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Abstract: We take into account the dynamics of three types of models of rotating galaxies in polar
coordinates in a rotating frame. Due to non-axisymmetric potential perturbations, the angular
momentum varies with time, and the kinetic energy depends on the momenta and spatial coordinate.
The existing explicit force-gradient symplectic integrators are not applicable to such Hamiltonian
problems, but the recently extended force-gradient symplectic methods proposed in previous work
are. Numerical comparisons show that the extended force-gradient fourth-order symplectic method
with symmetry is superior to the standard fourth-order symplectic method but inferior to the
optimized extended force-gradient fourth-order symplectic method in accuracy. The optimized
extended algorithm with symmetry is used to explore the dynamical features of regular and chaotic
orbits in these rotating galaxy models. The gravity effects and the degree of chaos increase with an
increase in the number of radial terms in the series expansions of the potential. There are similar
dynamical structures of regular and chaotical orbits in the three types of models for the same number
of radial terms in the series expansions, energy and initial conditions.
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1. Introduction

Chaos in a dynamical system means that the final state of the dynamical system
displays exponentially sensitive dependence on the initial state. Based on the importance
of chaos, many studies have focused on the subject of chaos in the solar system [1,2] and
galactic dynamics [3–7].

Regular or chaotic motions of particles in galactic dynamics may affect the fraction
of mass. The authors of Refs. [3,5–7] investigated mass components of non-rotating N-
body models of elliptical galaxiesin ordered and chaotic motion. Voglis et al. [3] found that
the fraction of mass in chaotic motion is about 24% of the total mass in one non-rotating
triaxial equilibrium model with smooth centers and 32% in another non-rotating triaxial
equilibrium model with smooth centers. This shows that the spatial distribution of the mass
in chaotic motion is in disagreement with that in ordered motion. Muzzio et al. [7] pointed
out that the fraction of mass in chaotic motion of about 53% in models of non-rotating
galaxies with smooth centers. On the other hand, the fraction of mass in ordered or chaotic
motion was also studied in spiral galaxies. Voglis et al. [8] further showed that rotation leads
to increasing the fraction of mass in chaotic motion (up to the level of ≈ 65%) and shifting
the Lyapunov numbers to larger values in N-body models of rotating galaxies. In other
words, the extent of chaos is substantially enhanced by the rotation, and the fractions of
mass in chaotic motion in the rotating models are larger than those in the non-rotating
models. The spatial distributions of the dynamical structures along the spiral arms at the
ends of the bar in the barred-spiral galaxy correspond to those of particles with masses in
regular and in chaotic orbits. In fact, the mass in chaotic motion can almost completely
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form spiral arms emanating from the neighborhood of the Lagrangian points L1 and L2 at
the ends of the bar in a barred-spiral galaxy. The distribution of mass must be associated
with the gravitational forces of particles. Gravity is the main driving mechanism for the
formation and the stability of spiral arms in galaxies. The authors of Refs. [9,10] developed
the Moser analytic series representing the invariant manifolds near the unstable Lagrangian
equilibrium points L1, L2 in a rotating barred galaxy. In this way, these series can represent
the spiral arms, which are density waves and are composed of chaotic orbits. In addition to
the analytical theory, other methods such as the specific finite time Lyapunov characteristic
number, the smaller alignment index, the surface of section and the frequency analysis
were used to classify the orbits in regular and chaotic cases in barred galaxies [11–15].

The onset of chaos in two-dimensional Hamiltonian systems of rotating galaxies in the
disc plane in polar coordinates [10] is due to the inclusion of non-axisymmetric potential
perturbations. These perturbations cause the angular momentum with respect to the angle
to vary with time, and therefore, the Hamiltonian systems are not integrable. This non-
integrability leads to chaos under some circumstances. Reliable numerical results are always
required to detect the chaotic behavior. In some cases, extremely long integration times
are also required. The adopted computational schemes for the long-term integration of
the Hamiltonian systems become crucial to reach better stability and higher precision. The
proper choice of the integrators should naturally be symplectic schemes, which preserve
the symplectic nature of Hamiltonian dynamics [16,17]. Symplectic methods are a class
of geometric integration algorithms [18] and make the local error in the total energy
not grow with time. There are standard symplectic methods [19,20] that require some
evaluations of the force and force-gradient symplectic integrators [16,21–24] that require
some evaluations of force gradient in addition to several evaluations of the force. Because
of good long-term behavior, the standard symplectic methods have been used in the
solar system [1,25] and black hole spacetimes [26–31]. They are also suitable for the two-
dimensional Hamiltonian systems of rotating galaxies in polar coordinates. However, the
force-gradient symplectic integrators are not applicable to such Hamiltonian problems
because the kinetic energies of the Hamiltonian systems depend on the momenta and spatial
coordinates. In fact, they are only adapted to the integrations of Hamiltonian systems,
where the kinetic energies are quadratic functions of momenta, and the potential energies
are functions of coordinates. Energy errors of the force-gradient symplectic integrators are
several orders of magnitude smaller than those of the standard symplectic algorithms of
the same order, as was confirmed in the literature [22–24]. Recently, our group extended
these force-gradient integrators to the explicitly integrable kinetic energies, which are not
only quadratic functions of momenta but also depend on coordinates [32]. When the
original force-gradient operator is adjusted appropriately, the adjusted operator lacks the
concept of force gradient and belongs to the momentum operator, such as the operator
corresponding to the potential. As a result, the existing explicit force-gradient symplectic
integrators [21–24] are still available in the extended Hamiltonian systems. The extended
force-gradient symplectic integrators do not alter their symmetry and time reversibility
compared with the existing force-gradient algorithms. The authors of Ref. [32] used a
modified Hénon-Heiles system and a spring pendulum as two toy models to test the
numerical performance of the extended algorithms. They showed that the fourth-order
Forest–Ruth standard symplectic method does not give true dynamical properties of order
and chaos to the modified Hénon–Heiles system under some circumstances, whereas the
fourth-order extended force-gradient symplectic methods do. The obtained results are
because the Forest–Ruth method performs with poorer accuracy than the extended force-
gradient algorithms. In fact, the optimized fourth-order extended force-gradient symplectic
methods have energy errors that are three orders of magnitude smaller than those of the
Forest–Ruth method.

