0280  0.0000 09637  0.0363  0.0000 09448  0.0552  0.0000 09753  0.0247  0.0000 09597  0.0403
0 (2.4154) (3.3088) (3.4036) (3.2267) (3.3268)
<5 1305 0.0000 09742  0.0258  0.0000 09666  0.0334  0.0000 09494 00506  0.000 09763  0.0237  0.0000 0.9627  0.0373
(2.5154) (3.4382) (3.5362) (3.3527) (3.4567)
1355  0.0000 09789  0.0211  0.0000 09735  0.0265 0.0000 09569  0.0431  0.0000 09810  0.0190  0.0000 09708  0.0292
(2.6120) (3.5766) (3.6786) (3.4876) (3.5955)
5.05 0.0000 09679  0.0321  0.0001 09767 00232  0.0000 09668 00332  0.0001 09762  0.0237  0.0000 09645  0.0355
(1.1513) (1.5929) (1.5938) (1.5792) (1.5801)
5.55 0.0000 09766  0.0234 00000 09856  0.0144  0.0000 09779 00221  0.0000 09846  0.0154  0.0000 09768  0.0232
20 05 (1.2706) (1.7634) (1.7641) (1.7482) (1.7489)
5 5 6.05 0.0000 09798  0.0202 00000 0988  0.0114  0.0000 09818 00182  0.000 09888  0.0112  0.0000 09811  0.0189
(1.3934) (1.9328) (1.9334) (1.9160) (1.9168)
6.55 0.0000 09857  0.0143  0.0000 0.9926  0.0074  0.0000 09875 00125  0.0000 0.9917  0.0083  0.0000 0.9869  0.0131
(1.5139) (2.1022) (2.1029) (2.0838) (2.0849)
3.05 0.0005 09364 00631 00004 09693 00303 0.0001 09555  0.0444  0.0003 09623  0.0374  0.0000 09445  0.0555
(0.6131) (0.8649) (0.8538) (0.8539) (0.8421)
3.55 0.0002 09590  0.0408  0.0001 09805  0.0194  0.0000 09723 00277  0.0000 09763  0.0237 0.0000 09662  0.0338
07 (0.7270) (1.0219) (1.0087) (1.0089) (0.9949)
/5 405 0.0004 09718  0.0278  0.0000 09887 00113  0.0000 09824 00176  0.0000 09855 00145  0.0000 0.9773  0.0227
(0.8387) (1.1836) (1.1681) (1.1687) (1.1522)
455 0.0000 09813 00187  0.0000 09939  0.0061  0.0000 09891 00109  0.000 09909  0.0091  0.0000 09853  0.0147
(0.9526) (1.3418) (1.3247) (1.3247) (1.3067)
1205 0.0000 09731 00269  0.0001 09635 0.0364 00000 09486  0.0514  0.0003 09742  0.0255  0.0001  0.9603  0.039
(1.8091) (2.5072) (2.5521) (2.4605) (2.5074)
1255 0.0000 09789  0.0211  0.0001 09635 0.0364 0.0001 09501  0.0498  0.0001 09723  0.0276  0.0001 09587  0.0412
%0 02 (1.8858) (2.6123) (2.6591) (2.5636) (2.6125)
5 <5 13.0s 00001 09808  0.0191  0.0001 09703  0.0296  0.0000 09562  0.0438  0.0002 09789  0.0209  0.0000 0.9659  0.0341
(1.9636) (2.7208) (2.7696) (2.6704) (2.7212)
1355  0.0000 09843 00157  0.0000 09773  0.0227  0.0000 09647  0.0353  0.000 09831 00169  0.0000 09746  0.0254
(2.0403) (2.8274) (2.8779) (2.7747) (2.8275)
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Table 2. Cont.

