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Abstract: Iterative processes are a powerful tool for providing numerical methods for integral
equations of the second kind. Integral equations with symmetric kernels are extensively used to
model problems, e.g., optimization, electronic and optic problems. We analyze iterative methods for
Fredholm–Hammerstein integral equations with modified argument. The approximation consists
of two parts, a fixed point result and a quadrature formula. We derive a method that uses a Picard
iterative process and the trapezium numerical integration formula, for which we prove convergence
and give error estimates. Numerical experiments show the applicability of the method and the
agreement with the theoretical results.
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1. Introduction

Integral equations are used in many fields of applied mathematics, physics, engineer-
ing, biology, dynamical systems, etc., to model a wide variety of applications. They also
appear as reformulations of the boundary value, initial value, and bilocal problems for
partial differential equations. Integral equations with symmetric kernels occur frequently
in optimization, spectral analysis, electronic, and optic problems.

A wide variety of numerical methods are used to approximate their solutions, such as
projection–collocation, Galerkin methods ([1–6]), or decomposition methods ([7]). Many
methods are based on searching for a solution of a certain form and then finding the
values of the solution at a set of nodes by substituting that into the equation. Numerical
solutions have been found using block-pulse functions ([8]), wavelets ([9,10]), Taylor series
expansions ([11]), Bernoulli polynomials ([2]), and others. In general, this leads to solving
a nonlinear system for the coefficients in the unknown function, a system which is often
ill-conditioned, thus complicating the procedure.

In contrast, iterative numerical methods approximate the solution at each step, using
the previous iteration, without the need to solve a nonlinear system. Iterative methods
consist of two parts, one provided by an iterative process and the other by a numeri-
cal integration scheme. The first part is usually a fixed point result, such as Banach’s
contraction principle [12], Altman’s algorithm [13], the Krasnoselskii [14], Mann [12], or
Ishikawa [12] iteration, or various versions of Newton–Kantorovich theorems [15]. The
quadrature formulas used in the second part can be interpolatory-based numerical schemes,
Newton–Cotes formulas, or Gaussian quadratures. For iterative procedures, the number of
unknowns (the approximations of the values of the solution at the nodes) does not increase
at each step. They are just computed from the values obtained at the previous step, without
significantly increasing the computational cost. Thus, the implementation of such methods
is also simplified. Iterative numerical methods have been used successfully to approximate
solutions of various integral equations of the second kind ([16–22]).
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The composite error of the method will thus consist of two parts. Improving the speed
of convergence of either will result in a faster converging method overall.

In this paper, we derive such a numerical method for Fredholm–Hammerstein integral
equations of the second kind with modified argument (FHMA), using Banach’s fixed
point theorem and the trapezium quadrature scheme. Nonlinear integral equations with
modified argument arise in modeling populations dynamics or the spread of a disease in
epidemiology ([23]). The nonlinearity of Hammerstein type allows for better numerical
methods, making the proof of convergence, the applicability, and the implementation easier.

The paper is organized as follows: in Section 2, we give an overview of the iterative
processes and recall some main results in fixed point theory. Section 3 contains the detailed
description of the numerical method. We start with the description of the FHMA integral
equation. Then, we use a local fixed point result and give conditions for the existence,
uniqueness, and successive approximation of the solution. Next, we derive the conditions
of convergence for a general quadrature formula. Finally, we apply the trapezium rule,
which satisfies the previously derived condition, without requiring extra assumptions.
Numerical examples are given in Section 4, showing the applicability of the method and
the agreement of the numerical results with the theoretical findings. In Section 5, we give
some concluding remarks and discuss ideas for future research.

2. Preliminaries on Iterative Processes and Integral Equations

We recall some results of iterative processes on a Banach space.
Let X and Y be two Banach spaces, A be a convex subset of X, and F : A → Y be

an operator, in general nonlinear. Many applications in all scientific areas are reduced to
solving the operator equation

Fu = 0, (1)

where 0 is the zero-vector in the space Y.
A special and important case is when Y = X and Fu = u− Tu = 0. In fact, when

Y = X, in most cases, it is possible to write Equation (1) in the form

Tu = u,

i.e., the problem is reduced to finding a fixed point u∗ ∈ A for the operator T.

Definition 1. A sequence of the form

uk+1 = Tuk, k = 0, 1, . . . , (2)

starting with a point u0 ∈ A, is called an iterative process.