Note that the extended force-gradient symplectic methods proposed in Ref. [32] were
shown to have good numerical performance in the simulations of the two toy models. Now,
we wonder whether the extended algorithms still exhibit excellent performance in the
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application of real astronomical and astrophysical problems. Evaluating the performance of
the extended force-gradient symplectic methods applicable to the three types of models of
rotating barred galaxies in Refs. [8,10] is one of the main aims of the present paper. On the
other hand, we are interested in studying a distribution of dynamical structures regarding
regular and chaotic orbits along the radial direction for a given number of the radial terms
of the potential in one of the models using the techniques of the Poincaré surface of section
and fast Lyapunov indicators (FLIs) [33]. In this way, we desire to know how the number
of the radial terms of the potential affects chaos in one of the models. We also desire to
know what differences in the dynamics exist among the three types of models with the
same number of radial terms of the potential, energy and initial conditions.

To implement the three aims, we organize this paper as follows. In Section 2, we
introduce three types of models of rotating barred galaxies. In Section 3, we apply the
extended fourth-order force-gradient symplectic methods to Model A4 and evaluate the
performance of these algorithms. In Section 4, we explore the dynamical structures in these
models using the techniques of the Poincaré surface of section and FLIs. Finally, the main
results are summarized in Section 5.

2. Models of Rotating Barred Galaxies

The motion of a test particle of mass mp = 1 in the plane of a galaxy with a rotating
bar is described in polar coordinates (r, φ) in the rotating frame by a two-dimensional
Hamiltonian [8,10]

H =
p2

r
2

+
p2

φ

2r2 −Ωpφ + Φ(r, φ). (1)

The above notations are given here. Ω is a pattern speed of the rotating frame. pr
represents the canonical momentum vs. the coordinate r, and pφ is the canonical momentum
of the coordinate φ corresponding to the angular momentum in the rest frame. Φ(r, φ)
denotes the gravitational potential of the galaxy in the rotating frame and satisfies the
Poisson equation

∇2Φ = 4πGρ, (2)

where G is the constant of gravity, and ρ stands for the density of matter.
A complete expression of the solution of the Poisson equation is long and complicated.

Harsoula et al. [10] took a simple solution of Equation (2) as the potential for the m = 2
mode of the galactic bar

Φ(r, φ) = Φ0(r) + Φ1(r) cos 2φ + Φ2(r) sin 2φ, (3)

where Φ0(r), Φ1(r) and Φ2(r) are functions of r. If Φ1(r) = Φ2(r) = 0, then the potential
Φ0(r) = Φ(r, φ) is axisymmetric and the angular momentum pφ is conserved. When
Φ1(r) 6= 0 or Φ2(r) 6= 0, the potential Φ(r, φ) is non-axisymmetric and the angular mo-
mentum pφ is not conserved. Namely, the second and third terms of Equation (3) act as an
m = 2 mode of the non-axisymmetric potential perturbation. The three potential functions
are given in Ref. [10] by

Φ0(r) = −
1
R

(
A00 +

1
4

A20 −
3
2

A22

)
, (4)

Φ1(r) = −
3

2R

(
1
2

A20 + A22

)
, (5)

Φ2(r) =
3

2R
A21, (6)

where R is a numerical constant for the description of the size of the system. The size
is regarded as the N-body code boundary corresponding to the solutions of the Poisson
equation matched with the solutions of the Laplace equation. The other notations such as
A00 are expanded in terms of the series of spherical Bessel functions j0 and j2 [34]:
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A00 =
n

∑
i=0

[Bi00 · j0(ξi0)], (7)

A20 =
n

∑
i=0

[Bi20 · j2(ξi2)], (8)

A21 =
n

∑
i=0

[Ci21 · j2(ξi2)], (9)

A22 =
n

∑
i=0

[Bi22 · j2(ξi2)]. (10)

In the above series of expansions of the potential, n represents the number of the radial
terms; that is, each of the functions, such as A00, in the potential has (n + 1) terms. In
addition, ξil = ailr/R. For l = 0, ai0 = (i + 1/2)π is the (i + 1)th root of the equation
j−1(ai0) = 0. For l = 2, ai2 is the solution of the equation tan(ai2) = ai2. The solution
ai2 should be restricted in the range (i− 1/2)π < ai2 < (i + 1/2)π and is solved by the
Newton iteration method.

