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Abstract: In this paper, we consider the existence and multiplicity of nontrivial solutions for dis-
crete elliptic Dirichlet problems ∆2

1u(i− 1, j) + ∆2
2u(i, j− 1) = − f ((i, j), u(i, j)), (i, j) ∈ Ω, u(i, 0) =

u(i, T2 + 1) = 0 i ∈ Z(1, T1), u(0, j) = u(T1 + 1, j) = 0 j ∈ Z(1, T2), which have a symmetric structure.
When the nonlinearity f (·, u) is resonant at both zero and infinity, we construct a variational func-
tional on a suitable function space and turn the problem of finding nontrivial solutions of discrete
elliptic Dirichlet problems to seeking nontrivial critical points of the corresponding functional. We
establish a series of results based on the existence of one, two or five nontrivial solutions under
reasonable assumptions. Our results depend on the Morse theory and local linking.

Keywords: partial difference equation; local linking; Morse theory; nontrivial solution

1. Introduction

Let N and Z denote sets of all natural numbers and integers, respectively. For integers
s, t with s ≤ t, denote the discrete interval Z(s, t) := {s, s + 1, · · · , t}. Given integers T1,
T2 ≥ 2, write Ω := Z(1, T1) × Z(1, T2), We are interested in the existence of nontrivial
solutions for the following nonlinear second-order partial difference equation

∆2
1u(i− 1, j) + ∆2

2u(i, j− 1) = − f ((i, j), u(i, j)), (i, j) ∈ Ω, (1)

subject to Dirichlet boundary conditions

u(i, 0) = u(i, T2 + 1) = 0 i ∈ Z(1, T1), u(0, j) = u(T1 + 1, j) = 0 j ∈ Z(1, T2), (2)

where ∆ is the forward difference operator and ∆1u(i, j) = u(i + 1, j)− u(i, j), ∆2u(i, j) =
u(i, j + 1)− u(i, j), ∆2u(i, j) = ∆(∆u(i, j)). f ((i, j), ·) ∈ C1(Ω×R,R) satisfies f ((i, j), 0) =
0. Obviously, u = 0 is a trivial solution to Problems (1) and (2). Meanwhile, we are
interested in nontrivial solutions to Problems (1) and (2).

During the past decades, difference equations have been used extensively in various
fields, for example, refs. [1,2] apply difference equations to establish some epidemic models.
At the same time, many rich results have been obtained, here mention a few, refs. [3–7] give
results on periodical solutions, sign-changing solutions, positive solutions and heteroclinic
solutions for difference equations. With the rapid development of modern technology,
partial difference equations, which involve two or more variables, have been widely applied
in quantum mechanics, image processing, life sciences and other fields [8]. As a result,
many scholars have turned their attention to studying partial difference equations and
have achieved excellent results for these equations as well. For example, refs. [9–12]
presented results on the existence and multiplicity of nontrivial solutions for second-order
partial difference equations and [13–15] studied discrete Kirchhoff type problems via critical
point theory.
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Equation (1), a nonlinear second-order partial difference equation, with the addition
of the Dirichlet boundary conditions of Equation (2), can be regarded as the discrete
analogue of {

− ∆u = f (u), in Ω,

u = 0, on ∂Ω,
(3)

which has a long history of study and has captured extensive research interests. Among
various techniques applied in the numerous obtained results, we find that the Morse theory
is a powerful instrument to deal with the problem of the existence of solutions for both
differential equations and difference equations. For example, refs. [16–18] established
multiple existence results by using the Morse theory for Equation (3). Additionally, via
the Morse theory, refs. [19] produced results based on three nontrivial solutions and [20]
obtained four nontrivial solutions to Problems (1) and (2).

As it is well-known, Equation (1) is regarded as a discretization of Equation (3). It not
only assists in the numerical simulation of Equation (3), but also has wide applications [8].
Consequently, it is a meaningful job to study Problems (1) and (2) to establish results based
on the existence of one, two or five nontrivial solutions via the Morse theory.

