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Abstract: In this study, we propose estimates for the confidence interval for the common mean
of several zero-inflated gamma (ZIG) distributions based on the fiducial generalized confidence
interval (GCI) and Bayesian and highest posterior density (HPD) methods based on the Jeffreys rule
or uniform prior. Their performances in terms of their coverage probabilities and expected lengths
are compared via a Monte Carlo simulation study. For almost all of the scenarios considered, the
simulation results show that the fiducial GCI performed better than the Bayesian and HPD methods.
Daily rainfall data from Chiang Mai Province, Thailand that contains several zero entries and follows
a ZIG distribution is used to test the efficacies of the methods in real-world situations.

Keywords: zero-inflated gamma distribution; common mean; fiducial generalized confidence interval;
Bayesian method
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1. Introduction

Chiang Mai in northern Thailand is a region with high mountains and forests. When it
comes to the rainy season, excess runoff water often floods villages at the foot of mountains.
The rainy season in Thailand lasts from May to October. Between August and September,
there is “heavy rain” to “very heavy rain”, which can cause flash flooding and river
bank overflows. However, predicting heavy precipitation and flooding is challenging
due to rainfall variability. Daily rainfall data from the region typically include zero and
positive values that fit a zero-inflated gamma (ZIG) distribution. Thus, to accurately predict
future catastrophic events, it is vital to measure the central tendency of rainfall in specific
places using statistical parameters such as the mean of a distribution. Therefore, the mean
of a ZIG distribution can be used to analyze rainfall data series for forecasting future
precipitation amounts.

The ZIG distribution can be used to fit data that contain both zero and positive values:
the positive values follow a gamma distribution, while the zero values follow a binomial
distribution. The ZIG distribution has been used to analyze right-skewed data with a high
clump-at-zero frequency in several fields. In meteorology, Kaewprasert et al. [1] used the
mean of a ZIG distribution to analyze mixed zero and non-zero rainfall data. In medicine,
Wang et al. [2] analyzed data on the HIV status of children recorded as non-responses (zero)
and positive responses by using the mean of a ZIG distribution.

The two types of statistical inference are parameter estimation and hypothesis test-
ing. The most often used interval estimation technique for a parameter is the confidence
interval enclosing the estimate’s minimum and maximum values. The confidence interval
for the mean of a ZIG distribution has been the focus of several studies. Muralidharan
and Kale et al. [3] estimated the confidence interval for the mean of a ZIG distribution
and applied it to analyze real rainfall data. Simultaneous confidence intervals for the
difference between the means of ZIG distributions were introduced by Ren et al. [4].
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Kaewprasert et al. [1] expanded the scope of this by comparing the difference between the
means of several ZIG distributions. Wang et al. [2] produced confidence interval estimates
for the mean of a gamma distribution with zero values.

The mean is frequently utilized in practice to gauge statistical significance in many
domains. The common mean is of interest when establishing inference for more than one
population when independent samples are collected from them. The process of building
the confidence interval for the common mean of several distributions has been studied
by many scholars. For example, Yan [5] established confidence interval estimation for
the common mean of several gamma populations by using fiducial inference and the
method of variance estimates recovery (MOVER). Maneerat and Niwitpong [6] estimated
the confidence interval for the common mean of several delta-lognormal distributions. As
previously indicated, although there have been numerous estimations of the confidence
interval for the common mean of several gamma and delta-lognormal distributions, the
common mean of several ZIG distributions has not yet been the subject of a study on
statistical inference.

The motivation for the study was to examine previously reported confidence interval
estimation methods for the common mean of several gamma distributions and extend
them to estimate the confidence interval for the common mean of several ZIG distributions.
Thus, we chose estimation methods used for the confidence interval for the common
mean and common coefficient of variation of several delta-lognormal distributions as
follows. Maneerat and Niwitpong [6] proposed using the fiducial generalized confidence
interval (GCI) and the highest posterior density (HPD) interval based on the Jeffreys rule
prior to estimate the confidence interval for the common mean of several delta-lognormal
distributions. Using the fiducial GCI and Bayesian approach based on the uniform prior
was proposed by Yosboonruang et al. [7] to estimate the confidence interval for the common
coefficient of variation of several delta-lognormal distributions.

Herein, we explored several confidence interval estimation methods for the common
mean of several ZIG distributions using the fiducial GCI approach and Bayesian and HPD
methods based on the Jeffreys rule or uniform prior. We used them to calculate the 95%
confidence interval for the common mean of three daily rainfall datasets (Chomthong, Mae
Taeng, and Doi Saket) in Chiang Mai, Thailand.

The outline of this study is organized as follows. Section 2 provides the methodologies
to estimate the confidence interval for the common mean of several ZIG distributions.
Section 3 reports the numerical computations using the methods in a Monte Carlo sim-
ulation study. Section 4 presents the empirical application of the proposed confidence
interval estimation methods using data on daily rainfall collected from three rain stations
in Chiang Mai, Thailand, in September 2020 and 2021. Finally, a discussion and conclusions
are offered in Sections 5 and 6, respectively.

2. Methods

Let Yij; i = 1, 2, . . . , k; j = 1, 2, . . . , ni be random variables of size ni from k ZIG
distributions denoted as Yij ∼ ZIG(ai, bi, δi). This distribution has three parameters: shape
parameter ai, rate parameter bi, and the proportion of zero values δi. For k populations of
observations, the distribution function of Yij is given by

F(yij; ai, bi, δi) =

{
δi ; yij = 0
δi + (1− δi)G

(
yij; ai, bi

)
; yij > 0

, (1)

where G
(
yij; ai, bi

)
is a gamma distribution function, which can be denoted as Gij when

Yij 6= 0; i = 1, 2, . . . , k; j = 1, 2, . . . , ni(1). For Yij = 0, the zero observations follow a binomial
distribution denoted as ni(0) ∼ B(ni, δi). Furthermore, ni(0) and ni(1) represent the numbers
of zero and non-zero values, respectively, where ni(0) + ni(1) = ni. The population mean of
Yij is given by

ηi = (1− δi)
ai
bi

. (2)
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Krishnamoorthy et al. [8] and Krishnamoorthy and Wang [9] used cube-root approxi-
mation Xij = G1/3

ij , thereby ensuring that the X′ijs are approximately normally distributed,

which is denoted as Xij ∼ N(µi, σ2
i ) with mean and variance of µi and σ2

i , respectively. It is
possible to represent µi and σ2

i in terms of ai and bi, respectively, as follows:

µi =

(
ai
bi

)1/3(
1− 1

9ai

)
and σ2

i =
1

9a1/3
i b2/3

i

. (3)

By resolving the equations in the ai and bi sets above, we, respectively, arrive at

ai =
1
9

{(
1 +

µ2
i

2σ2
i

)
+

(1 +
µ2

i
2σ2

i

)2

− 1

1/2}
and bi =

1

27a1/2
i
(
σ2

i
)3/2 . (4)

Thus, the mean of a ZIG distribution is ηi = (1− δi)
ai
bi
= (1− δi)

(
µi
2 +

√
µ2

i
4 + σ2

i

)3
.

The unbiased estimators for µi, σ2
i , and δi are µ̂i = 1

ni(1)
∑

ni(1)
j=1 y1/3

ij , σ̂2
i = 1

ni(1)−1

∑
ni(1)
j=1

(
y1/3

ij − µ̂i

)2
, and δ̂i = ni(0)/ni, respectively; then

η̂i = (1− δ̂i)
âi

b̂i
= (1− δ̂i)

 µ̂i
2
+

√
µ̂2

i
4

+ σ̂2
i

3

, (5)

where âi =
1
9

{(
1 + µ̂2

i
2σ̂2

i

)
+

[(
1 + µ̂2

i
2σ̂2

i

)2
− 1

]1/2}
and b̂i =

1
27â1/2

i (σ̂2
i )

3/2 .

Using the finding from Aitchison [10], Vännman [11] claimed that the minimal variance
unbiased estimators of the variance of η̂i can be derived as

V̂(η̂i) ≈
ni(âi + 1)− âini(1)

(ni − 1)(âini(1) + 1)

(
(1− δ̂i)

âi

b̂i

)2
. (6)

According to Yan [5] and Maneerat and Niwitpong [6], the common mean of several
ZIG distributions can be defined as

η̃ =
∑k

i=1 wiη̂i

∑k
i=1 wi

, (7)

where wi = 1/V̂(η̂i). The confidence interval for the common mean of several ZIG
distributions can be estimated by using the suggested methods listed below.

2.1. The Fiducial GCI Method

Fisher [12] was the first to propose the fiducial approach. Meanwhile, Hannig [13]
conducted additional research into the fiducial approach and provided some general
results. The fiducial interval is the generalized pivotal quantity (GPQ), which may be
applied in generalized inference and can be viewed as the result of the fiducial framework.
A framework for this that shows the connection between the distribution and the parameter
was proposed by Hannig et al. [14] in the form of a fiducial GPQ.