The coefficients Bi00, Bi20, Ci21 and Bi22 in Equations (7)–(10) are obtained through the
N-body code on the positions of the N-body particles and Equation (2). They are different
for three types of galactic models, which are called models A, B and C in Ref. [10]. The
properties of the three models were described in the papers [8–10]. Here are some of them.
Firstly, the total angular momentum is larger in model B than in model A, but smaller
than in model C. This leads to decreasing the size of a rotating central bar formed by
density waves and increasing the density in the region of the bar along the sequence of
models A, B and C. Secondly, the pattern speed of the bar in each of the models becomes
smaller, whereas the corotation radius becomes larger at the end of a Hubble time. Thirdly,
the degree of chaos is enhanced by rotation, increasing the fraction of mass in chaotic
motion. Fourthly, mass in chaotic motion almost completely dominates the formation of
spiral arms. Fifthly, invariant manifolds of all unstable periodic orbits near and beyond
corotation support both the outer edge of the bar and the spiral arms. Harsoula provided
the coefficients in the three models to the first author of the present paper via private
communication. The coefficients with n = 19 are listed in Tables 1–3. The 20 coefficients
Bi00, the 20 coefficients Bi20 and the 40 coefficients Ci21, Bi22 (i = 0, · · · , 19) in each model
are associated with monopole terms, quadrupole terms and triaxial terms, respectively. In
practice, each group of the coefficients determines the potential Φ(r, φ). Different potentials
Φ(r, φ) correspond to different galactic models. Hereafter, the three models for n = 19,
respectively, correspond to models A19, B19 and C19. Similarly, models A9, B9 and C9 are
used when n = 9; models A4, B4 and C4 are also used when n = 4.

Table 1. Coefficients of the series (7)–(10) in Model A.

i 0 1 2 3 4 5 6 7 8 9

Bi00 250,670.00 214,640.00 175,380.00 146,580.00 126,550.00 112,500.00 102,250.00 93,269.00 84,659.00 76,738.00
Bi20 16,599.00 25,348.00 25,460.00 25,455.00 27,770.00 31,416.00 35,390.00 38,187.00 39,353.00 39,760.00
Ci21 616.35 1477.80 3093.20 4784.80 5723.80 5186.10 3564.00 1766.40 220.39 −632.86
Bi22 −5808.00 −9799.20 −11,023.00 −10,369.00 −8597.30 −6413.80 −4878.40 −4209.20 −3989.60 −3932.60

i 10 11 12 13 14 15 16 17 18 19

Bi00 69,503.00 62,789.00 56,553.00 50,735.00 45,419.00 40,595.00 36,128.00 31,941.00 27,988.00 24,271.00
Bi20 40,303.00 41,137.00 41,938.00 42,164.00 41,642.00 40,746.00 39,745.00 38,828.00 37,960.00 36,816.00
Ci21 −833.16 −816.34 −786.25 −741.98 −684.44 −601.88 −463.25 −324.97 −283.78 −344.23
Bi22 −3882.30 −3768.40 −3624.80 −3470.20 −3355.40 −3299.00 −3289.50 −3298.10 −3315.100 −3304.00
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Table 2. Coefficients of the series (7)–(10) in Model B.

i 0 1 2 3 4 5 6 7 8 9

Bi00 249,850.00 208,750.00 166,240.00 136,810.00 119,540.00 109,650.00 102,040.00 94,581.00 87,464.00 80,875.00
Bi20 19,761.00 30,778.00 32,613.00 28,562.00 24,516.00 25,984.00 30,721.00 34,872.00 37,154.00 38,234.00
Ci21 −674.22 −2590.80 −4227.30 −4246.90 −1974.70 118.46 87.73 −1623.40 −3752.10 −5087.90
Bi22 −6781.10 −10,962.00 −11,493.00 −9732.80 −7244.90 −5062.20 −3654.80 −2783.10 −2305.50 −2196.80

i 10 11 12 13 14 15 16 17 18 19

Bi00 74,509.00 68,185.00 61,997.00 56,146.00 50,708.00 45,630.00 40,856.00 36,367.00 32,180.00 28,326.00
Bi20 39,040.00 40,062.00 41,339.00 42,345.00 42,784.00 42,869.00 42,847.00 42,584.00 41,768.00 40,414.00
Ci21 −5447.70 −5355.50 −5293.10 −5374.40 −5514.50 −5533.80 −5337.50 −5081.30 −4882.80 −4719.30
Bi22 −2336.40 −2490.40 −2534.30 −2495.10 −2474.00 −2468.80 −2445.60 −2417.60 −2425.40 −2463.00

Table 3. Coefficients of the series (7)–(10) in Model C.

i 0 1 2 3 4 5 6 7 8 9

Bi00 249,390.00 205,340.00 159,420.00 129,900.00 114,510.00 106,340.00 100,510.00 95,098.00 89,366.00 83,133.00
Bi20 13,998.00 21,217.00 22,367.00 25,113.00 29,066.00 30,605.00 30,582.00 31,466.00 33,769.00 36,355.00
Ci21 89.08 1336.80 4085.00 5662.00 3913.40 969.22 −1143.70 −2174.50 −2900.50 −3381.60
Bi22 −8969.80 −14,504.00 −14,213.00 −10,170.00 −5852.70 −3207.10 −2049.70 −1654.10 −1631.90 −1714.40

i 10 11 12 13 14 15 16 17 18 19

Bi00 76,784.00 70,724.00 65,078.00 59,703.00 54,546.00 49,594.00 44,931.00 40,471.00 36,143.00 31,955.00
Bi20 38,644.00 40,349.00 41,348.00 42,023.00 42,823.00 43,574.00 43,919.00 43,850.00 43,519.00 42,874.00
Ci21 −3685.00 −3800.20 −3575.40 −3274.30 −3104.70 −2945.90 −2835.40 −2807.90 −2761.70 −2731.70
Bi22 −1706.80 −1606.50 −1571.10 −1578.70 −1567.60 −1505.90 −1508.40 −1617.50 −1786.00 −1900.20

The unit systems are those of Refs. [8,10]. The half mass radius Rh is used as a scaling
unit of length, i.e., rscal = r/Rh, where r stands for the real distance, and rscal is the scaling
radial distance. For convenience, the scaled radial distance is still written as r in the later
discussions. The half mass radius is Rh = 0.1006 for Model A, Rh = 0.0926 for Model B
and Rh = 0.1167 for Model C. The size of the system is R = 0.85. Here, one unit of length is
8 kpc. The unit of time is the half mass crossing time Thmct = [2R3

h/(GM)]1/2 = tHub/300,
where tHub represents a Hubble time. The pattern speeds of the rotating frame in the three
models A, B and C are taken as ΩA = 5886.65, ΩB = 6010.36 and ΩC = 6137.14, which
correspond to 20∼25 km s−1 kpc−1 in real units.