Under certain conditions imposed on the operator T, the sequence {uk}k∈N will
converge to the fixed point u∗ of the operator T.

We recall some well-known results in fixed point theory.

Definition 2. Let (X, || · ||) be a Banach space. A mapping T : X → X is called a contraction if
there exists a constant 0 ≤ α < 1, such that

||Tu− Tv|| ≤ α||u− v||,

for all u, v ∈ X.

Theorem 1 (Banach’s contraction principle). Let (X, ‖ · ‖) be a Banach space and T : X 7→ X
be an α-contraction. Then ,

(a) the equation u = Tu has exactly one solution u∗ ∈ X;
(b) the iterative process uk+1 = Tuk, k = 0, 1, . . ., converges to the solution u∗ for any

arbitrary initial point u0 ∈ X;
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(c) the error estimate

‖uk − u∗‖ ≤ αk

1− α
‖Tu0 − u0‖

holds for each k ∈ N.

A stronger (faster converging) fixed point result can be formulated in the following
form (see Altman [13]).

Theorem 2 (Altman’s Algorithm). Let (X, ‖ · ‖) be a Banach space and T : X 7→ X be an

α-contraction. Let {εk}∞
k=0 be a sequence of positive numbers, such that εk ≤ 1 and

∞

∑
k=0

εk = ∞.

Then,
(a) the equation u = Tu has exactly one solution u∗ ∈ X;
(b) the iterative process

uk+1 = (1− εk)uk + εkTuk, k = 0, 1, . . . ,

converges to u∗ for any arbitrary initial point u0 ∈ X;
(c) the error estimate

‖uk − u∗‖ ≤ e1−α

1− α
‖Tu0 − u0‖e−(1−α)vk

holds for each k ∈ N, where v0 = 0 and vk =
k−1

∑
ν=0

εν, k ≥ 1.

There are many results for the convergence of iterative processes, under certain con-
ditions, mostly versions of Kantorovich’s Theorem ([24]). For more details, the reader is
referred to [12,14,15] and the references therein.

Remark 1. The above results remain true if instead of the entire space X, we consider any closed
subset A ⊂ X, satisfying T(A) ⊆ A. For instance, such results are useful if applied on a closed ball
B$ = {u ∈ X : ‖u− u0‖ ≤ $}, for a suitable point u0 ∈ X.

Such iterative processes are very suitable for approximating solutions of integral
equations of the second kind

u = Tu, (3)

where T : X → X is an (nonlinear, in general) integral operator. Not only do such results
state the conditions for the existence of a unique solution u∗ of the integral Equation (3), but
they also provide a sequence of approximating iterations uk. So, the first step in developing
a numerical method for integral equations of the second kind is using such an iterative
process. The second step consists of approximating numerically the integrals involved
in the iterative method (2), i.e., finding the approximations ũk,n of uk at a set of nodes
tν, ν = 0, . . . , n. Then, the composite error of the numerical method will be given by

||ũk,n − u∗|| ≤ ||uk − u∗||+ ||ũk,n − uk||.

The first part depends on the iterative process and its speed, while the second one
depends on the degree of precision of the chosen quadrature formula.
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3. Iterative Methods

In this paper, we consider a special type of nonlinear Fredholm integral equations
with modified argument

u(t) =

b∫
0

K(t, x)g
(
x, u(x), u(λx)

)
dx + f (t), t ∈ [0, b], (4)

where K, g, and f are continuous functions and λ ∈ (0, 1). Such equations, where the kernel
depends on the unknown u through the function g only, are called equations of Hammerstein
type, and they can be handled better than equations with general nonlinear kernel, in the
sense that the approximation of their solutions is much simplified. Equations with modified
arguments arise in modeling dynamical systems of population growth/decay or spread of
a virus ([23]).

3.1. Existence, Uniqueness, and Successive Approximation of the Solution

Let X = C[0, b] be equipped with the uniform norm ‖u‖ = max
t∈[0,b]

|u(t)| and consider

the closed ball B$ := {u ∈ X : ‖u− f ‖ ≤ $}, for some suitable $ > 0. Then, (X, || · ||) is a
Banach space, and B$ is a closed subset of X. Define the operator T : X → X by

Tu(t) =

b∫
0

K(t, x)g
(
x, u(x), u(λx)

)
dx + f (t). (5)

Then, finding a solution of the integral Equation (4) is equivalent to finding a fixed
point for the operator T:

u = Tu. (6)