Suppose Yij; i = 1, 2, . . . , k; j = 1, 2, . . . , ni is a random sample from ZIG(ai, bi, δi),
where τi = (ai, bi, δi) is the parameter of interest. Therefore, the GPQ T(Yij; yij, ai, bi, δi)
can only be a function of τi. This is called the fiducial GPQ, which satisfies the following
two conditions:

1. For each yij, the conditional distribution of T(Yij; yij, ai, bi, δi) is free of the nuisance
parameter.



Symmetry 2023, 15, 67 4 of 24

2. For the observed value of T(Yij; yij, ai, bi, δi) at Yij = yij, t(yij; yij, ai, bi, δi) = τi.

According to Krishnamoorthy et al. [8], this approach is based on the observation
that Xij ∼ N(µi, σ2

i ) approximates a gamma distribution. Let µ̂i and σ̂2
i , respectively,

represent the observed sample mean and variance based on the X′ijs that have been cube-
root transformed. This makes it possible to obtain the respective fiducial GPQs for µi and
σ2

i as follows:

Tµi = µ̂i +
Ui√

Vi

√√√√(
ni(1) − 1

)
σ̂2

i

ni(1)
and Tσ2

i
=

(
ni(1) − 1

)
σ̂2

i

Vi
, (8)

where µ̂i =
1

ni(1)
∑

ni(1)
j=1 y1/3

ij , σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
y1/3

ij − µ̂i

)2
, Ui ∼ N(0, 1), and Vi ∼ χ2

ni(1)−1.

In addition, the respective fiducial GPQs for ai and bi have the following forms:

Tai =
1
9

{(
1 +

T2
µi

2Tσ2
i

)
+

(1 +
T2

µi

2Tσ2
i

)2

− 1

1/2}
and Tbi

=
1

27T1/2
ai T3/2

σ2
i

. (9)

Similarly, the fiducial GPQ for δi can be written as [15]

Tδi ∼
1
2

Beta
(

ni(0) + 1, ni(1)

)
+

1
2

Beta
(

ni(0), ni(1) + 1
)

. (10)

Meanwhile, the fiducial GPQ for η̂i is given by

Tη̂i = (1− Tδi )
Tai

Tbi

= (1− Tδi )

Tµi

2
+

√
T2

µi

4
+ Tσ2

i

3

. (11)

Subsequently, the fiducial GPQ for the estimated variance of η̂i is given by

TV̂(η̂i)
=

ni(Tai + 1)− Tai ni(1)

(ni − 1)(Tai ni(1) + 1)

(
(1− Tδi )

Tai

Tbi

)2
. (12)

Therefore, we can estimate the confidence interval for the common mean of k ZIG
distributions (η̃) using its fiducial GPQ as follows:

Tη̃ =
∑k

i=1 Twi Tη̂i

∑k
i=1 Twi

, (13)

where Twi = 1/TV̂(η̂i)
.

Thus, the 100(1− γ)% fiducial GCI for η̃ becomes

CIFGCI
η̃ = [LFGCI

η̃ , UFGCI
η̃ ] = [Tη̃(γ/2), Tη̃(1− γ/2)]. (14)

where Tη̃(γ) denotes the γth percentiles of Tη̃ . This process is specified in Algorithm 1.

Algorithm 1 The fiducial GCI method

1. Generate Yij ∼ ZIG(ai, bi, δi); i = 1, 2, . . . , k; j = 1, 2, . . . , ni.
2. Generate Ui ∼ N(0, 1) and Vi ∼ χ2

ni(1)−1 independently.

3. Compute fiducial GPQs Tai , Tbi
, and Tδi .

4. Compute Tη̂i and TV̂(η̂i)
, leading to obtaining Tη̃ .

5. Repeat steps (1)–(4) 2000 times.
6. Compute the 95% fiducialGCI for Tη̃ using Equation (14).
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2.2. The Bayesian Methods

Suppose that Yij 6= 0; i = 1, 2, . . . , k; j = 1, 2, . . . , ni(1), then Y1/3
ij = Xij ∼ N(µi, σ2

i ).

Likelihood function p(xij | µi, σ2
i ) for xij and the prior distribution, which is used to explain

conditional probability, make up the Bayesian statistical approach. Therefore, the likelihood
function of k normally distributed samples is given by

p(xij | µi, σ2
i ) ∝

k

∏
i=1

(σ2
i )
−

ni(1)
2 exp

[
− 1

2σ2
i

ni(1)

∑
j=1

(
xij − µi

)2
]

. (15)

For the ZIG distribution, the joint likelihood function of k individual samples is
given by

p(yij | µi, σ2
i , δi) ∝

k

∏
i=1

δ
ni(0)
i (1− δi)

ni(1)(σ2
i )
−

ni(1)
2 exp

[
− 1

2σ2
i

ni(1)

∑
j=1

(
y1/3

ij − µi

)2
]

. (16)

The common mean for several ZIG distributions can be estimated using the Bayesian
approach based on a variety of priors, two of which are derived in the following subsections.

2.2.1. The Jeffreys Rule Prior

Introduced by Harvey and Van Der Merwe [16], the Jeffreys rule prior can be written as

p(η̃)Baye.J ∝
k

∏
i=1

1
σ3

i
δ−1/2

i (1− δi)
1/2. (17)

Adding the likelihood functions in Equations (16) and (17) results in the posterior
distribution of η becoming

p(η̃ | yij)Baye.J ∝ ∏k
i=1 δ

ni(0)−1/2
i (1− δi)

ni(1)+1/2(σ2
i )
−

ni(1)+3

2 exp
[
− 1

2σ2
i

∑
ni(1)
j=1

(
y1/3

ij − µi

)2
]

∝ ∏k
i=1 δ

(ni(0)+1/2)−1
i (1− δi)

(ni(1)+3/2)−1
√

ni(1)√
2πσ2

i
exp

(
− ni(1)

2σ2
i
(µi − µ̂i)

2
)

×

(
(ni(1)−1)σ̂2

i
2

) ni(1)+1
2

Γ
(

ni(1)+1

2

) (
σ2

i
)− ni(1)+1

2 −1exp
(
− (ni(1)−1)σ̂2

i
2σi2

)
,

(18)

where µ̂i =
1

ni(1)
∑

ni(1)
j=1 y1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
y1/3

ij − µ̂i

)2
. Subsequently, the respec-

tive marginal posterior distributions of µi, σ2
i , and δi are obtained as

µ
(Baye.J)
i | σ2

i , yij ∼ N(µ̂i, σ2
i /ni(1))

σ
2(Baye.J)
i | yij ∼ IG((ni(1) + 1)/2, (ni(1) − 1)σ̂2

i /2)

δ
(Baye.J)
i | yij ∼ Beta(ni(0) + 1/2, ni(1) + 3/2).

(19)

In addition, the respective Bayesian derivations for ai and bi based on the Jeffreys rule
prior have the following forms:

a(Baye.J)
i =

1
9

{(
1 +

(µ
(Baye.J)
i )2

2σ
2(Baye.J)
i

)
+

(1 +
(µ

(Baye.J)
i )2

2σ
2(Baye.J)
i

)2

− 1

1/2}
(20)

and
b(Baye.J)

i =
1

27
(

a(Baye.J)
i

)1/2(
σ

2(Baye.J)
i

)3/2 . (21)
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Thus, the Bayesian estimation for η̂i based on the Jeffreys rule prior is given by

η̂
(Baye.J)
i = (1− δ

(Baye.J)
i )

a(Baye.J)
i

b(Baye.J)
i

= (1− δ
(Baye.J)
i )

µ
(Baye.J)
i

2
+

√
(µ

(Baye.J)
i )2

4
+ σ

2(Baye.J)
i

3

.

(22)

Meanwhile, the Bayesian estimation for the variance of η̂i based on the Jeffreys rule
prior is given by

V̂(η̂i)
(Baye.J)

=
ni(a(Baye.J)

i + 1)− a(Baye.J)
i ni(1)

(ni − 1)(a(Baye.J)
i ni(1) + 1)

(
(1− δ

(Baye.J)
i )

a(Baye.J)
i

b(Baye.J)
i

)2

. (23)

Therefore, we can construct the Bayesian credible interval for the common mean of
several ZIG distributions based on the Jeffreys rule prior as

η̃(Baye.J) =
∑k

i=1 w(Baye.J)
i η̂

(Baye.J)
i

∑k
i=1 w(Baye.J)

i

, (24)

where w(Baye.J)
i = 1/V̂(η̂i)

(Baye.J).
Thus, the 100(1 − γ)% Bayesian credible interval for η̃ based on the Jeffreys rule

prior is
CIBaye.J

η̃ = [LBaye.J
η̃ , UBaye.J

η̃ ] = [η̃(Baye.J)(γ/2), η̃(Baye.J)(1− γ/2)]. (25)

where η̃(Baye.J)(γ) denotes the γth percentiles of η̃(Baye.J).