As is mentioned above, the second and third terms of Equation (3) destroy the axial-
symmetry of the system (1) such that the angular momentum pφ varies with time. Thus, no
additional constants of motion but the Hamiltonian H of Equation (1) exists. This implies
the nonintegrability of the system (1) with two degrees of freedom in a four-dimensional
phase space. A numerical method is a good tool for solving this nonintegrable problem.

3. A Choice of Numerical Integrator

A prior choice to an integrator for long-term integration of the Hamiltonian (1) is
naturally a symplectic method with the conservation of the Hamiltonian flow. Following
this idea, we consider the application of symplectic integration to this Hamiltonian problem.

3.1. Generalized Force-Gradient Symplectic Integrators

For convenience, we take p = (p1, p2) = (pr, pφ) and q = (q1, q2) = (r, φ). We rewrite
the Hamiltonian (1) as

H(p, q) = T(p, q1) + Φ(q), (11)

where the kinetic energy T is a function of the momenta p and coordinate r

T(p, q1) =
p2

r
2

+
p2

φ

2r2 −Ωpφ. (12)
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The lie derivative operators of T and Φ are defined as

A = {, T} =
2

∑
i=1

(
Tpi

∂

∂qi
− Tqi

∂

∂pi

)
= pr

∂

∂r
+

( pφ

r2 −Ω
) ∂

∂φ
+

p2
φ

r3
∂

∂pr
, (13)

B = {, Φ} = −∂Φ
∂r

∂

∂pr
− ∂Φ

∂φ

∂

∂pφ
, (14)

where the symbols {, } represent the Poisson brackets. Obviously, T and Φ can be exactly
analytically solvable, and A, B correspond to their solvers.

The solvers A and B can symmetrically compose a second-order symplectic leapfrog
integrator

M2 = e
τ
2AeτBe

τ
2A = eτ(A+B)− τ3

12 [B,[A,B]]+ τ3
24 [A,[B,A]], (15)

where τ is a time step, and two commutators are

C = [B, [A,B]] = [B,AB −BA] = 2BAB − BBA−ABB, (16)

D = [A, [B,A]] = 2ABA−AAB −BAA. (17)

In the second line of Equation (15), the first term τ(A+ B) corresponds to the numer-
ical solution of the Hamiltonian (1), and the second and third terms correspond to local
truncation errors of the numerical solution remaining at an order O(τ3). Because of such
local truncation errors, the algorithm M2 can give a second-order accuracy to the explicit
numerical solution. In terms of the solvers A and B, a fourth-order symplectic method of
Forest and Ruth [19] is established by

M4 = eατAeβτBe(
1
2−α)τAe(1−2β)τBe(

1
2−α)τAeβτBeατA, (18)

where β = 1/(2− 3
√

2) and α = β/2.
If r2 in the second term of Equation (12) is absent, A of Equation (13) is a position

operator that only acts on the position coordinates. C = 2BAB is similar to the momentum
operator B, which only acts on the momenta. In fact, C is an exact analytically solvable
operator corresponding to the force gradient of the gravitational potential. However, D is a
momentum and position mixed operator and is not an exact analytical solver. In view of
these facts, a composition of B and C appears in a class of explicit symplectic integrators,
called the force-gradient symplectic integration algorithms [16,21–24].

Now, r2 in the second term of Equation (12) remains. Although A of Equation (13)
is a momentum and position-mixed operator, it is still an exact analytical solver in this
case. Is C an exact analytical solver? We said yes as an answer to this question in our
previous work [32]. In fact, the answer can be given through the operators acting on
the momenta and positions in the second line of Equation (16). It is easy to check that
ABBqi = ABBpi ≡ 0, BABqi ≡ 0, BBAqi ≡ 0, and

BABpi =
2

∑
j=1

2

∑
k=1

Φqiqj Φqk Tpj pk , (19)

BBApi = −
2

∑
j=1

2

∑
k=1

Φqj Φqk Tqi pj pk , (20)

where Φqj = ∂Φ/∂qj, Φqk = ∂Φ/∂qk, and Φqiqj =
∂2Φ

∂qi∂qj
, Tpj pk = ∂2T

∂pj∂pk
, Tqi pj pk = ∂3T

∂qi∂pj∂pk
.

Clearly, C is also a momentum operator:
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C = 2BAB − BBA =
2

∑
i=1

2

∑
j=1

2

∑
k=1

(2Φqiqj Φqk Tpj pk + Φqj Φqk Tqi pj pk )
∂

∂pi
.

The momentum operator C of Equation (21) is no longer the force gradient of the
gravity potential but can be regarded as an extension of the force-gradient factor in
Refs. [16,21–24]. Without a doubt, it is an exact analytical solver similar to the momen-
tum operator B.