Theorem 3. Consider T : X → X defined by (5), and let $ > 0, $1 := min
t∈[0,b]

f (t), and $2 :=

max
t∈[0,b]

f (t). Assume that

(i) there exist constants L1, L2 > 0, such that

|g(x, u1, v1)− g(x, u2, v2)| ≤ L1|u1 − u2|+ L2|v1 − v2|, (7)

for all x ∈ [0, b] and all u1, u2, v1, v2 ∈ [$1 − $, $2 + $]
(ii) the constant

α := bMK(L1 + L2) < 1, where MK = max
t,x∈[0,b]

|K(t, x)|; (8)

(iii) the following condition is satisfied

bMK Mg ≤ $, (9)

where Mg := max |g(x, u, v)| over all x ∈ [0, b] and all u, v ∈ [$1 − $, $2 + $].

Then,
(a) operator T has exactly one fixed point, i.e., the Equation (6) has exactly one solution

u∗ ∈ B$;
(b) the iterative process

uk+1 = Tuk, k = 0, 1, . . . , (10)

converges to the solution u∗ for any arbitrary initial point u0 ∈ B$;
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(c) the error estimate

‖uk − u∗‖ ≤ αk

1− α
‖Tu0 − u0‖

holds for each k ∈ N.

Proof. We use the Picard iteration, i.e., Theorem 1.
Let t ∈ [0, b] be fixed. By (7), we have

|(Tu− Tv)(t)| ≤
b∫
0

|K(t, x)|
∣∣g(x, u(x), u(λx)

)
− g
(
x, v(x), v(λx)

)∣∣ dx

≤ MK L1

b∫
0

|u(x)− v(x)| dx + MK L2

b∫
0

|u(λx)− v(λx)| dx

≤ bMK L1||u− v||+ bMK L2 max
x∈[0,b]

∣∣u(λx)− v(λx)
∣∣

≤ bMK(L1 + L2)||u− v||,

because max
x∈[0,b]

∣∣u(λx)− v(λx)
∣∣ ≤ max

x∈[0,b]
|u(x)− v(x)|, since 0 < λ < 1 (so, 0 < λx < b).

Hence,

||Tu− Tv|| = max
t∈[0,b]

|(Tu− Tv)(t)| ≤ α||u− v||,

and by (8), it follows that T is an α−contraction.
Next, for every u ∈ B$ and t ∈ [0, b], we have

|Tu(t)− f (t)| ≤
b∫
0

|K(t, s)|
∣∣∣g(x, u(x), u(λx)

)∣∣∣ dx

≤ bMK Mg.

Hence, by (9), it follows that F(B$) ⊆ B$. Now, all the conclusions follow from
Theorem 1 and Remark 1.

3.2. Numerical Integration of the Iterates

To numerically approximate the iterates in (10), we consider a numerical integration
scheme

b∫
0

h(x)dx =
n

∑
i=0

aih(xi) + Rh, (11)

with nodes 0 = x0 < x1 < · · · < xn = b, coefficients ai ∈ R, i = 0, 1, . . . , n, and for which
the remainder satisfies

|Rh| ≤ M, (12)

for some M > 0, with M→ 0 as n→ ∞.
Let 0 = t0 < t1 < · · · < tn = b be the nodes, and let u0 = ũ0 ≡ f be the initial approx-

imation. Then, we use the iteration (10) and the quadrature Formula (11) to approximate
uk(tν) and uk(λtν), with ũk,n(tν) and ũk,n(λtν), respectively, for ν = 0, n and k = 0, 1, . . . .
For simplicity, we make the following notations:
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Aν,i,k := K(tν, ti)g
(
ti, uk(ti), uk(λti)

)
,

Aλ,ν,i,k := K(λtν, ti)g
(
ti, uk(ti), uk(λti)

)
,

Ãν,i,k := K(tν, ti)g
(
ti, ũk,n(ti), ũk,n(λti)

)
,

Ãλ,ν,i,k := K(λtν, ti)g
(
ti, ũk,n(ti), ũk,n(λti)

)
,

where

ũk+1,n(tν) :=
n

∑
i=0

ai Ãν,i,k + f (tν),

ũk+1,n(λtν) :=
n

∑
i=0

ai Ãλ,ν,i,k + f (λtν).

We also use the notations

R̃k,ν := uk(tν)− ũk,n(tν),

R̃λ,k,ν := uk(λtν)− ũk,n(λtν).