2.2.2. The Uniform Prior

Due to the uniform prior’s constant function for the prior probability, Bolstad and Cur-
ran [17] presented the uniform priors of p(µi)Baye.U ∝ 1, p(σ2

i )Baye.U ∝ 1, and p(δi)Baye.U ∝ 1.
Subsequently, the posterior distribution of η̃ based on the uniform prior becomes

p(η̃ | yij)Baye.U ∝
k

∏
i=1

δ
ni(0)
i (1− δi)

ni(1)(σ2
i )
−

ni(1)
2 exp

[
− 1

2σ2
i

ni(1)

∑
j=1

(
y1/3

ij − µi

)2
]

∝
k

∏
i=1

δ
(ni(0)+1)−1
i (1− δi)

(ni(1)+1)−1
√ni(1)√

2πσ2
i

exp

(
−

ni(1)

2σ2
i
(µi − µ̂i)

2

)

×

(
(ni(1)−1)σ̂2

i
2

) ni(1)−2

2

Γ
( ni(1)−2

2

) (
σ2

i

)− ni(1)−2

2 −1
exp

(
−
(ni(1) − 1)σ̂2

i

2σi2

)
,

(26)

where µ̂i =
1

ni(1)
∑

ni(1)
j=1 y1/3

ij and σ̂2
i = 1

ni(1)−1 ∑
ni(1)
j=1

(
y1/3

ij − µ̂i

)2
. Consequentially, the respec-

tive marginal posterior distributions of µi, σ2
i , and δi can be obtained as

µ
(Baye.U)
i | σ2

i , yij ∼ N(µ̂i, σ2
i /ni(1))

σ
2(Baye.U)
i | yij ∼ IG((ni(1) − 2)/2, (ni(1) − 1)σ̂2

i /2)

δ
(Baye.U)
i | yij ∼ Beta(ni(0) + 1, ni(1) + 1).

(27)
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In addition, the Bayesian uniform priors for ai and bi have the following respec-
tive forms:

a(Baye.U)
i =

1
9

{(
1 +

(µ
(Baye.U)
i )2

2σ
2(Baye.U)
i

)
+

(1 +
(µ

(Baye.U)
i )2

2σ
2(Baye.U)
i

)2

− 1

1/2}
(28)

and
b(Baye.U)

i =
1

27
(

a(Baye.U)
i

)1/2(
σ

2(Baye.U)
i

)3/2 . (29)

Thus, the Bayesian estimate for η̂i based on the uniform prior is given by

η̂
(Baye.U)
i = (1− δ

(Baye.U)
i )

a(Baye.U)
i

b(Baye.U)
i

= (1− δ
(Baye.U)
i )

µ
(Baye.U)
i

2
+

√
(µ

(Baye.U)
i )2

4
+ σ

2(Baye.U)
i

3

.

(30)

Subsequently, the Bayesian estimate for the variance of η̂i based on the uniform prior
is given by

V̂(η̂i)
(Baye.U)

=
ni(a(Baye.U)

i + 1)− a(Baye.U)
i ni(1)

(ni − 1)(a(Baye.U)
i ni(1) + 1)

(
(1− δ

(Baye.U)
i )

a(Baye.U)
i

b(Baye.U)
i

)2

. (31)

Therefore, we can construct the Bayesian estimate for the confidence interval for the
common mean of several ZIG distributions based on the uniform prior as

η̃(Baye.U) =
∑k

i=1 w(Baye.U)
i η̂

(Baye.U)
i

∑k
i=1 w(Baye.U)

i

, (32)

where w(Baye.U)
i = 1/V̂(η̂i)

(Baye.U).
Thus, the 100(1− γ)% Bayesian credible interval for η̃ based on the uniform prior can

be written as

CIBaye.U
η̃ = [LBaye.U

η̃ , UBaye.U
η̃ ] = [η̃(Baye.U)(γ/2), η̃(Baye.U)(1− γ/2)]. (33)

where η̃(Baye.U)(γ) denotes the γth percentiles of η̃(Baye.U).

2.3. The HPD Interval

In the previous section, the Bayesian statistical approach is made up of the prior
distribution, which is used to define the conditional probability, and likelihood function
p(yij | λ), where λ = (µi, σ2

i , δi). Therefore, the posterior distribution of λ is given by

p(λ | yij) ∝ p(λ)p(yij | λ). (34)

When posterior distribution p(λ | yij) is not symmetric, Box and Tiao [18] introduced
the HPD interval with the characteristic that the probability density of each point inside
the interval is greater than that of every point outside of it. Consequently, region W in the
parameter space of λ is known as the HPD region of the content (1− γ). These are the two
conditions that comprise this situation:

1. Pr(λ ∈W | yij) = 1− γ.
2. For λ1 ∈W and λ2 /∈W, p(λ1 | yij) ≥ p(λ2 | yij).
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Similar to the studies of Maneerat and Niwitpong [6], Yosboonruang et al. [7], Chen
and Shao [19], and Noyan and Pham-Gia [20], we applied the HPDinterval package in the R
software suite for Step (6) in Algorithm 2 to respectively compute the HPD intervals based
on the Jeffreys rule or uniform prior for η̃ as follows:

CIHPD.J
η̃ = [LHPD.J

η̃ , UHPD.J
η̃ ] = [η̃(HPD.J)(γ/2), η̃(HPD.J)(1− γ/2)] (35)

and
CIHPD.U

η̃ = [LHPD.U
η̃ , UHPD.U

η̃ ] = [η̃(HPD.U)(γ/2), η̃(HPD.U)(1− γ/2)]. (36)

Algorithm 2 The Bayesian credible interval base on the Jeffreys rule or uniform prior

1. Generate Yij ∼ ZIG(ai, bi, δi); i = 1, 2, . . . , k; j = 1, 2, . . . , ni.
2. Compute µ̂i and σ̂2

i .

3. Generate µ
(Baye.J)
i , σ

2(Baye.J)
i , and δ

(Baye.J)
i as given in Equation (19) and µ

(Baye.U)
i ,

σ
2(Baye.U)
i , and δ

(Baye.U)
i as given in Equation (27) based on the Jeffreys rule or uniform

prior, respectively.
4. Compute η̂

(Baye.J)
i and V̂(η̂i)

(Baye.J) to obtain η̃(Baye.J) as given in Equation (24), and

η̂
(Baye.U)
i and V̂(η̂i)

(Baye.U) to obtain η̃(Baye.U) as given in Equation (32), respectively.
5. Repeat steps (1)–(4) 2000 times.
6. Compute the 95% Bayesian credible interval based on the Jeffreys rule or uniform

prior for η̃ as given in Equations (25) and (33), respectively.

3. The Monte Carlo Simulation Study and Results
3.1. Simulation Results

This was conducted using the R statistical program to investigate the effectiveness of
the estimation methods for the confidence interval for the common mean of several ZIG
distributions. The metrics used for the comparison are the coverage probability (CP), which
is the percentage of times that the real parameter value is contained within the confidence
interval for η̃; lower and upper error probabilities (LEP and UEP, respectively); and the
expected length (EL), which is the average length of the confidence interval for η̃. The
confidence interval estimation method that performs best for a particular scenario is the
one with a coverage probability close to or greater than the nominal confidence level of 0.95
and the shortest expected length, while the required values of LEP and UEP are balanced at
0.025. The number of generated random samples was fixed at 10,000 replications with 2000
pivotal quantities for the fiducial GCI, the Bayesian, and HPD methods. We set the sample
sizes (ni), the proportion of zero values (δi), and the shape parameter (ai) as reported in
Tables 1 and 2 for k = 3 and k = 5, respectively. Finally, rate parameter (bi) was set as 1.0.
In this study, the criterion to compare the efficiencies of the confidence intervals (CIs) are
CPs and ELs, where CP is the percentage of time that the true parameter value is contained
within the interval, and EL is the average length of the CIs. First, the confidence intervals
were considered by the CPs. Since the nominal confidence level was 0.95, then the CIs
which provided CPs equal to or more than 0.95 are selected. After that, the ELs of these CIs
are considered to find the shortest length to be the best CI.
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Table 1. The coverage probabilities and expected lengths for estimating the 95% confidence interval for the common mean of several ZIG distributions (k = 3).