FGCI Baye.] Baye.U HPD.J HPD.U
" 0 i LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP LEP CP(EL) UEP
5.05 0.0000 09710  0.0290  0.0001 09752  0.0247  0.0000 09664 00336  0.0000 09746  0.0254  0.0000 09647  0.0353
(0.9010) (1.2582) (1.2578) (1.2470) (1.2469)
5.55 0.0000 09809  0.0191  0.0000 09835 00165 0.0000 09762  0.0238  0.0000 09829 00171  0.0000 09735  0.0265
05 (0.9975) (1.3924) (1.3922) (1.3801) (1.3800)
~5 6.05 0.0000 09883 00117  0.0000 09902  0.0098  0.0000 09850 00150  0.0000 09888 00112  0.0000 09833  0.0167
(1.0926) (1.5265) (1.5264) (1.5132) (1.5131)
6.55 0.0000 09916  0.0084  0.0000 09910  0.0090  0.0000 09870  0.0130  0.0000 09910  0.0090  0.0000 09841  0.0159
50 (1.1882) (1.6601) (1.6599) (1.6455) (1.6454)
> 3.05 0.0002 09414 00584  0.0001 09607 00392  0.0000 09493  0.0507 0.0001 09536  0.0463  0.0001 09383  0.0616
(0.4788) (0.6763) (0.6704) (0.6684) (0.6623)
3.55 0.0004 09623 00373 00001 09806  0.0193  0.0001 09717 00282  0.0001 09753  0.0246  0.0000 09651  0.0349
07 (0.5652) (0.7997) (0.7928) (0.7903) (0.7833)
/5 4.05 0.0001 09790  0.0209 00001 09862 00137  0.0000 09817 00183  0.001 09834 00165 0.0000 09759  0.0241
(0.6544) (0.9207) (0.9128) (0.9099) (0.9019)
455 0.0000 09865 00135  0.0000 0.9938  0.0062  0.0000 09892  0.0108  0.0000 09907  0.0093  0.000 09861  0.0139
(0.7422) (1.0485) (1.0394) (1.0364) (1.0270)
1205  0.0000 09719 00281  0.0000 09560  0.0440  0.0000 09426  0.0574  0.0000 09637  0.0363  0.0000 09514  0.0486
(1.2869) (1.8007) (1.8171) (1.7760) (1.7926)
1255 0.0000 09734 00266 00001 09660  0.0339  0.0000 09534 00466  0.0001 09717 00282  0.0001 09615  0.0384
0o (1.3415) (1.8788) (1.8959) (1.8529) (1.8703)
<5 13.0s  0.0000 09835  0.0165 0.0000 09695  0.0305 0.0000 09547  0.0453  0.0000 09754  0.0264  0.0000 09624  0.0376
(1.3968) (1.9536) (1.9713) (1.9267) (1.9444)
1355 00000 09852  0.0148  0.0000 09734  0.0266  0.0000 09603  0.0397  0.0000 09782  0.0218  0.0000 09670  0.0330
100 (1.4518) (2.0305) (2.0489) (2.0024) (2.0212)
> 5.05 0.0000 09540  0.0460  0.0000 09610  0.0390  0.0000 09501  0.0499  0.0000 09584  0.0416  0.0000 09473  0.0527
(0.6422) (0.9019) (0.9022) (0.8940) (0.8942)
5.55 0.0000 09763  0.0237  0.0000 09761  0.0239  0.0000 09680 00320 0.0000 09735 00265 0.0000 0.9649  0.0351
05 (0.7111) (0.9976) (0.9978) (0.9888) (0.9890)
~5 6.05 0.0000 09860 00140  0.0000 09825 00175  0.0000 09764 00236  0.0000 09822  0.0178 00000 09745  0.0255
(0.7796) (1.0957) (1.0959) (1.0860) (1.0861)
6.55 0.0000 09893 00107 00000 09902  0.0098  0.0000 09855 00145  0.0000 0988  0.0114  0.0000 09846  0.0154
(0.8478) (1.1909) (1.1910) (1.1803) (1.1805)
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Table 2. Cont.