When applying Formula (11) to the functions K(tν, x)g(x, uk(x), uk(λx)) and K(λtν, x)
g(x, uk(x), uk(λx)), we denote the remainder in (12) by Rk,ν and Rλ,k,ν, respectively, for
ν = 0, . . . , n. We have:

uk+1(tν) =

b∫
0

K(tν, x)g(x, uk(x), uk(λx))dx + f (tν)

=
n

∑
i=0

ai Aν,i,k + Rk,ν + f (tν)

=
n

∑
i=0

ai Ãν,i,k +
n

∑
i=0

ai(Aν,i,k − Ãν,i,k) + Rk,ν + f (tν)

=
n

∑
i=0

ai Ãν,i,k + f (tν) + R̃k+1,ν

= ũk+1,n(tν) + R̃k+1,ν.

Similarly, we obtain

uk+1(λtν) =
n

∑
i=0

ai Ãλ,ν,i,k + f (λtν) + R̃λ,k+1,ν

= ũk+1,n(λtν) + R̃λ,k+1,ν.

Since we start with u0(tν) = ũ0(tν) = f (tν), there exists Mn > 0, such that

Rk,ν, Rλ,k,ν ≤ Mn,

where Mn depends on MK, Mg, $1, and $2 but not on ν and k, and Mn → 0 as n→ ∞. Then,
denoting by

Err(uk, ũk,n) : = max
tν∈[0,b]

{|R̃k,ν|, |R̃λ,k,ν|}

and
R̃k : = max

0≤ν≤n
{|R̃k,ν|, |R̃λ,k,ν|},
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we have

Err(u1, ũ1,n) ≤ R̃1 ≤ Mn.

Let γ = MK(L1 + L2)
n

∑
i=0
|ai|. Then, for every ν = 0, . . . , n,

|R̃2,ν| = |u2(tν)− ũ2,n(tν)|

=
∣∣∣ n

∑
i=0

ai(Aν,i,1 − Ãν,i,1) + R1,ν

∣∣∣
≤ |R1,ν|+

n

∑
i=0
|ai|
∣∣K(tν, ti)

∣∣∣∣∣g(tν, u1(ti), u1(λti))− g(tν, ũ1(ti), ũ1(λti))
∣∣∣

≤ |R1,ν|+
n

∑
i=0
|ai|MK

(
L1
∣∣u1(ti)− ũ1(ti)

∣∣+ L2
∣∣u1(λti)− ũ1(λti)

∣∣)
≤ Mn +

n

∑
i=0
|ai|MK(L1 + L2)|R̃1,ν|

≤ Mn + R̃1MK(L1 + L2)
n

∑
i=0
|ai|

≤ Mn + Mn MK(L1 + L2)|
n

∑
i=0
|ai|.

= Mn(1 + γ).

Absolutely similarly, we obtain

|R̃λ,2,ν| ≤ Mn(1 + γ).

Hence,

Err(u2, ũ2,n) ≤ Mn(1 + γ).

Inductively, we obtain

Err(uk, ũk,n) ≤ Mn(1 + γ + · · ·+ γk−1).

We can now state the approximation result.

Theorem 4. Under the assumptions of Theorem 3, if, in addition,

γ := MK(L1 + L2)
n

∑
i=0
|ai| < 1, (13)

then the error estimate

Err(uk, ũk,n) ≤
αk

1− α
‖u1 − u0‖+

Mn

1− γ

holds for every k ∈ N. Thus, as k, n→ ∞, ũk,n → u∗.

3.3. An Iterative Numerical Method Using the Trapezium Rule

Let us consider the trapezium rule:
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b∫
0

h(x) dx =
b

2n

[
h(0) + 2

n−1

∑
j=1

h(xj) + h(b)

]
+ Rh,

where the n + 1 nodes are xj =
b
n

j, j = 0, n, and the remainder is given by

Rh = − b3

12n2 h′′(η), η ∈ (0, b).

We use it to approximate the integrals in (10), as described above, with the initial
approximation u0 = ũ0 ≡ f . Let us check the conditions in the previous section. The error
in the trapezium rule depends on [K(tν, x)g(x, uk(x), uk(λx))]

′′
x, which in its turn, depends

on the second order (partial) derivatives of the functions K, g, and f . So, if we assume that
K, g, and f are C2 functions with bounded second order derivatives, then we have

R̃k,n, R̃λ,k,n ≤ b3

12n2 M0,

where M0 depends on the constants b, L1, and L2 and the functions K, g, and f but not on k
or n. Thus, condition (12) is satisfied.