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

303

0.23

12.03 0.0000 0.9399 0.0601 0.0000 0.9565 0.0435 0.0000 0.9363 0.0637 0.0001 0.9689 0.0310 0.0000 0.9503 0.0497
(2.3165) (3.1680) (3.2583) (3.0892) (3.1848)

12.53 0.0000 0.9486 0.0514 0.0000 0.9653 0.0347 0.0000 0.9478 0.0522 0.0002 0.9754 0.0244 0.0000 0.9616 0.0384
(2.4154) (3.3053) (3.3994) (3.2230) (3.3230)

13.03 0.0000 0.9503 0.0497 0.0000 0.9674 0.0326 0.0000 0.9513 0.0487 0.0001 0.9763 0.0236 0.0000 0.9640 0.0360
(2.5156) (3.4421) (3.5403) (3.3563) (3.4604)

13.53 0.0000 0.9591 0.0409 0.0000 0.9729 0.0271 0.0000 0.9578 0.0422 0.0000 0.9819 0.0181 0.0000 0.9706 0.0294
(2.6141) (3.5759) (3.6783) (3.4867) (3.5952)

0.53

5.03 0.0001 0.9501 0.0498 0.0000 0.9772 0.0228 0.0000 0.9643 0.0357 0.0000 0.9760 0.0240 0.0000 0.9643 0.0357
(1.1504) (1.5916) (1.5923) (1.5779) (1.5786)

5.53 0.0003 0.9617 0.0380 0.0000 0.9837 0.0163 0.0000 0.9760 0.0240 0.0001 0.9829 0.0170 0.0000 0.9747 0.0253
(1.2718) (1.7612) (1.7620) (1.7459) (1.7468)

6.03 0.0000 0.9691 0.0309 0.0000 0.9881 0.0119 0.0000 0.9822 0.0178 0.0000 0.9871 0.0129 0.0000 0.9813 0.0187
(1.3934) (1.9312) (1.9319) (1.9146) (1.9153)

6.53 0.0001 0.9781 0.0218 0.0000 0.9937 0.0063 0.0000 0.9897 0.0103 0.0001 0.9930 0.0069 0.0000 0.9881 0.0119
(1.5191) (2.1050) (2.1058) (2.0869) (2.0875)

0.73

3.03 0.0009 0.9209 0.0782 0.0004 0.9680 0.0316 0.0002 0.9564 0.0434 0.0004 0.9618 0.0378 0.0000 0.9449 0.0551
(0.6162) (0.8653) (0.8541) (0.8542) (0.8424)

3.53 0.0010 0.9432 0.0558 0.0000 0.9792 0.0208 0.0000 0.9704 0.0296 0.0001 0.9743 0.0256 0.0000 0.9632 0.0368
(0.7282) (1.0243) (1.0109) (1.0112) (0.9972)

4.03 0.0003 0.9579 0.0418 0.0001 0.9889 0.0110 0.0000 0.9818 0.0182 0.0000 0.9858 0.0142 0.0000 0.9755 0.0245
(0.8382) (1.1802) (1.1650) (1.1652) (1.1492)

4.53 0.0002 0.9723 0.0275 0.0000 0.9929 0.0071 0.0000 0.9878 0.0122 0.0000 0.9895 0.0105 0.0000 0.9835 0.0165
(0.9536) (1.3420) (1.3244) (1.3249) (1.3063)

503 0.23

12.03 0.0000 0.9496 0.0504 0.0000 0.9622 0.0378 0.0000 0.9460 0.0540 0.0000 0.9717 0.0283 0.0000 0.9587 0.0413
(1.8086) (2.5059) (2.5511) (2.4595) (2.5063)

12.53 0.0000 0.9503 0.0497 0.0000 0.9685 0.0315 0.0000 0.9549 0.0451 0.0002 0.9772 0.0226 0.0000 0.9661 0.0339
(1.8866) (2.6136) (2.6605) (2.5649) (2.6139)

13.03 0.0000 0.9557 0.0443 0.0000 0.9718 0.0282 0.0000 0.9567 0.0433 0.0001 0.9796 0.0203 0.0000 0.9682 0.0318
(1.9636) (2.7213) (2.7698) (2.6705) (2.7213)

13.53 0.0000 0.9663 0.0337 0.0000 0.9769 0.0231 0.0000 0.9650 0.0350 0.0000 0.9833 0.0167 0.0000 0.9744 0.0256
(2.0414) (2.8280) (2.8785) (2.7752) (2.8281)
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Table 1. Cont.

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

503

0.53

5.03 0.0000 0.9489 0.0511 0.0000 0.9764 0.0236 0.0000 0.9679 0.0321 0.0000 0.9755 0.0245 0.0000 0.9650 0.0350
(0.9017) (1.2595) (1.2592) (1.2483) (1.2483)

5.53 0.0000 0.9610 0.0390 0.0000 0.9835 0.0165 0.0000 0.9759 0.0241 0.0000 0.9829 0.0171 0.0000 0.9745 0.0255
(0.9968) (1.3904) (1.3903) (1.3783) (1.3782)

6.03 0.0000 0.9744 0.0256 0.0000 0.9897 0.0103 0.0000 0.9844 0.0156 0.0000 0.9883 0.0117 0.0000 0.9832 0.0168
(1.0920) (1.5256) (1.5253) (1.5121) (1.5121)

6.53 0.0000 0.9810 0.0190 0.0001 0.9926 0.0073 0.0000 0.9878 0.0122 0.0001 0.9920 0.0079 0.0000 0.9862 0.0138
(1.1899) (1.6589) (1.6587) (1.6442) (1.6441)

0.73

3.03 0.0004 0.9119 0.0877 0.0003 0.9667 0.0330 0.0001 0.9526 0.0473 0.0002 0.9587 0.0411 0.0001 0.9446 0.0553
(0.4784) (0.6746) (0.6687) (0.6668) (0.6608)

3.53 0.0005 0.9423 0.0572 0.0000 0.9792 0.0208 0.0000 0.9697 0.0303 0.0000 0.9736 0.0264 0.0000 0.9624 0.0376
(0.5665) (0.7984) (0.7916) (0.7891) (0.7821)

4.03 0.0001 0.9679 0.0320 0.0000 0.9881 0.0119 0.0000 0.9831 0.0169 0.0000 0.9851 0.0149 0.0000 0.9786 0.0214
(0.6546) (0.9229) (0.9148) (0.9120) (0.9039)

4.53 0.0001 0.9770 0.0229 0.0000 0.9929 0.0071 0.0000 0.9892 0.0108 0.0000 0.9900 0.0100 0.0000 0.9855 0.0145
(0.7427) (1.0481) (1.0391) (1.0359) (1.0266)

1003

0.23

12.03 0.0000 0.9343 0.0657 0.0000 0.9556 0.0444 0.0000 0.9408 0.0592 0.0000 0.9639 0.0361 0.0000 0.9513 0.0487
(1.2868) (1.8010) (1.8172) (1.7760) (1.7926)

12.53 0.0000 0.9465 0.0535 0.0000 0.9629 0.0371 0.0000 0.9504 0.0496 0.0000 0.9693 0.0307 0.0000 0.9593 0.0407
(1.3415) (1.8780) (1.8950) (1.8521) (1.8691)

13.03 0.0000 0.9569 0.0431 0.0000 0.9673 0.0327 0.0000 0.9548 0.0452 0.0000 0.9736 0.0264 0.0000 0.9633 0.0367
(1.3969) (1.9550) (1.9729) (1.9280) (1.9460)

13.53 0.0000 0.9647 0.0353 0.0000 0.9718 0.0282 0.0000 0.9593 0.0407 0.0001 0.9779 0.0220 0.0000 0.9662 0.0338
(1.4520) (2.0316) (2.0500) (2.0035) (2.0223)

0.53

5.03 0.0000 0.9221 0.0779 0.0000 0.9571 0.0429 0.0000 0.9462 0.0538 0.0000 0.9540 0.0460 0.0000 0.9413 0.0587
(0.6429) (0.9018) (0.9019) (0.8938) (0.8939)

5.53 0.0000 0.9444 0.0556 0.0000 0.9758 0.0242 0.0000 0.9679 0.0321 0.0000 0.9744 0.0256 0.0000 0.9658 0.0342
(0.7110) (0.9983) (0.9984) (0.9894) (0.9895)

6.03 0.0000 0.9667 0.0333 0.0000 0.9824 0.0176 0.0000 0.9767 0.0233 0.0000 0.9820 0.0180 0.0000 0.9742 0.0258
(0.7789) (1.0946) (1.0948) (1.0849) (1.0850)

6.53 0.0000 0.9787 0.0213 0.0000 0.9893 0.0107 0.0000 0.9858 0.0142 0.0000 0.9895 0.0105 0.0000 0.9850 0.0150
(0.8484) (1.1929) (1.1931) (1.1822) (1.1825)
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Table 1. Cont.