We organize this paper as follows: we establish the variational functional of Problem (1)
and (2) and display preliminaries in Section 2. Our main results and their corresponding
proofs are provided in Section 3. Finally, we give a conclusion in Section 4.

2. Variational Structure and Some Auxiliary Results

Let E be a T1T2-dimensional Euclidean space equipped with the usual inner product
(·, ·) and norm | · |. Denote

S ={u : Z(0, T1 + 1)×Z(0, T2 + 1)→ R such that u(i, 0) = u(i, T2 + 1) = 0,

i ∈ Z(0, T1 + 1) and u(0, j) = u(T1 + 1, j) = 0, j ∈ Z(0, T2 + 1)}.

Define the inner product 〈·, ·〉 on S as

〈u, v〉 =
T1+1

∑
i=1

T2

∑
j=1

∆1u(i− 1, j)∆1v(i− 1, j) +
T1

∑
i=1

T2+1

∑
j=1

∆2u(i, j− 1)∆2v(i, j− 1), ∀u, v ∈ S.

Then, as [19] or [20], the induced norm ‖ · ‖ is

‖u‖ =
√
〈u, u〉 =

(
T1+1

∑
i=1

T2

∑
j=1
|∆1u(i− 1, j)|2 +

T1

∑
i=1

T2+1

∑
j=1
|∆2u(i, j− 1)|2

) 1
2

, ∀u ∈ S.

Thus, S is a Hilbert space and isomorphic to E. Here and hereafter, we take u ∈ S as an
extension of u ∈ E when necessary.

Consider the functional J : S→ R expressed in the following form as

J(u) =
1
2

T1+1

∑
i=1

T2

∑
j=1
|∆1u(i− 1, j)|2 + 1

2

T1

∑
i=1

T2+1

∑
j=1
|∆2u(i, j− 1)|2 −

T1

∑
i=1

T2

∑
j=1

F((i, j), u(i, j))

=
1
2
‖u‖2 −

T1

∑
i=1

T2

∑
j=1

F((i, j), u(i, j)), ∀u ∈ S,

(4)

where F((i, j), u) =
∫ u

0 f ((i, j), τ)dτ for each (i, j) ∈ Ω. Note that f ((i, j), u) is continuously
differentiable with respect to u. It is clear that J ∈ C2(S,R) and solutions to Problems (1)
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and (2) are precisely critical points of J(u). Moreover, for any u, v ∈ S, when using Dirichlet
boundary conditions, a direct computation shows that the Fréchet derivative of J is

〈J′(u), v〉 =
T1+1

∑
i=1

T2

∑
j=1

∆1u(i− 1, j)∆1v(i− 1, j) +
T1

∑
i=1

T2+1

∑
j=1

∆2u(i, j− 1)∆2v(i, j− 1)

−
T1

∑
i=1

T2

∑
j=1

f ((i, j), u(i, j))v(i, j)

=−
T1

∑
i=1

T2

∑
j=1
{∆2

1u(i− 1, j) + ∆2
2u(i, j− 1) + f ((i, j), u(i, j))}v(i, j).

(5)

Let the discrete Laplacian be denoted by Ξ, where Ξu(i, j) = ∆2
1u(i− 1, j) +∆2

2u(i, j− 1).
Given a T1T2 × T1T2 matrix D as

D =



L −IT1 0 0 · · · 0 0 0 0
−IT1 L −IT1 0 · · · 0 0 0 0

0 −IT1 L −IT1 · · · 0 0 0 0
0 0 −IT1 L · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · L −IT1 0 0
0 0 0 0 · · · −IT1 L −IT1 0
0 0 0 0 · · · 0 −IT1 L −IT1

0 0 0 0 · · · 0 0 −IT1 L


T1T2×T1T2,

where IT1 is a T1 × T1 identity matrix and

L =



4 −1 0 · · · 0 0 0
−1 4 −1 · · · 0 0 0
0 −1 4 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 4 −1 0
0 0 0 · · · −1 4 0
0 0 0 · · · 0 −1 4


T1×T2.