FGCI Baye.] Baye.U HPD.J HPD.U
i b i LEP CP(EL)  UEP LEP  CP(EL)  UEP LEP  CP(EL)  UEP LEP  CP(EL)  UEP LEP  CP(EL)  UEP
3.05 0.0000 09151  0.0849  0.0000 09445  0.0555  0.0000 09308  0.0692  0.0000 09350  0.0650  0.0000 09206  0.0794
(0.3393) (0.4795) (0.4773) (0.4744) (0.4723)
3.55 0.0000 09563  0.0437  0.0000 09707  0.0293 00000 09609 00391  0.0000 09659  0.0341 00000 09533  0.0467
100 07 (0.4017) (0.5678) (0.5654) (0.5619) (0.5594)
5 75 4.05 0.0001 09777 00222  0.0000 09839 00161 00000 09784  0.0216 0.0000 09794 00206  0.000 09725  0.0275
(0.4651) (0.6570) (0.6542) (0.6501) (0.6473)
455 0.0000 09885 00115  0.0000 09908  0.0092  0.0000 0985 00135 0.0000 09883 00117  0.000 09838  0.0162
(0.5279) (0.7459) (0.7426) (0.7381) (0.7347)
12.0s 00000 09975  0.0025  0.0000 09614 0038 00000 09395 00605 00000 09734 00266 00000 09556  0.0444
(2.3126) (3.1679) (3.2581) (3.0894) (3.1849)
1255  0.0000 09980  0.0020 0.0000 09683 00317 00000 09500  0.0500 0.000 09774 00226 0.0000 09629  0.0371
02 (2.4128) (3.3074) (3.4016) (3.2251) (3.3251)
5 1305  0.0000 09985  0.0015  0.0000 09695  0.0305 0.0000 09511  0.0489  0.0002 09797  0.0201  0.0000 09640  0.0360
(2.5123) (3.4399) (3.5379) (3.3544) (3.4584)
1355 00000 09992  0.0008  0.0000 09741 00259 00000 09588  0.0412  0.0000 09814 00186  0.0000 09706  0.0294
(2.6110) (3.5761) (3.6776) (3.4869) (3.5952)
5.05 0.0000 0998 00014  0.0000 09773 00227  0.0000 09670  0.0330 0.0001 09764 00235 00000 09663  0.0337
(1.1441) (1.5931) (1.5937) (1.5793) (1.5801)
5.55 0.0000 09985  0.0015  0.0000 09850  0.0150  0.000 09767  0.0233  0.0001 09842 00157  0.000 09758  0.0242
ggz' 05 (1.2666) (1.7628) (1.7635) (1.7477) (1.7483)
o0 5 6.05 00000 09995 00005  0.0000 09890  0.0110 00000 09811 00189  0.0000 09894  0.0106  0.0000 09792  0.0208
2 (1.3882) (1.9295) (1.9305) (1.9128) (1.9138)
6.55 0.0000 09997  0.0003  0.0000 09933  0.0067 00000 09898 00102 0.0000 09931 00069  0.000 09887  0.0113
(1.5113) (2.1024) (2.1034) (2.0844) (2.0853)
3.05 0.0001 09938 00061  0.0003 09678 00319 00000 09541  0.0459  0.0002 09609  0.0389  0.0000 09449  0.0551
(0.6063) (0.8630) (0.8518) (0.8520) (0.8403)
3.55 00000 09968 00032  0.0000 09799  0.0201 00000 09686 00314 00000 09742  0.0258  0.0000 09614  0.0386
0 (0.7187) (1.0241) (1.0109) (1.0110) (0.9970)
75 4.05 0.0000 09995  0.0005  0.0003 09880 00117 00000 09831 00169 0.0000 09855 00145  0.0000 09762  0.0238
(0.8306) (1.1842) (1.1685) (1.1691) (1.1526)
455 0.0000 09997  0.0003  0.0000 09930  0.0070  0.0000 09883  0.0117  0.0000 09907  0.0093  0.000 09851  0.0149
(0.9438) (1.3417) (1.3242) (1.3246) (1.3062)
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We also plotted the coverage probabilities and expected lengths for the five confidence
interval estimation methods for scenarios with various sample sizes and probabilities of
zero values in Figures 1-4. For k = 3, in almost all cases, the coverage probabilities of all of
the proposed methods were close to or greater than the nominal confidence level of 0.95,
while the expected length of the fiducial GCI was the shortest. However, in some cases,
the fiducial GCI method was marginally outperformed by the HPD interval based on the
Jeffreys rule or uniform prior. The results were similar for k = 5, although the fiducial GCI
method obtained coverage probabilities greater than 0.95 in all cases, which was better
than for k = 3. For unequal sample sizes, the fiducial GCI method obtained coverage
probabilities greater than 0.95 even though their expected lengths were shorter than the
others in all case for k = 3 and 5. For equal sample sizes, the coverage probabilities of
the fiducial GCI were less than the nominal confidence level 0.95 in some case for k = 3
and 5. According to the results from Tables 1 and 2, the tail error rate of the proposed
methods were unbalanced, whereas the expected length of the fiducial GCI was the smallest
length of coverage probabilities over 0.95. When the fiducial GCI was less than 0.95, the
HPD interval based on the Jeffreys rule or uniform prior outperformed the fiducial GCIL.
Therefore, the fiducial GCI and the HPD interval based on the Jeffreys rule or uniform prior
should be used to compute the confidence interval estimation for the common mean of
several ZIG distributions.
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Figure 1. Comparison of the coverage probabilities for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various sample sizes: (A) k = 3 and (B) k = 5.
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Figure 2. Comparison of the coverage probabilities for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various probabilities of zero values: (A) k = 3 and
(B) k=5.
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Figure 3. Comparison of expected lengths for estimation of the 95% confidence interval for the
common mean of several ZIG distributions for various sample sizes: (A) k = 3 and (B) k = 5.
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Figure 4. Comparison of the expected length for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various probabilities of zero values: (A) k = 3 and
(B) k =5.
3.2. Robustness Studies
In this section, we study the robustness of our proposed methods. In order to conduct
the study, a small amount of random noise was added, and ZIG distributions were used to
create the samples. We considered sample sizes of (303) and (1003) with the settings given
in Table 3.
Table 3. Different §; and a; values in robustness studies with k = 3.
Setting 1 2 3 4 5 6 7 8 9 10 11 12
5 0.2 0.23 0.25 0.2 0.5 0.5 0.5 0.5 0.75 0.7 0.7 0.75
a; 12.03 12.55 13.03 13.53 5.03 5.53 6.03 6.53 3.03 3.53 4.03 4.53