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

1003 0.73

3.03 0.0001 0.8809 0.1190 0.0001 0.9449 0.0550 0.0000 0.9319 0.0681 0.0000 0.9358 0.0642 0.0000 0.9205 0.0795
(0.3393) (0.4797) (0.4776) (0.4747) (0.4726)

3.53 0.0000 0.9280 0.0720 0.0000 0.9691 0.0309 0.0000 0.9594 0.0406 0.0001 0.9622 0.0377 0.0000 0.9505 0.0495
(0.4022) (0.5677) (0.5652) (0.5618) (0.5592)

4.03 0.0000 0.9579 0.0421 0.0000 0.9819 0.0181 0.0000 0.9762 0.0238 0.0000 0.9780 0.0220 0.0000 0.9695 0.0305
(0.4650) (0.6564) (0.6534) (0.6495) (0.6466)

4.53 0.0000 0.9737 0.0263 0.0000 0.9911 0.0089 0.0000 0.9867 0.0133 0.0000 0.9889 0.0111 0.0000 0.9824 0.0176
(0.5282) (0.7461) (0.7429) (0.7384) (0.7351)

301,
501,
1001

0.23

12.03 0.0000 0.9882 0.0118 0.0000 0.9581 0.0419 0.0000 0.9408 0.0592 0.0000 0.9706 0.0294 0.0000 0.9554 0.0446
(2.3137) (3.1706) (3.2610) (3.0919) (3.1877)

12.53 0.0000 0.9906 0.0094 0.0000 0.9650 0.0350 0.0000 0.9450 0.0550 0.0000 0.9751 0.0249 0.0000 0.9587 0.0413
(2.4129) (3.3027) (3.3973) (3.2204) (3.3207)

13.03 0.0000 0.9933 0.0067 0.0000 0.9710 0.0290 0.0000 0.9530 0.0470 0.0002 0.9804 0.0194 0.0000 0.9667 0.0333
(2.5129) (3.4409) (3.5386) (3.3551) (3.4588)

13.53 0.0000 0.9931 0.0069 0.0000 0.9736 0.0264 0.0000 0.9575 0.0425 0.0000 0.9808 0.0192 0.0000 0.9699 0.0301
(2.6116) (3.5757) (3.6782) (3.4871) (3.5955)

0.53

5.03 0.0000 0.9933 0.0067 0.0000 0.9766 0.0234 0.0000 0.9662 0.0338 0.0001 0.9756 0.0243 0.0000 0.9643 0.0357
(1.1438) (1.5928) (1.5933) (1.5791) (1.5796)

5.53 0.0000 0.9960 0.0040 0.0000 0.9856 0.0144 0.0000 0.9784 0.0216 0.0000 0.9848 0.0152 0.0000 0.9772 0.0228
(1.2663) (1.7614) (1.7622) (1.7463) (1.7470)

6.03 0.0000 0.9983 0.0017 0.0000 0.9901 0.0099 0.0000 0.9845 0.0155 0.0000 0.9890 0.0110 0.0000 0.9835 0.0165
(1.3889) (1.9300) (1.9309) (1.9134) (1.9142)

6.53 0.0000 0.9987 0.0013 0.0000 0.9916 0.0084 0.0000 0.9860 0.0140 0.0000 0.9909 0.0091 0.0000 0.9851 0.0149
(1.5109) (2.0987) (2.0995) (2.0807) (2.0814)

0.73

3.03 0.0000 0.9867 0.0113 0.0003 0.9676 0.0321 0.0000 0.9545 0.0455 0.0002 0.9608 0.0390 0.0000 0.9444 0.0556
(0.6079) (0.8625) (0.8511) (0.8514) (0.8394)

3.53 0.0000 0.9927 0.0073 0.0000 0.9818 0.0182 0.0000 0.9743 0.0257 0.0000 0.9765 0.0235 0.0000 0.9659 0.0341
(0.7194) (1.0253) (1.0120) (1.0123) (0.9982)

4.03 0.0000 0.9973 0.0027 0.0002 0.9880 0.0118 0.0000 0.9811 0.0189 0.0001 0.9843 0.0156 0.0000 0.9752 0.0248
(0.8318) (1.1796) (1.1642) (1.1646) (1.1485)

4.53 0.0000 0.9986 0.0014 0.0000 0.9930 0.0070 0.0000 0.9889 0.0111 0.0000 0.9917 0.0083 0.0000 0.9845 0.0155
(0.9441) (1.3400) (1.3225) (1.3230) (1.3046)
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Table 2. The coverage probabilities and expected lengths for estimating the 95% confidence interval for the common mean of several ZIG distributions (k = 5).

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

305

0.25

12.05 0.0000 0.9628 0.0372 0.0000 0.9635 0.0365 0.0000 0.9426 0.0574 0.0000 0.9738 0.0262 0.0000 0.9601 0.0399
(2.3170) (3.1723) (3.2623) (3.0934) (3.1891)

12.55 0.0000 0.9720 0.0280 0.0000 0.9637 0.0363 0.0000 0.9448 0.0552 0.0000 0.9753 0.0247 0.0000 0.9597 0.0403
(2.4154) (3.3088) (3.4036) (3.2267) (3.3268)

13.05 0.0000 0.9742 0.0258 0.0000 0.9666 0.0334 0.0000 0.9494 0.0506 0.0000 0.9763 0.0237 0.0000 0.9627 0.0373
(2.5154) (3.4382) (3.5362) (3.3527) (3.4567)

13.55 0.0000 0.9789 0.0211 0.0000 0.9735 0.0265 0.0000 0.9569 0.0431 0.0000 0.9810 0.0190 0.0000 0.9708 0.0292
(2.6120) (3.5766) (3.6786) (3.4876) (3.5955)

0.55

5.05 0.0000 0.9679 0.0321 0.0001 0.9767 0.0232 0.0000 0.9668 0.0332 0.0001 0.9762 0.0237 0.0000 0.9645 0.0355
(1.1513) (1.5929) (1.5938) (1.5792) (1.5801)

5.55 0.0000 0.9766 0.0234 0.0000 0.9856 0.0144 0.0000 0.9779 0.0221 0.0000 0.9846 0.0154 0.0000 0.9768 0.0232
(1.2706) (1.7634) (1.7641) (1.7482) (1.7489)

6.05 0.0000 0.9798 0.0202 0.0000 0.9886 0.0114 0.0000 0.9818 0.0182 0.0000 0.9888 0.0112 0.0000 0.9811 0.0189
(1.3934) (1.9328) (1.9334) (1.9160) (1.9168)

6.55 0.0000 0.9857 0.0143 0.0000 0.9926 0.0074 0.0000 0.9875 0.0125 0.0000 0.9917 0.0083 0.0000 0.9869 0.0131
(1.5139) (2.1022) (2.1029) (2.0838) (2.0849)

0.75

3.05 0.0005 0.9364 0.0631 0.0004 0.9693 0.0303 0.0001 0.9555 0.0444 0.0003 0.9623 0.0374 0.0000 0.9445 0.0555
(0.6131) (0.8649) (0.8538) (0.8539) (0.8421)

3.55 0.0002 0.9590 0.0408 0.0001 0.9805 0.0194 0.0000 0.9723 0.0277 0.0000 0.9763 0.0237 0.0000 0.9662 0.0338
(0.7270) (1.0219) (1.0087) (1.0089) (0.9949)

4.05 0.0004 0.9718 0.0278 0.0000 0.9887 0.0113 0.0000 0.9824 0.0176 0.0000 0.9855 0.0145 0.0000 0.9773 0.0227
(0.8387) (1.1836) (1.1681) (1.1687) (1.1522)

4.55 0.0000 0.9813 0.0187 0.0000 0.9939 0.0061 0.0000 0.9891 0.0109 0.0000 0.9909 0.0091 0.0000 0.9853 0.0147
(0.9526) (1.3418) (1.3247) (1.3247) (1.3067)

505 0.25

12.05 0.0000 0.9731 0.0269 0.0001 0.9635 0.0364 0.0000 0.9486 0.0514 0.0003 0.9742 0.0255 0.0001 0.9603 0.0396
(1.8091) (2.5072) (2.5521) (2.4605) (2.5074)

12.55 0.0000 0.9789 0.0211 0.0001 0.9635 0.0364 0.0001 0.9501 0.0498 0.0001 0.9723 0.0276 0.0001 0.9587 0.0412
(1.8858) (2.6123) (2.6591) (2.5636) (2.6125)

13.05 0.0001 0.9808 0.0191 0.0001 0.9703 0.0296 0.0000 0.9562 0.0438 0.0002 0.9789 0.0209 0.0000 0.9659 0.0341
(1.9636) (2.7208) (2.7696) (2.6704) (2.7212)

13.55 0.0000 0.9843 0.0157 0.0000 0.9773 0.0227 0.0000 0.9647 0.0353 0.0000 0.9831 0.0169 0.0000 0.9746 0.0254
(2.0403) (2.8274) (2.8779) (2.7747) (2.8275)
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Table 2. Cont.