Symmetric composition methods of the three operators A, B and C can yield various
explicit symplectic algorithms. For instance, a five-stage fourth-order symplectic method,
including the operator C, was proposed by Chin [22] in the form

N4 = e
τ
2

(
1− 1√

3

)
Ae

τ
2

(
B+ τ2

24 (2−
√

3)C
)

e
τ√
3
Ae

τ
2

(
B+ τ2

24 (2−
√

3)C
)

e
τ
2

(
1− 1√

3

)
A.

Omelyan et al. [24] also constructed a seven-stage fourth-order optimized symplectic
algorithm with the inclusion of the operator C:

N4P = eθτAeλτ[B+(2ξ+χ)τ2C]e(1−2θ) τ
2Ae(1−2λ)τ[B+(2ξ+χ)τ2C]

×e(1−2θ) τ
2Aeλτ[B+(2ξ+χ)τ2C]eθτA, (21)

where the time coefficients are

θ = 0.1159953608486416× 100,

λ = 0.2825633404177051× 100,

χ = 0.3035236056708454× 10−2,

ξ = 0.1226088989536361× 10−2.

The concept of optimization is the time coefficients minimizing the norm of the leading
term of fifth-order truncation errors.

The construction mechanisms of the algorithms with the extended operator C were
discussed in the previous work [32]. In fact, the extended force-gradient algorithms acting
on the original system (1) are equivalent to the standard symplectic methods (such as
method M4 without the extended operator C) acting on the modified Hamiltonian systems.

3.2. Numerical Tests

Model A4 is used as a test model to evaluate the performance of the algorithms M4,
N4 and N4P. For comparison, an eighth- and ninth-order Runge–Kutta–Fehlberg integrator
(RKF8(9)) with adaptive step sizes is also employed. The time step is τ = 0.0005× Thmct =
0.0005× thub/300 = 0.0005/82.4/300 ≈ 2.0× 10−8 (s·Mpc/km) = 2.0× 10−5 (s·kpc/km)
≈ 2.0× 10−5 (9.5× 108 y) = 0.19× 105 y. In short, τ ≈ 2.0× 10−5 (s·kpc/km) is used in
our codes. The authors of Ref. [8] pointed out that the time step is a good choice because
the hysteresis between the bar of the potential and the bar of the real density of particles
during the time is minimal, and the cumulative effect of a numerical retarding torque in a
Hubble time is small.

The energy of the system (1) is E = H = −7 × 106. The initial conditions are
r = 0.164/Rh = 0.164/0.1006, φ = 1.89π, pr = 0. The initial momentum pφ > 0 is de-
termined by E = H. Figure 1a plots the relative energy errors |∆H/H0| = |(Et − E)/E| for
these several algorithms, where Et is the numerical energy at time t. Here, each algorithm
has 2.5× 108 steps, which correspond to time t ≈ 5056.63 (s·kpc/km). The three symplectic
methods, M4, N4 and N4P, show no secular growth in the energy errors. This is an inher-
ent advantage of these symplectic methods. Among the three symplectic integrators, the
standard fourth-order symplectic method M4 without the extended operator C performs
with the poorest accuracy, whereas the fourth-order optimized symplectic algorithm N4P



Symmetry 2023, 15, 63 8 of 17

with the extended force-gradient operator C exhibits the best accuracy. These numerical
results show that the inclusion of the extended force-gradient operator has an advantage
over the exclusion of the extended force-gradient operator in the accuracy. The optimized
method is also better than the corresponding non-optimized method. Unlike these sym-
plectic methods, the non-symplectic integrator RKF8(9) makes the energy error grow with
time. RKF8(9) is superior to N4P in the accuracy, but inferior to N4P in the computational
efficiency, as is shown in Table 4. Taking the solutions of RKF8(9) as reference solutions, we
obtain the relative position errors of the three symplectic algorithms, M4, N4 and N4P, in
Figure 1b. As a result, method M4 still has the largest position error, while method N4P
yields the smallest one. When many other values of the energy and initial conditions are
also used, they do not affect the numerical performances of these integrators. In fact, the
numerical performance of an integrator is independent of a choice of the parameters and
initial conditions [16–32]. In spite of this, it is necessary to choose bounded orbits to test the
integrator’s performance. Thus, an appropriate choice of parameters and initial conditions
is still necessary.
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-16

-14

-12

-10

-8

RKF8(9)

N4P

N4

lo
g 1

0
H
/H

0
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(a) M4
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g 1
0

r/r
0

log10(t)

(b)

M4

Figure 1. (a) The relative energy errors ∆H/H0 = (Et − E)/E for the standard fourth-order sym-
plectic method M4, the extended force-gradient fourth-order symplectic method N4, the optimized
extended force-gradient fourth-order symplectic method N4P and the non-symplectic integrator
RKF8(9) independently acting on Model A4. Et is the numerical energy of the system (1) at time t,
and the energy is E = −7× 106. The time step is τ = 0.0005× Thmct ≈ 2× 10−5 (s·kpc/km). The
initial conditions are r = 0.164/Rh = 0.164/0.1006, φ = 1.89π and pr = 0. The positive initial value
of pφ is determined by E = H. The three symplectic methods do not give secular drifts to the energy
errors, whereas the non-symplectic integrator RKF8(9) does. Regarding accuracy, M4 is the poorest
one among these symplectic integrators, while N4P is the best one. (b) The relative position error
∆r/r0 = (r− r0)/r0 between the radial separation r0 given by RKF8(9) and the radial separation r
given by one of the symplectic methods. The position error for N4 is smaller than for M4 but larger
than for N4P.

Because the fourth-order optimized symplectic algorithm N4P with the extended
force-gradient operator C has the best performance in the stabilization of energy errors, it is
used to study the dynamics of orbits.