From the results shown in Table 4, we notice that even with some noise added to the
sample, the fiducial GCI, Bayesian, and HPD based on Jeffreys rule or uniform prior return
satisfactory results according to coverage probabilities. Almost all coverage probabilities
are slightly higher than the nominal level with the fiducial GCI, Bayesian, and HPD based
on Jeffreys rule or uniform prior closer to or greater than the nominal level 0.95. The
expected length values based on fiducial GCI are smaller than the Bayesian and HPD
based on Jeffreys rule or uniform prior. The coverage probabilities and expected lengths
of the confidence intervals based on the five methods are displayed in Figures 5 and 6. In
addition, when the samples contain noise, the results from the fiducial GCI and HPD based
on Jeffreys rule or uniform prior performed well. Therefore, the proposed methods seem
robust to the samples that contain noise. In addition, robust statistics resist the influence of
non-normal distributions; they perform well in a wide variety of probability distributions.
In robustness study, data are generated from ZIG distributions, which are non-normal
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distributions. When the sample size increases from (303) to (1003 ), the proposed methods

with respect to the departure from the ZIG distributions is robust, because the expected
length of proposed methods became shorter.

(A) (8)
0.9754
173 (%3
2009759 Methods 2 Methods
E —o— Baye.J § 0.9504 —o— Baye.J
<] -#- BayeU <] -#- Baye.U
o 0.9501 -=- FGCl ° -~ FGCI
= 0.925+
o -* HPD.J o -* HPD.J
[ [
3 \ e HPD.U é * HPD.U
© 0.925 1 Y 0.9004 1
i X
i 2 3 4 5 6 7 8 9 10 11 1 i 2 3 4 5 6 7 8 9 10 11 1
Setting Setting
Figure 5. Comparison of the coverage probabilities for estimating the 95% confidence interval for
the common mean of several ZIG distributions with the samples containing noise: (A) n; = 303 and
(B) n; = 1003.
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e | 2.04
I -
J
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Figure 6. Comparison of expected lengths for estimating the 95% confidence interval for the common
mean of several ZIG distributions with the samples containing noise: (A) n; = 303 and (B) n; = 1003.
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Table 4. Robustness studies with small amount of random noise for k = 3.