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

505

0.55

5.05 0.0000 0.9710 0.0290 0.0001 0.9752 0.0247 0.0000 0.9664 0.0336 0.0000 0.9746 0.0254 0.0000 0.9647 0.0353
(0.9010) (1.2582) (1.2578) (1.2470) (1.2469)

5.55 0.0000 0.9809 0.0191 0.0000 0.9835 0.0165 0.0000 0.9762 0.0238 0.0000 0.9829 0.0171 0.0000 0.9735 0.0265
(0.9975) (1.3924) (1.3922) (1.3801) (1.3800)

6.05 0.0000 0.9883 0.0117 0.0000 0.9902 0.0098 0.0000 0.9850 0.0150 0.0000 0.9888 0.0112 0.0000 0.9833 0.0167
(1.0926) (1.5265) (1.5264) (1.5132) (1.5131)

6.55 0.0000 0.9916 0.0084 0.0000 0.9910 0.0090 0.0000 0.9870 0.0130 0.0000 0.9910 0.0090 0.0000 0.9841 0.0159
(1.1882) (1.6601) (1.6599) (1.6455) (1.6454)

0.75

3.05 0.0002 0.9414 0.0584 0.0001 0.9607 0.0392 0.0000 0.9493 0.0507 0.0001 0.9536 0.0463 0.0001 0.9383 0.0616
(0.4788) (0.6763) (0.6704) (0.6684) (0.6623)

3.55 0.0004 0.9623 0.0373 0.0001 0.9806 0.0193 0.0001 0.9717 0.0282 0.0001 0.9753 0.0246 0.0000 0.9651 0.0349
(0.5652) (0.7997) (0.7928) (0.7903) (0.7833)

4.05 0.0001 0.9790 0.0209 0.0001 0.9862 0.0137 0.0000 0.9817 0.0183 0.0001 0.9834 0.0165 0.0000 0.9759 0.0241
(0.6544) (0.9207) (0.9128) (0.9099) (0.9019)

4.55 0.0000 0.9865 0.0135 0.0000 0.9938 0.0062 0.0000 0.9892 0.0108 0.0000 0.9907 0.0093 0.0000 0.9861 0.0139
(0.7422) (1.0485) (1.0394) (1.0364) (1.0270)

1005

0.25

12.05 0.0000 0.9719 0.0281 0.0000 0.9560 0.0440 0.0000 0.9426 0.0574 0.0000 0.9637 0.0363 0.0000 0.9514 0.0486
(1.2869) (1.8007) (1.8171) (1.7760) (1.7926)

12.55 0.0000 0.9734 0.0266 0.0001 0.9660 0.0339 0.0000 0.9534 0.0466 0.0001 0.9717 0.0282 0.0001 0.9615 0.0384
(1.3415) (1.8788) (1.8959) (1.8529) (1.8703)

13.05 0.0000 0.9835 0.0165 0.0000 0.9695 0.0305 0.0000 0.9547 0.0453 0.0000 0.9754 0.0264 0.0000 0.9624 0.0376
(1.3968) (1.9536) (1.9713) (1.9267) (1.9444)

13.55 0.0000 0.9852 0.0148 0.0000 0.9734 0.0266 0.0000 0.9603 0.0397 0.0000 0.9782 0.0218 0.0000 0.9670 0.0330
(1.4518) (2.0305) (2.0489) (2.0024) (2.0212)

0.55

5.05 0.0000 0.9540 0.0460 0.0000 0.9610 0.0390 0.0000 0.9501 0.0499 0.0000 0.9584 0.0416 0.0000 0.9473 0.0527
(0.6422) (0.9019) (0.9022) (0.8940) (0.8942)

5.55 0.0000 0.9763 0.0237 0.0000 0.9761 0.0239 0.0000 0.9680 0.0320 0.0000 0.9735 0.0265 0.0000 0.9649 0.0351
(0.7111) (0.9976) (0.9978) (0.9888) (0.9890)

6.05 0.0000 0.9860 0.0140 0.0000 0.9825 0.0175 0.0000 0.9764 0.0236 0.0000 0.9822 0.0178 0.0000 0.9745 0.0255
(0.7796) (1.0957) (1.0959) (1.0860) (1.0861)

6.55 0.0000 0.9893 0.0107 0.0000 0.9902 0.0098 0.0000 0.9855 0.0145 0.0000 0.9886 0.0114 0.0000 0.9846 0.0154
(0.8478) (1.1909) (1.1910) (1.1803) (1.1805)
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Table 2. Cont.

ni δi ai
FGCI Baye.J Baye.U HPD.J HPD.U

LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP LEP CP (EL) UEP

1005 0.75

3.05 0.0000 0.9151 0.0849 0.0000 0.9445 0.0555 0.0000 0.9308 0.0692 0.0000 0.9350 0.0650 0.0000 0.9206 0.0794
(0.3393) (0.4795) (0.4773) (0.4744) (0.4723)

3.55 0.0000 0.9563 0.0437 0.0000 0.9707 0.0293 0.0000 0.9609 0.0391 0.0000 0.9659 0.0341 0.0000 0.9533 0.0467
(0.4017) (0.5678) (0.5654) (0.5619) (0.5594)

4.05 0.0001 0.9777 0.0222 0.0000 0.9839 0.0161 0.0000 0.9784 0.0216 0.0000 0.9794 0.0206 0.0000 0.9725 0.0275
(0.4651) (0.6570) (0.6542) (0.6501) (0.6473)

4.55 0.0000 0.9885 0.0115 0.0000 0.9908 0.0092 0.0000 0.9865 0.0135 0.0000 0.9883 0.0117 0.0000 0.9838 0.0162
(0.5279) (0.7459) (0.7426) (0.7381) (0.7347)

302,
501,
1002

0.25

12.05 0.0000 0.9975 0.0025 0.0000 0.9614 0.0386 0.0000 0.9395 0.0605 0.0000 0.9734 0.0266 0.0000 0.9556 0.0444
(2.3126) (3.1679) (3.2581) (3.0894) (3.1849)

12.55 0.0000 0.9980 0.0020 0.0000 0.9683 0.0317 0.0000 0.9500 0.0500 0.0000 0.9774 0.0226 0.0000 0.9629 0.0371
(2.4128) (3.3074) (3.4016) (3.2251) (3.3251)

13.05 0.0000 0.9985 0.0015 0.0000 0.9695 0.0305 0.0000 0.9511 0.0489 0.0002 0.9797 0.0201 0.0000 0.9640 0.0360
(2.5123) (3.4399) (3.5379) (3.3544) (3.4584)

13.55 0.0000 0.9992 0.0008 0.0000 0.9741 0.0259 0.0000 0.9588 0.0412 0.0000 0.9814 0.0186 0.0000 0.9706 0.0294
(2.6110) (3.5761) (3.6776) (3.4869) (3.5952)

0.55

5.05 0.0000 0.9986 0.0014 0.0000 0.9773 0.0227 0.0000 0.9670 0.0330 0.0001 0.9764 0.0235 0.0000 0.9663 0.0337
(1.1441) (1.5931) (1.5937) (1.5793) (1.5801)

5.55 0.0000 0.9985 0.0015 0.0000 0.9850 0.0150 0.0000 0.9767 0.0233 0.0001 0.9842 0.0157 0.0000 0.9758 0.0242
(1.2666) (1.7628) (1.7635) (1.7477) (1.7483)

6.05 0.0000 0.9995 0.0005 0.0000 0.9890 0.0110 0.0000 0.9811 0.0189 0.0000 0.9894 0.0106 0.0000 0.9792 0.0208
(1.3882) (1.9295) (1.9305) (1.9128) (1.9138)

6.55 0.0000 0.9997 0.0003 0.0000 0.9933 0.0067 0.0000 0.9898 0.0102 0.0000 0.9931 0.0069 0.0000 0.9887 0.0113
(1.5113) (2.1024) (2.1034) (2.0844) (2.0853)

0.75

3.05 0.0001 0.9938 0.0061 0.0003 0.9678 0.0319 0.0000 0.9541 0.0459 0.0002 0.9609 0.0389 0.0000 0.9449 0.0551
(0.6063) (0.8630) (0.8518) (0.8520) (0.8403)

3.55 0.0000 0.9968 0.0032 0.0000 0.9799 0.0201 0.0000 0.9686 0.0314 0.0000 0.9742 0.0258 0.0000 0.9614 0.0386
(0.7187) (1.0241) (1.0109) (1.0110) (0.9970)