Table 4. Relative energy errors, relative radial errors and CPU times for the algorithms in Figure 1.
Note that −12.2 denotes the error with an order of 10−12.2, and −2.1 means the error is an order of
10−2.1. In addition, 17’42” in CPU times means 17 min and 42 s.

Method RKF8(9) M4 N4 N4P

|∆H/E| −12.2 −8.6 −9.5 −11.0

|∆r/r0| / −2.1 −2.9 −3.4

Time 17′42′′ 4′30′′ 5′43′′ 6′′57′′
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4. Regular and Chaotic Dynamics

The authors of Ref. [10] applied the Moser theory of invariant manifolds to the chaotic
spiral arms. The invariant manifolds starting at the Lagrangian points L1, L2, or unstable
periodic orbits around L1 and L2 are described in terms of series. The convergence of
the series is an analytical means for studying chaotic orbits with initial conditions in the
neighborhood of the invariant manifolds of the unstable point L1 or L2. A domain of
the convergence of the series around every Lagrangian point is a Moser domain. The
intersection of the orbits inside the Moser domain with an apocentric section produces
the spiral structure of this domain. The chaotic orbits with initial conditions near but
in the exterior of the boundary of the Moser domain of convergence become chaotic
attractors. Such chaotic orbits are also identified by the techniques of Poincaré sections
and fast Lyapunov indicators (FLIs) [33]. The method of Poincaré sections, which shows
intersections of the particles’ trajectories with the surface of section in phase space, can
clearly describe the phase space structure of a conservative four-dimensional system. One or
several isolated points on the Poincaré sections correspond to periodic orbits. Kolmogorov–
Arnold–Moser (KAM) tori on the Poincaré sections correspond to regular quasi-periodic
orbits. If there are many plotted points that are distributed randomly in an area, the motion
is chaotic. In a word, the distribution of the points in the Poincaré map can show whether
or not the motion is chaotic. For ordered and chaotic orbits, the length of a deviation
vector increases at completely different time rates. The FLI uses completely different time
rates to distinguish between the ordered and chaotic cases. The Moser theory of invariant
manifolds, which allows for the study of chaotic orbits, requires that the series describing
the Hamiltonian dynamics near an unstable equilibrium point or an unstable periodic
orbit be convergent. It may not work well for the non-convergent Birkhoff normal form
series around stable invariant points or stable periodic orbits. The techniques of Poincaré
sections and FLIs for finding chaos do not have this restriction. Clearly, they can detect
chaotic orbits in larger regions compared with the Moser theory of invariant manifolds.
Here, we employ the techniques of Poincaré sections and FLIs to investigate the dynamical
behavior of the three types of bar spiral galaxy models A, B and C. The considered orbits
are not restricted to those around the unstable Lagrangian points L1 and L2. We are mainly
interested in comparing the differences in the dynamical behavior among these types of
models. The effect of the number (n + 1) of the radial terms in the series expansions of the
potential on the dynamical behavior in each set of models is also considered.

4.1. Models A4, A9 and A19

The parameters and initial conditions are those of Figure 1, but the initial values of
r and pφ are different. Model A4 exhibits different phase space structures in two ranges
of the initial separations r, as is shown through Poincaré sections at the plane φ = π/2
with pφ > 0 in Figure 2a,b. The three orbits in Figure 2a are KAM tori, which correspond
to the regularity of the orbits. One orbit with the initial separation r = 4.430/0.1006 and
another orbit with the initial separation r = 4.424/0.1006 in Figure 2b seem to have no
explicit difference from the phase space structures on the section, but they exhibit different
regular and chaotic dynamical features, which can be identified clearly by means of the
technique of FLI in Figure 2c. The FLI is that with two nearby orbits defined in Ref. [35]:

FLI = log10
d(t)
d(0)

, (22)

where d(0) and d(t) are the distances between two nearby orbits at time 0 and t, respectively.
The orbit with the initial separation r = 4.430/0.1006 corresponds to the FLI increasing in a
power law with time log10 t and is regular. However, the orbit with the initial separation
r = 4.424/0.1006 has the FLI increasing in an exponential law with time and should be
chaotic. After 5× 104 integration steps, the FLIs with completely different increasing laws
with time are sensitive to distinguishing the two cases of order and chaos.
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Figure 2. (a,b): Phase space structures of Model A4 on the Poincaré section at the plane φ = π/2 with
pφ > 0. The dynamical structures of ordered and chaotic orbits have different spatial distributions
along the radial distance r. The parameters and the initial conditions (except r and pφ) are those of
Figure 1. The structures are considered in the range of 10 < r < 12.4 (a) and 43.5 < r < 46.5 (b).
(c): FLIs of the two orbits in panel (b). The FLIs show the regularity of the orbit for r = 4.430/0.1006
and the chaoticity of the orbit for r = 4.424/0.1006.

The phase space structures for Model A9 in Figure 3a are somewhat unlike those
for Model A4 in Figure 2. When the initial separation r is given in a small range of
1.45 < r < 1.7 for Model A4, the orbits are regular KAM tori (not plotted). However, the
orbit with the initial separation r = 0.153/0.1006 in Model A9 has several hyperbolic points.
Its chaoticity is confirmed by the FLI of Figure 3c. There are no chaotic orbits in a range of
10 < r < 12.3 for Model A4 in Figure 2a, but there are two chaotic orbits with the initial
separations r = 1.210/0.1006 and r = 1.235/0.1006 in the range of 10 < r < 12.3 for Model
A9 in Figure 2b,c.
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Figure 3. (a,b): Phase space structures of Model A9 on the Poincaré section. The structures are
considered in the ranges of 1.5 < r < 1.7 (a) and 10 < r < 12.4 (b). The initial conditions in Figure 3b
are the same as those in Figure 2a. However, the orbits for r = 1.210/0.1006 and r = 1.235/0.1006 are
chaotic, whereas the orbit for r = 1.200/0.1006 is regular. (c): FLIs of several orbits in panels (a,b).
The FLIs show the regularity of the orbit for r = 1.200/0.1006 and the chaoticity of the three orbits for
r = 0.153/0.1006, r = 1.210/0.1006 and r = 1.235/0.1006.