Setti FGCI Baye.] Baye.U HPD.J HPD.U
steing i Ccp EL CcpP EL (6l EL CcpP EL CL EL
1 303 0.9416 2.3163 0.9629 3.1689 0.9453 3.2590 0.9734 3.0898 0.9593 3.1857
1003 0.9360 1.2865 0.9589 1.8008 0.9447 1.8173 0.9658 1.7759 0.9531 1.7927
2 303 0.9438 2.4155 0.9655 3.3055 0.9489 3.3999 0.9770 3.2233 0.9620 3.3233
1003 0.9483 1.3416 0.9642 1.8774 0.9508 1.8948 0.9714 1.8516 0.9593 1.8690
3 303 0.9509 2.5143 0.9683 3.4400 0.9515 3.5381 0.9772 3.3542 0.9650 3.4582
1003 0.9562 1.3972 0.9695 1.9556 0.9573 1.9735 0.9747 1.9288 0.9655 1.9466
4 303 0.9542 2.6142 0.9737 3.5729 0.9561 3.6748 0.9827 3.4841 0.9694 3.5919
1003 0.9618 1.4517 0.9743 2.0316 0.9642 2.0504 0.9784 2.0036 0.9714 2.0225
5 303 0.9467 1.1493 0.9775 1.5890 0.9643 1.5895 0.9754 1.5753 0.9638 1.5759
1003 0.9195 0.6421 0.9636 0.9028 0.9516 0.9030 0.9605 0.8948 0.9490 0.8950
6 303 0.9588 1.2716 0.9845 1.7642 0.9779 1.7648 0.9841 1.7490 0.9745 1.7496
1003 0.9498 0.7110 0.9754 1.0000 0.9666 1.0001 0.9737 0.9911 0.9645 0.9913
- 303 0.9707 1.3945 0.9894 1.9294 0.9837 1.9303 0.9893 1.9129 0.9827 1.9136
1003 0.9653 0.7794 0.9827 1.0957 0.9768 1.0958 0.9820 1.0860 0.9745 1.0861
3 303 0.9787 1.5159 0.9908 2.1003 0.9856 2.1011 0.9906 2.0821 0.9853 2.0830
1003 0.9774 0.8479 0.9892 1.1914 0.9850 1.1916 0.9885 1.1809 0.9824 1.1810
9 303 0.9105 0.6137 0.9641 0.8604 0.9518 0.8491 0.9566 0.8493 0.9417 0.8375
1003 0.8814 0.3394 0.9428 0.4789 0.9313 0.4768 0.9342 0.4739 0.9204 0.4718
10 303 0.9422 0.7267 0.9824 1.0216 0.9733 1.0081 0.9776 1.0085 0.9642 0.9944
1003 0.9272 0.4020 0.9664 0.5676 0.9573 0.5651 0.9603 0.5617 0.9498 0.5592
1 303 0.9622 0.8399 0.9891 1.1831 0.9828 1.1678 0.9853 1.1680 0.9775 1.1519
1003 0.9560 0.4651 0.9835 0.6573 0.9780 0.6543 0.9800 0.6504 0.9726 0.6475
12 303 0.9720 0.9513 0.9953 1.3403 0.9895 1.3231 0.9923 1.3234 0.9856 1.3051
1003 0.9745 0.5278 0.9912 0.7455 0.9879 0.7422 0.9882 0.7377 0.9833 0.7343




Symmetry 2023, 15, 67

19 of 24

4. Empirical Application of the Confidence Interval Estimation Methods with
Real Data

Daily rainfall data supplied by the Upper Northern Region Irrigation Hydrology
Center [21] were from the Chomthong, Mae Taeng, and Doi Saket districts in Chiang Mai,
Thailand during September 2020 and 2021. Table 5 includes daily rainfall data from the
three areas, and Figures 7 and 8 present histogram plots of the rainfall observations and
Q-Q plots of the positive rainfall data following gamma distributions, respectively. We
focused on estimating the daily rainfall data in these areas by applying the estimation
methods for the confidence interval for the common mean of three ZIG distributions.
By separating the rainfall data into non-zero and zero observations, it was possible to
determine the best-fitting distribution for the rainfall data with positive values only. The
lowest Akaike information criterion (AIC) and Bayesian information criterion (BIC) values
in Tables 6 and 7, respectively, confirm that the gamma distribution was the best fit for all
three non-zero rainfall datasets.