4.05 0.0000 0.9995 0.0005 0.0003 0.9880 0.0117 0.0000 0.9831 0.0169 0.0000 0.9855 0.0145 0.0000 0.9762 0.0238
(0.8306) (1.1842) (1.1685) (1.1691) (1.1526)

4.55 0.0000 0.9997 0.0003 0.0000 0.9930 0.0070 0.0000 0.9883 0.0117 0.0000 0.9907 0.0093 0.0000 0.9851 0.0149
(0.9438) (1.3417) (1.3242) (1.3246) (1.3062)
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We also plotted the coverage probabilities and expected lengths for the five confidence
interval estimation methods for scenarios with various sample sizes and probabilities of
zero values in Figures 1–4. For k = 3, in almost all cases, the coverage probabilities of all of
the proposed methods were close to or greater than the nominal confidence level of 0.95,
while the expected length of the fiducial GCI was the shortest. However, in some cases,
the fiducial GCI method was marginally outperformed by the HPD interval based on the
Jeffreys rule or uniform prior. The results were similar for k = 5, although the fiducial GCI
method obtained coverage probabilities greater than 0.95 in all cases, which was better
than for k = 3. For unequal sample sizes, the fiducial GCI method obtained coverage
probabilities greater than 0.95 even though their expected lengths were shorter than the
others in all case for k = 3 and 5. For equal sample sizes, the coverage probabilities of
the fiducial GCI were less than the nominal confidence level 0.95 in some case for k = 3
and 5. According to the results from Tables 1 and 2, the tail error rate of the proposed
methods were unbalanced, whereas the expected length of the fiducial GCI was the smallest
length of coverage probabilities over 0.95. When the fiducial GCI was less than 0.95, the
HPD interval based on the Jeffreys rule or uniform prior outperformed the fiducial GCI.
Therefore, the fiducial GCI and the HPD interval based on the Jeffreys rule or uniform prior
should be used to compute the confidence interval estimation for the common mean of
several ZIG distributions.

Figure 1. Comparison of the coverage probabilities for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various sample sizes: (A) k = 3 and (B) k = 5.

Figure 2. Comparison of the coverage probabilities for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various probabilities of zero values: (A) k = 3 and
(B) k = 5.
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Figure 3. Comparison of expected lengths for estimation of the 95% confidence interval for the
common mean of several ZIG distributions for various sample sizes: (A) k = 3 and (B) k = 5.

Figure 4. Comparison of the expected length for estimating the 95% confidence interval for the
common mean of several ZIG distributions for various probabilities of zero values: (A) k = 3 and
(B) k = 5.

3.2. Robustness Studies

In this section, we study the robustness of our proposed methods. In order to conduct
the study, a small amount of random noise was added, and ZIG distributions were used to
create the samples. We considered sample sizes of (303) and (1003) with the settings given
in Table 3.

Table 3. Different δi and ai values in robustness studies with k = 3.

Setting 1 2 3 4 5 6 7 8 9 10 11 12

δi 0.23 0.23 0.23 0.23 0.53 0.53 0.53 0.53 0.73 0.73 0.73 0.73
ai 12.03 12.53 13.03 13.53 5.03 5.53 6.03 6.53 3.03 3.53 4.03 4.53

From the results shown in Table 4, we notice that even with some noise added to the
sample, the fiducial GCI, Bayesian, and HPD based on Jeffreys rule or uniform prior return
satisfactory results according to coverage probabilities. Almost all coverage probabilities
are slightly higher than the nominal level with the fiducial GCI, Bayesian, and HPD based
on Jeffreys rule or uniform prior closer to or greater than the nominal level 0.95. The
expected length values based on fiducial GCI are smaller than the Bayesian and HPD
based on Jeffreys rule or uniform prior. The coverage probabilities and expected lengths
of the confidence intervals based on the five methods are displayed in Figures 5 and 6. In
addition, when the samples contain noise, the results from the fiducial GCI and HPD based
on Jeffreys rule or uniform prior performed well. Therefore, the proposed methods seem
robust to the samples that contain noise. In addition, robust statistics resist the influence of
non-normal distributions; they perform well in a wide variety of probability distributions.
In robustness study, data are generated from ZIG distributions, which are non-normal
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distributions. When the sample size increases from (303) to (1003), the proposed methods
with respect to the departure from the ZIG distributions is robust, because the expected
length of proposed methods became shorter.

Figure 5. Comparison of the coverage probabilities for estimating the 95% confidence interval for
the common mean of several ZIG distributions with the samples containing noise: (A) ni = 303 and
(B) ni = 1003.

Figure 6. Comparison of expected lengths for estimating the 95% confidence interval for the common
mean of several ZIG distributions with the samples containing noise: (A) ni = 303 and (B) ni = 1003.
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Table 4. Robustness studies with small amount of random noise for k = 3.

Setting ni
FGCI Baye.J Baye.U HPD.J HPD.U

CP EL CP EL CP EL CP EL CL EL

1 303 0.9416 2.3163 0.9629 3.1689 0.9453 3.2590 0.9734 3.0898 0.9593 3.1857
1003 0.9360 1.2865 0.9589 1.8008 0.9447 1.8173 0.9658 1.7759 0.9531 1.7927

2 303 0.9438 2.4155 0.9655 3.3055 0.9489 3.3999 0.9770 3.2233 0.9620 3.3233
1003 0.9483 1.3416 0.9642 1.8774 0.9508 1.8948 0.9714 1.8516 0.9593 1.8690

3 303 0.9509 2.5143 0.9683 3.4400 0.9515 3.5381 0.9772 3.3542 0.9650 3.4582
1003 0.9562 1.3972 0.9695 1.9556 0.9573 1.9735 0.9747 1.9288 0.9655 1.9466

4 303 0.9542 2.6142 0.9737 3.5729 0.9561 3.6748 0.9827 3.4841 0.9694 3.5919
1003 0.9618 1.4517 0.9743 2.0316 0.9642 2.0504 0.9784 2.0036 0.9714 2.0225

5 303 0.9467 1.1493 0.9775 1.5890 0.9643 1.5895 0.9754 1.5753 0.9638 1.5759
1003 0.9195 0.6421 0.9636 0.9028 0.9516 0.9030 0.9605 0.8948 0.9490 0.8950

6 303 0.9588 1.2716 0.9845 1.7642 0.9779 1.7648 0.9841 1.7490 0.9745 1.7496
1003 0.9498 0.7110 0.9754 1.0000 0.9666 1.0001 0.9737 0.9911 0.9645 0.9913

7 303 0.9707 1.3945 0.9894 1.9294 0.9837 1.9303 0.9893 1.9129 0.9827 1.9136
1003 0.9653 0.7794 0.9827 1.0957 0.9768 1.0958 0.9820 1.0860 0.9745 1.0861

8 303 0.9787 1.5159 0.9908 2.1003 0.9856 2.1011 0.9906 2.0821 0.9853 2.0830
1003 0.9774 0.8479 0.9892 1.1914 0.9850 1.1916 0.9885 1.1809 0.9824 1.1810

9 303 0.9105 0.6137 0.9641 0.8604 0.9518 0.8491 0.9566 0.8493 0.9417 0.8375
1003 0.8814 0.3394 0.9428 0.4789 0.9313 0.4768 0.9342 0.4739 0.9204 0.4718

10 303 0.9422 0.7267 0.9824 1.0216 0.9733 1.0081 0.9776 1.0085 0.9642 0.9944
1003 0.9272 0.4020 0.9664 0.5676 0.9573 0.5651 0.9603 0.5617 0.9498 0.5592

11 303 0.9622 0.8399 0.9891 1.1831 0.9828 1.1678 0.9853 1.1680 0.9775 1.1519
1003 0.9560 0.4651 0.9835 0.6573 0.9780 0.6543 0.9800 0.6504 0.9726 0.6475

12 303 0.9720 0.9513 0.9953 1.3403 0.9895 1.3231 0.9923 1.3234 0.9856 1.3051
1003 0.9745 0.5278 0.9912 0.7455 0.9879 0.7422 0.9882 0.7377 0.9833 0.7343
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4. Empirical Application of the Confidence Interval Estimation Methods with
Real Data

Daily rainfall data supplied by the Upper Northern Region Irrigation Hydrology
Center [21] were from the Chomthong, Mae Taeng, and Doi Saket districts in Chiang Mai,
Thailand during September 2020 and 2021. Table 5 includes daily rainfall data from the
three areas, and Figures 7 and 8 present histogram plots of the rainfall observations and
Q-Q plots of the positive rainfall data following gamma distributions, respectively. We
focused on estimating the daily rainfall data in these areas by applying the estimation
methods for the confidence interval for the common mean of three ZIG distributions.
By separating the rainfall data into non-zero and zero observations, it was possible to
determine the best-fitting distribution for the rainfall data with positive values only. The
lowest Akaike information criterion (AIC) and Bayesian information criterion (BIC) values
in Tables 6 and 7, respectively, confirm that the gamma distribution was the best fit for all
three non-zero rainfall datasets.