When Model A19 is considered in Figure 4a, an orbit with the initial separation
r = 0.163/0.1006 is a regular KAM torus. Another orbit with the initial separation
r = 0.154/0.1006 consists of many islands and therefore is still regular. However, the
third orbit with the initial separation r = 0.160/0.1006 is chaotic because it has many
discrete points which are randomly filled with an area. The degree of chaos seems to
be strengthened in the small range of 1.45 < r < 1.7 from A4 to A9 and to A19. Chaos
in the range of 10 < r < 12.5 seems to be stronger for A19 in Figure 4b than for A9 in
Figure 3b. When the initial separation r spans from 20 to 23 in Figure 2c, a lot of regu-
lar KAM torus orbits exist in the interior of the ordered orbit with the initial separation
r = 2.230/0.1006. There is a small chaotic region between the two orbits of the initial
separations r = 2.230/0.1006 and r = 2.290/0.1006. The regularity of the orbit with the
initial separation r = 2.230/0.1006 and the chaoticity of the orbit with the initial separation
r = 2.290/0.1006 can be identified clearly by means of the technique of FLIs in Figure 4d.
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Figure 4. (a–c): Phase space structures of Model A19 on the Poincaré section. (a): The structures
are considered in the range of 1.45 < r < 1.7. The orbit for r = 0.163/0.1006 is an ordered KAM
torus, and the orbit for r = 0.154/0.1006 with many islands is still regular. However, the orbit for
r = 0.160/0.1006 is chaotic. (b): The structures are considered in the range of 10 < r < 12.4. The
initial conditions in Figure 4b are the same as those in Figure 2a. (c): The structures are considered
in the range of 20 < r < 23. There are a number of regular KAM torus orbits in the interior of the
ordered orbit for r = 2.230/0.1006. A small chaotic region between the two orbits for r = 2.230/0.1006
and r = 2.290/0.1006 exists. (d): Fast Lyapunov indicators (FLIs) of the two orbits in panel (c). The
orbit for r = 2.230/0.1006, having a power law increase in the FLI with time log10 t, is ordered, but
the orbit for r = 2.290/0.1006, having an exponential law increase in the FLI with time, is chaotic.
The FLIs are calculated until the number of integration steps reaches 5× 104.

As seen from Figures 2–4, the number and degree of chaotic orbits seem to increase as
the number of the radial terms n becomes larger. This result is clearly shown in Figure 5,
which lists the dependence of FLI on the initial separation r in Models A4, A9 and A19. In
other words, Figure 5 shows that a distribution of the phase space structures of regular
and chaotic orbits for each model depends on a range of the initial separation r. Each
of the FLIs is obtained after 5× 104 integration steps. Seven is a critical value of the FLI
between the ordered and chaotic two cases. The FLIs not more than seven indicate the
regularity of bounded orbits, whereas those larger than seven correspond to the chaoticity
of the bounded orbits. The result of an increase in n increasing the number and degree
of chaotic orbits is based on n corresponding to the number of the radial terms in the
series expansions of the potential. An increase in n means and increases in the number of
radial terms. Equivalently, the nonlinear gravitational interaction effects in the potential
are enhanced.
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Figure 5. The dependence of FLI on the initial separation r in Models (a) A4, (b) A9 and (c) A19. Each
of the FLIs is obtained after 5× 104 integration steps. The FLIs not more than 7 show the regularity
of bounded orbits, whereas those larger than 7 indicate the chaoticity of the bounded orbits. Many
values of r correspond to chaos in Model A19, but only minor values of r do in Model A4. It is clear
that chaos becomes easier, and its degree is enhanced as the radial term number n increases.

4.2. Models B4, B9 and B19

Figure 6 describes the phase space structures of Model B4 in two ranges of the initial
separations r. There is a weak chaotic orbit with the initial separation r = 0.750/0.0926
in the range of 7.2 < r < 8.2 in Figure 6a. The two orbits in the range of 10.0 < r < 12.2
are regular KAM tori in Figure 6b. However, chaos occurs for the initial separation
r = 3.746/0.0926 in the range of 40.25 < r < 43 in Figure 4c. The dynamical features
of the chaotic orbit in panel (a) and the two orbits in panel (c) are also shown in Figure 6d.
The phase space structures of Model B4 in Figure 6b,c are similar to those of Model A4 in
Figure 2a,b.

The phase space structures of Model B9 in Figure 7a,b also look like those of Model A9
in Figure 3a,b. The initial separations r = 0.157/0.0926 and r = 0.139/0.0926 correspond
to two regular orbits consisting of three loops in Figure 7a. Chaos is present for r =
0.141/0.0926 in Figure 7a and r = 1.128/0.0926 in Figure 7b, as the FLIs of Figure 7c show.

Model B19 seems to have stronger chaos in the ranges of 1.425 < r < 1.7 and
10 < r < 12.25 in Figure 8a,b than Model B9 in Figure 7a,b. For the initial separation
r belonging to the range of 1.425 < r < 1.7, the orbital dynamical behavior for Model B19
in Figure 8a is greatly different from that for Model A19 in Figure 4a. However, the phase
space structures of Model B19 in Figure 8b,c also resemble those of Model A19 in Figure 4b,c.
The FLIs of Figure 8d support the chaoticity of the two orbits for r = 2.368/0.0926 and
r = 2.420/0.0926 in Figure 8c.