Table 5. The daily rainfall data from Chomthong, Mae Taeng, and Doi Saket in Chiang Mai, Thailand.

Area Daily Rainfall (mm)
2.3 0.0 0.0 0.0 0.0 3.5 0.0 14.2 0.0 0.0
0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 49.5 28.7
Chomthong 4.0 0.0 48 0.0 0.0 0.07 0.0 4.5 12.2 0.0
0.0 0.0 0.6 0.0 0.2 5.8 9.4 33.5 7.5 21.2
4.0 0.0 23.2 2.2 12.6 33.8 10.2 0.0 0.0 0.2
23.5 43.4 13.4 25.5 20.0 26.7 6.5 0.0 0.0 0.0
0.9 0.0 0.0 0.0 0.0 0.0 0.1 9.8 0.0 0.0
0.0 0.0 0.0 0.3 0.0 0.0 2.3 0.3 14.3 22.0
Mae Taeng 0.5 0.0 33.3 5.3 0.0 0.0 0.0 0.0 4.7 12.3
0.0 0.1 8.0 0.0 0.0 6.7 1.2 47 39.0 19.5
0.0 0.0 21.6 3.7 0.7 37.7 0.0 0.0 0.0 1.3
15.7 0.0 5.1 0.0 13.5 43 15.6 0.0 0.0 0.0
115 0.0 0.0 0.0 0.0 0.0 0.0 3.6 3.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.1 19.6
Doi Saket 30.2 0.0 36.6 0.0 0.0 0.0 0.0 0.0 3.0 31.0
0.0 30.0 54.4 0.0 1.1 3.0 15.5 14.2 42.8 0.5
0.0 0.0 32.8 17.6 3.5 13.9 0.0 0.0 0.0 0.2
16.2 7.6 0.9 1.2 20.5 11.6 1.2 0.0 0.0 0.0

Table 6. AIC values for fitting the positive rainfall data from Chomthong, Mae Taeng, and Doi Saket
in Chiang Mai, Thailand.

Distribution
Area
Gamma Cauchy Lognormal Normal
Chomthong 231.7862 259.7445 239.6908 251.4082
Mae Taeng 198.9289 233.7925 204.2244 233.2959
Doi Saket 221.1700 252.2527 226.9918 241.2362

Table 7. BIC values for fitting the positive rainfall data from Chomthong, Mae Taeng, and Doi Saket
in Chiang Mai, Thailand.

Distribution
Area
Gamma Cauchy Lognormal Normal
Chomthong 234.6542 262.6125 242.5587 254.2761
Mae Taeng 201.7313 236.5949 207.0268 236.0983

Doi Saket 223.9046 254.9873 229.7264 243.9708
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Figure 7. The densities of the rainfall datasets from Chiang Mai, Thailand: (A) Chomthong, (B) Mae Taeng,
and (C) Doi Saket.
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Figure 8. Q-Q plots of the non-zero observations in the daily rainfall datasets from Chiang Mai,
Thailand: (A) Chomthong, (B) Mae Taeng, and (C) Doi Saket.
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The summary statistics computed for the rainfall datasets from Chomthong, Mae
Taeng, and Doi Saket in Chiang Mai, Thailand are reported in Table 8. The estimated
confidence interval for the common mean of the three rainfall datasets was 5.79 mm/day.
Table 9 summarizes the computed 95% confidence interval for the common mean for the
three rainfall datasets using the proposed methods. The length of the confidence interval
estimated via fiducial GCI was the shortest, which supports the simulation results for k = 3
in the previous section. Thus, we recommend the fiducial GCI for estimating the confidence
interval for the common mean of several ZIG distributions.

Table 8. Parameter estimates for the three rainfall datasets.

Parameter Estimates

Area ~ " ~ " ) "
n; 0; a; b; i o; fli
Chomthong 60 0.48 0.93 0.06 2.17 0.69 7.50
Mae Taeng 60 0.50 0.66 0.06 1.83 0.76 5.07
Doi Saket 60 0.52 0.82 0.05 2.19 0.84 7.62

Table 9. The 95% confidence interval estimates for the common mean of the three rainfall datasets
from Chiang Mai, Thailand.