Table 5. The daily rainfall data from Chomthong, Mae Taeng, and Doi Saket in Chiang Mai, Thailand.

Area Daily Rainfall (mm)

Chomthong

2.3 0.0 0.0 0.0 0.0 3.5 0.0 14.2 0.0 0.0
0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 49.5 28.7
4.0 0.0 4.8 0.0 0.0 0.07 0.0 4.5 12.2 0.0
0.0 0.0 0.6 0.0 0.2 5.8 9.4 33.5 7.5 21.2
4.0 0.0 23.2 2.2 12.6 33.8 10.2 0.0 0.0 0.2

23.5 43.4 13.4 25.5 20.0 26.7 6.5 0.0 0.0 0.0

Mae Taeng

0.9 0.0 0.0 0.0 0.0 0.0 0.1 9.8 0.0 0.0
0.0 0.0 0.0 0.3 0.0 0.0 2.3 0.3 14.3 22.0
0.5 0.0 33.3 5.3 0.0 0.0 0.0 0.0 4.7 12.3
0.0 0.1 8.0 0.0 0.0 6.7 1.2 4.7 39.0 19.5
0.0 0.0 21.6 3.7 0.7 37.7 0.0 0.0 0.0 1.3

15.7 0.0 5.1 0.0 13.5 4.3 15.6 0.0 0.0 0.0

Doi Saket

11.5 0.0 0.0 0.0 0.0 0.0 0.0 3.6 3.2 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.1 19.6

30.2 0.0 36.6 0.0 0.0 0.0 0.0 0.0 3.0 31.0
0.0 30.0 54.4 0.0 1.1 3.0 15.5 14.2 42.8 0.5
0.0 0.0 32.8 17.6 3.5 13.9 0.0 0.0 0.0 0.2

16.2 7.6 0.9 1.2 20.5 11.6 1.2 0.0 0.0 0.0

Table 6. AIC values for fitting the positive rainfall data from Chomthong, Mae Taeng, and Doi Saket
in Chiang Mai, Thailand.

Area
Distribution

Gamma Cauchy Lognormal Normal

Chomthong 231.7862 259.7445 239.6908 251.4082
Mae Taeng 198.9289 233.7925 204.2244 233.2959
Doi Saket 221.1700 252.2527 226.9918 241.2362

Table 7. BIC values for fitting the positive rainfall data from Chomthong, Mae Taeng, and Doi Saket
in Chiang Mai, Thailand.

Area
Distribution

Gamma Cauchy Lognormal Normal

Chomthong 234.6542 262.6125 242.5587 254.2761
Mae Taeng 201.7313 236.5949 207.0268 236.0983
Doi Saket 223.9046 254.9873 229.7264 243.9708
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Figure 7. The densities of the rainfall datasets from Chiang Mai, Thailand: (A) Chomthong, (B) Mae Taeng,
and (C) Doi Saket.
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Figure 8. Q-Q plots of the non-zero observations in the daily rainfall datasets from Chiang Mai,
Thailand: (A) Chomthong, (B) Mae Taeng, and (C) Doi Saket.



Symmetry 2023, 15, 67 22 of 24

The summary statistics computed for the rainfall datasets from Chomthong, Mae
Taeng, and Doi Saket in Chiang Mai, Thailand are reported in Table 8. The estimated
confidence interval for the common mean of the three rainfall datasets was 5.79 mm/day.
Table 9 summarizes the computed 95% confidence interval for the common mean for the
three rainfall datasets using the proposed methods. The length of the confidence interval
estimated via fiducial GCI was the shortest, which supports the simulation results for k = 3
in the previous section. Thus, we recommend the fiducial GCI for estimating the confidence
interval for the common mean of several ZIG distributions.

Table 8. Parameter estimates for the three rainfall datasets.

Area
Parameter Estimates

ni δ̂i âi b̂i µ̂i σ̂2
i η̂i

Chomthong 60 0.48 0.93 0.06 2.17 0.69 7.50
Mae Taeng 60 0.50 0.66 0.06 1.83 0.76 5.07
Doi Saket 60 0.52 0.82 0.05 2.19 0.84 7.62

Table 9. The 95% confidence interval estimates for the common mean of the three rainfall datasets
from Chiang Mai, Thailand.

Methods
95% Confidence Interval

Lengths
Lower Upper

FGCI 3.3521 4.7108 1.3587
Baye.J 4.1330 6.6412 2.5082
Baye.U 4.0183 6.5264 2.5081
HPD.J 4.1837 6.6781 2.4944
HPD.U 4.0021 6.4931 2.4910

5. Discussion

Estimating the confidence interval for the common mean of several gamma distribu-
tions was first reported by Yan [5]. Meanwhile, Maneerat and Niwitpong [6] proposed
estimation methods for the confidence interval for the common mean of several delta-
lognormal distributions (a lognormal distribution with zero observations) using the fiducial
GCI and HPD interval based on the Jeffreys rule prior. In this study, we extended these
ideas to construct estimates for the confidence interval for the common mean of several
ZIG distributions. Specifically, we proposed several approaches based on the fiducial GCI
and Bayesian and HPD methods based on the Jeffreys rule or uniform priors. A coverage
probability close to or greater than the nominal confidence level of 0.95 and the shortest
expected length were used to select the best-performing confidence interval. The results
indicate that, while the Bayesian and HPD coverage probability were close to or greater
than the nominal confidence level of 0.95, those of the fiducial GCI were similarly close to
or greater than that level, and their expected length was the shortest. However, the results
from a comparative simulation study show that the coverage probabilities of the fiducial
GCI, the Bayesian, and HPD interval based on Jeffreys rule or uniform prior were greater
than or close to the nominal confidence level of 0.95 under most circumstances. As the
sample sizes increased, the coverage probabilities of all of the proposed methods performed
better but were still under the nominal confidence level of 0.95. When the sample sizes were
increased, the expected lengths of all of the proposed methods became shorter, whereas
when the shape parameter was increased, the expected lengths of all of the proposed
methods became longer. When considering the expected lengths, those of the fiducial GCI
were the shortest under most circumstances. If the proportion of zero values increased, the
expected lengths of all of the proposed methods became shorter. However, the coverage
probabilities of the fiducial GCI were lower than the nominal confidence level of 0.95 in
some cases. The HPD interval based on the Jeffreys rule or uniform prior outperformed
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the fiducial GCI. Overall, the fiducial GCI and the HPD interval based on the Jeffreys rule
or uniform prior performed the best in the simulation study because they fulfilled the
requirements for both criteria. Although Kaewprasert et al. [1] claimed that Bayesian and
HPD methods are the most effective for estimating the mean and the difference between
the means of ZIG distributions, our findings for the data and scenario used in this study
contradict their claims because the range of intervals for the common mean was wider than
when using the Bayesian and HPD methods. According to our results, the fiducial GCI
consistently supplied the smallest expected length and a suitable coverage probability for
both k = 3 and k = 5. However, in certain instances, the HPD based on Jeffreys rule prior
produced results that were consistent with those of Kaewpraset et al. [1].

In addition, we calculated the confidence interval for the common mean of three
rainfall datasets from Chiang Mai, Thailand using the proposed methods. We found that
the fiducial GCI once again performed the best in this empirical scenario. Our approach may
be useful for estimating the rainfall in September, as this information could be important
for residents in the hilly and forested regions of places such as Chiang Mai who want to
avoid flooding and landslides.

6. Conclusions

We constructed estimators for the confidence interval for the common mean of several
ZIG distributions using the fiducial GCI and Bayesian and HPD methods based on the
Jeffreys rule or uniform prior. The coverage probability and expected length were used
to assess how well they performed in various scenarios. According to the findings from
the simulation study, the coverage probabilities of the fiducial GCI were greater than the
nominal confidence level of 0.95, and its expected lengths were the shortest in almost all
cases for k = 3 and k = 5. The efficacies of the proposed methods were tested using
real daily rainfall datasets from Chomthong, Mae Taeng, and Doi Saket in Chiang Mai,
Thailand. Once again, the fiducial GCI outperformed the other methods by providing the
shortest length of the confidence interval, which is the same as the simulation study results.
Therefore, the fiducial GCI is recommended for estimating the confidence interval for the
common mean of several ZIG distributions, while the HPD based on the Jeffreys rule or
uniform prior could also be used in some scenarios.
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