The relation between the FLI and the initial separation r in Figure 9 clearly shows that
the number and degree of chaotic orbits in the B models increase with an increase in n.

7.2 7.4 7.6 7.8 8.0 8.2
-60

-30

0

30

60

 r=0.748/0.0926

 r=0.750/0.0926
 r=0.755/0.0926

p r

r

(a)

10.0 10.5 11.0 11.5 12.0 12.5

-200

-100

0

100

200

 r=1.120/0.0926
 r=1.128/0.0926p r

r

(b)

Figure 6. Cont.
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Figure 6. Similar to Figure 2 but Model B4 is considered. (a): The structures are considered in the
range of 7.2 < r < 8.2. (b): The structures are considered in the range of 12.0 < r < 12.2. (c): The
structures are considered in the range of 40 < r < 43 and resemble those in Figure 2b. (d): The FLIs
show the chaoticity of the two orbits in panels (a,c) and the regularity of the orbit in panel (c).
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Figure 7. Similar to Figure 3 but Model B9 is considered. The phase space structures in panels (a,b),
respectively, look like those in Figure 3a,b. The initial conditions in Figure 7b are the same as those
in Figure 6b. The orbit for r = 1.128/0.0926 is chaotic, but the orbit for r = 1.120/0.0926 is regular.
(c): The FLIs show the chaoticity of the two orbits in panels (a,b) and the regularity of the orbit in
panel (b).
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Figure 8. Similar to Figure 4 but Model B19 is considered. The phase space structures in panel (a) are
somewhat different from those in Figure 4a, but these structures in panels (b,c), respectively, resemble
those in Figure 2b,c. The initial conditions in Figure 8b are the same as those in Figure 6b. (d): The
FLIs show the chaoticity of the two orbits in panel (c) and the regularity of the orbit in panel (c).
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Figure 9. Similar to Figure 5, but the A models are replaced with B models. The degree of chaos
becomes stronger with an increase in the radial term number n. (a–c) of Figure 9 correspond to the
FLIs for models B4, B9 and B19, respectively

4.3. Models C4, C9 and C19

As far as the C models are concerned, chaos seems to become stronger in the range of
3.5 < r < 5.1 from n = 4 in Figure 10a to n = 9 in Figure 10c and n = 19 in Figure 10e. The
result is also suitable for the range of 10 < r < 12.2 in Figure 10b,d,f. The relation between
the FLI and the initial separation r in Figure 11 supports that chaos becomes stronger with
an increase in n.
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Figure 10. (a,b): Phase space structures of Model C4 on the Poincaré section. The structures are
considered in the ranges of 3.5 < r < 5.1 and 11.9 < r < 12.2. (c,d): Phase space structures of Model
C9 on the Poincaré section. (e,f): Phase space structures of Model C19 on the Poincaré section.
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Figure 11. Similar to Figure 5 but Model A are replaced with Model C. The degree of chaos increases
with the radial term number n increasing. (a–c) of Figure 11 correspond to the FLIs for models C4, C9
and C19, respectively.

Several points can be concluded from the above demonstrations. The three types
of models, A, B and C, have the same expressions but have differences in the pattern
speeds Ω and the coefficients Bi00, Bi20, Ci21 and Bi22. The three models have similar
dynamical behaviors when they have the same radial term number n, energy E and initial
conditions. The dynamical structures of ordered and chaotic orbits in each model have
different distributions along the radial direction. When the radial term number n increases,
the gravity effects are enhanced. This leads to strengthening the degree of chaos. It is worth
noting that the main structures of the spiral arms in models A, B and C are formed at radial
distances between 3 and 5 scaled radii, as is shown in Refs. [8,10]. Some ranges of the
scaled radial distances, such as the range of the scaled radial distances from 40 to 43, seem
to be very far from the main structures of the spiral arms. These results show that chaos
can occur at the radial distances close to the main structures of the spiral arms and those far
from the main structures of the spiral arms. In addition, the chaotic orbits we find are not
restricted to the regions near the unstable equilibrium points L1 and L2. Thus, the energies
selected in this paper are unlike those of [8–10].

5. Conclusions

This paper mainly focuses on three classes of models of rotating galaxies in the polar
coordinates in the rotating frame. They are models A, B and C, which have the same
expressions but have different pattern speeds Ω and different coefficients Bi00, Bi20, Ci21
and Bi22. When the potentials with large deviations from axial symmetry are included
in these models, the angular momentum pφ is not a constant of motion. In this case, the
kinetic energy is a function of the momenta and spatial coordinate.

The existing explicit force-gradient symplectic integrators [21–24] do not work for the
present Hamiltonian problems. However, our extended force-gradient symplectic methods
in the previous work [32] are still available. Numerical tests show that the fourth-order
symmetric symplectic method without the extended force-gradient operator performs
poorer accuracy than that with the extended force-gradient operator. In particular, the
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optimized extended force-gradient symplectic method is superior to the corresponding
non-optimized one in accuracy.

The fourth-order-optimized symplectic algorithm with the extended force-gradient
operator is applied to survey the dynamical features of regular and chaotic orbits in
these rotating galaxy models. It is shown through the techniques of Poincaré sections
and fast Lyapunov indicators that an increase in the radial term number of the potential
strengthens the gravity effects and the degree of chaos. The three types of models have
similar dynamical structures for the same radial term number, energy and initial conditions.
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