Now, for the constant γ in (13), in the case of the trapezium quadrature formula,
we have

γ = MK(L1 + L2)
n

∑
i=0
|ai|

= MK(L1 + L2)
b

2n
(
1 + 2(n− 1) + 1

)
= bMK(L1 + L2) = α

from Equation (8), which is already assumed to be less than 1 from the contraction condition.
Thus, in this case, no extra assumptions are necessary for the coefficients of the quadrature
formula. Then, by Theorem 4, the error estimate of our approximation is given by

Err(uk, ũk,n) ≤
αk

1− α
‖Tu0 − u0‖+

b3

12n2
M0

1− γ
. (14)

4. Numerical Experiments

Example 1. Let us consider the Fredholm–Hammerstein integral equation

u(t) =
1
10

π∫
0

u(x)u
( x

2

)
sin t dx +

13
15

sin t, t ∈ [0, π]. (15)

The exact solution of (15) is u∗(t) = sin t.

We have λ =
1
2

, and

K(t, x) =
1

10
sin t,

g(x, u, v) = uv,

f (t) =
13
15

sin t.
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Let $ = 1. We have

α =
π

5
sin 1 < 1,

and
bMK Mg =

π

10
< $.

Thus, all conditions of Theorem 3 were satisfied.
We used the trapezium rule with n = 12 and n = 24, with the corresponding nodes

tν =
π

n
ν, ν = 0, n. Table 1 contains the errors Err(uk, ũk,n), for various values of k, with

initial approximation u0(t) = f (t). With n = 12 nodes, the CPU time per iteration was
approximately 0.74, while for n = 24 nodes, it was approximately 0.89.

Table 1. Errors for Example 1.

n
k 12 24

1 1.49671× 100 6.33236× 10−1

5 1.63293× 10−2 1.13281× 10−3

10 1.05242× 10−3 7.82658× 10−5

Example 2. Next, we considered the Fredholm–Hammerstein integral equation

u(t) =
1
2c

1∫
0

(t2 + 2)xeu(x)(u(0.8x)
)2dx, t ∈ [0, 1],

where c =
e

252 (545
√

e− 337), whose exact solution was u∗(t) =
1
2

t2 + 1.

Here, λ = 0.8, and

K(t, x) =
1
2c

x(t2 + 2),

g(x, u, v) = euv2,

f (t) ≡ 0.

Choosing $ =
1
3

, it follows that

α =
3
2c

e1/3 < 1,

and
bMK Mg =

1
18c

e1/3 < $;

so, all theoretical assumptions were satisfied. Again, we took n = 12 and n = 24 in the

trapezoidal rule, with the corresponding nodes tν =
1
n

ν, ν = 0, n. The errors Err(uk, ũk,n)

are shown in Table 2, starting with the initial approximation u0(t) ≡ 0. The CPU times per
iteration for n = 12 and n = 24 nodes were approximately 0.86 and 1.02, respectively.

Table 2. Errors for Example 2.

n
k 12 24

1 9.75026× 10−1 3.47286× 10−1

5 3.62893× 10−3 2.02376× 10−4

10 9.79542× 10−5 9.97458× 10−6
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5. Conclusions

In this paper, we discussed iterative numerical methods for a special type of nonlinear
Fredholm integral equation with modified argument, of Hammerstein type, where the
kernel can be factored into two functions K(t, x) and g(x, u(x), u(λx)). Iterative methods
consist of two parts, one that approximates the solution globally, by a sequence of iterates,
and another that approximates the values of the solution at a set of nodes. For the first
part, any iterative process can be used, while the second is determined by a numerical
integration scheme.

We used the Picard iteration at the first step, from Banach’s contraction principle. For
the second step, we gave the conditions of convergence of the numerical approximation. In
particular, we used the trapezium rule, for which the assumption needed for convergence
coincided with the contraction condition from the first part. The result was a numerical
method with order of convergence O(αk) +O

(
n−2). This method is simple to use and

understand, producing good approximating results.
Other iterative processes can be used, such as the Mann, Krasnoselskii, and Ishikawa

iterations (to name a few), which may improve the speed of convergence of the first part of
the approximation. Moreover, for the second step, more accurate quadrature schemes can
increase the convergence rate of the method.
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