95% Confidence Interval

Methods Lengths
Lower Upper

FGCI 3.3521 4.7108 1.3587

Baye.J 4.1330 6.6412 2.5082

Baye.U 4.0183 6.5264 2.5081

HPD.J 4.1837 6.6781 2.4944

HPD.U 4.0021 6.4931 2.4910

5. Discussion

Estimating the confidence interval for the common mean of several gamma distribu-
tions was first reported by Yan [5]. Meanwhile, Maneerat and Niwitpong [6] proposed
estimation methods for the confidence interval for the common mean of several delta-
lognormal distributions (a lognormal distribution with zero observations) using the fiducial
GCI and HPD interval based on the Jeffreys rule prior. In this study, we extended these
ideas to construct estimates for the confidence interval for the common mean of several
ZIG distributions. Specifically, we proposed several approaches based on the fiducial GCI
and Bayesian and HPD methods based on the Jeffreys rule or uniform priors. A coverage
probability close to or greater than the nominal confidence level of 0.95 and the shortest
expected length were used to select the best-performing confidence interval. The results
indicate that, while the Bayesian and HPD coverage probability were close to or greater
than the nominal confidence level of 0.95, those of the fiducial GCI were similarly close to
or greater than that level, and their expected length was the shortest. However, the results
from a comparative simulation study show that the coverage probabilities of the fiducial
GCI, the Bayesian, and HPD interval based on Jeffreys rule or uniform prior were greater
than or close to the nominal confidence level of 0.95 under most circumstances. As the
sample sizes increased, the coverage probabilities of all of the proposed methods performed
better but were still under the nominal confidence level of 0.95. When the sample sizes were
increased, the expected lengths of all of the proposed methods became shorter, whereas
when the shape parameter was increased, the expected lengths of all of the proposed
methods became longer. When considering the expected lengths, those of the fiducial GCI
were the shortest under most circumstances. If the proportion of zero values increased, the
expected lengths of all of the proposed methods became shorter. However, the coverage
probabilities of the fiducial GCI were lower than the nominal confidence level of 0.95 in
some cases. The HPD interval based on the Jeffreys rule or uniform prior outperformed
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the fiducial GCI. Overall, the fiducial GCI and the HPD interval based on the Jeffreys rule
or uniform prior performed the best in the simulation study because they fulfilled the
requirements for both criteria. Although Kaewprasert et al. [1] claimed that Bayesian and
HPD methods are the most effective for estimating the mean and the difference between
the means of ZIG distributions, our findings for the data and scenario used in this study
contradict their claims because the range of intervals for the common mean was wider than
when using the Bayesian and HPD methods. According to our results, the fiducial GCI
consistently supplied the smallest expected length and a suitable coverage probability for
both k = 3 and k = 5. However, in certain instances, the HPD based on Jeffreys rule prior
produced results that were consistent with those of Kaewpraset et al. [1].

In addition, we calculated the confidence interval for the common mean of three
rainfall datasets from Chiang Mai, Thailand using the proposed methods. We found that
the fiducial GCI once again performed the best in this empirical scenario. Our approach may
be useful for estimating the rainfall in September, as this information could be important
for residents in the hilly and forested regions of places such as Chiang Mai who want to
avoid flooding and landslides.

6. Conclusions

We constructed estimators for the confidence interval for the common mean of several
ZIG distributions using the fiducial GCI and Bayesian and HPD methods based on the
Jeffreys rule or uniform prior. The coverage probability and expected length were used
to assess how well they performed in various scenarios. According to the findings from
the simulation study, the coverage probabilities of the fiducial GCI were greater than the
nominal confidence level of 0.95, and its expected lengths were the shortest in almost all
cases for k = 3 and k = 5. The efficacies of the proposed methods were tested using
real daily rainfall datasets from Chomthong, Mae Taeng, and Doi Saket in Chiang Mai,
Thailand. Once again, the fiducial GCI outperformed the other methods by providing the
shortest length of the confidence interval, which is the same as the simulation study results.
Therefore, the fiducial GCI is recommended for estimating the confidence interval for the
common mean of several ZIG distributions, while the HPD based on the Jeffreys rule or
uniform prior could also be used in some scenarios.
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