The eigenvalues of matrix D are the same as the Dirichlet eigenvalues of −Ξ on
Ω. According to [10,13], D is a positive definite symmetric matrix and −Ξ is invertible
and distinct. The Dirichlet eigenvalues of −Ξ on Ω can be rearranged in the form of
0 < λ1 < λ2 ≤ · · · ≤ λT1T2 . Let φk = (φk(1), φk(2), · · · , φk(T1T2))

tr, k ∈ [1, T1T2] be an
eigenvector corresponding to the eigenvalue λk, which yields

S = W− ⊕W0 ⊕W+,

where W− = span{φ1, · · · , φk−1}, W0 = span{φk} and W+ = (W− ⊕W0)⊥.
For later use, we define another norm of Euclidean space E as

‖u‖2 =

(
T1

∑
i=1

T2

∑
j=1
|u(i, j)|2

) 1
2

, u ∈ E.

Then, for any u ∈ S, it holds that

λ1‖u‖2
2 ≤ ‖u‖2 ≤ λT1T2‖u‖

2
2. (6)
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Particularly,

λk+1‖u‖2
2 ≤ ‖u‖2 ≤ λT1T2‖u‖

2
2, u ∈W+,

λ1‖u‖2
2 ≤ ‖u‖2 ≤ λk−1‖u‖2

2, u ∈W−.
(7)

In the following paragraphs, we state some collected results which will be used later
in this paper.

We can say that the functional J satisfies the Palais–Smale condition (PS) if any se-
quence {un} ⊆ S, satisfying |J(un)| ≤ M, J′(un) → 0 as n → ∞, has a convergent
subsequence [21]. Notice that if (PS) is satisfied, then the weaker Cerami condition (C) is
satisfied. Moreover, the deformation condition (D) is also satisfied [21,22].

Now, we recall some basic results based on the Morse theory and we can refer to [17,23–25]
for more detail.

Definition 1. Based on [23,24], denote U be a neighborhood of u0 and u0 is an isolated critical
group of J with J(u0) = c ∈ R. Then, the group

Cq(J, u0) := Hq(Jc ∩U, Jc ∩U\u0), q ∈ Z,

is called the q-th critical group of J at u0. Let κ = {u ∈ S|J′(u) = 0}. For all a ∈ R, each critical
point of J is greater than a and J ∈ C2(S,R) satisfies (D). Then, the group

Cq(J, ∞) := Hq(S, Ja), q ∈ Z,

is called the q-th critical group of J at infinity.

To obtain some nontrivial critical points, we need the following auxiliary propositions.

Proposition 1. Based on [23,24], let S be a Hilbert space, J ∈ C2(S,R). Suppose that u0 is the
isolated critical point of J with a limited Morse index µ(u0) and zero nullity ν(u0). Moreover,
J′′(u0) is a Fredholm operator. If u0 is a local minimizer of J, then

Cq(J, u0) ∼= δq,0Z, q ∈ Z.

Proposition 2. Based on [17], let J ∈ C2(S,R) satisfy (D). There hold
(Q1) J possesses a critical point u such that Cq(J, u) � 0 if Cq(J, ∞) � 0 for some q;
(Q2) J admits a non-zero critical point if 0 is the isolated critical point of J and Cq(J, ∞) �
Cq(J, 0) for some q.

To compute the critical group at infinity and 0, Propositions 3 and 4, respectively, are
necessary.

Proposition 3. Based on [25,26], assume S = W−∞ ⊕ (W−∞ )⊥. Let J be bounded from below by
(W−∞ )⊥ and J(u)→ −∞ as ‖u‖ → ∞ with u ∈W−∞ . Then,

Ck(J, ∞) � 0, k = dim W−∞ < ∞.

Proposition 4. Based on [16], let 0 be an isolated critical point of J with a Morse index µ0 and
zero nullity ν0. If J has a local linking at the 0 subject to S = W−0 ⊕W+

0 , m = dim W−0 < ∞; that
is, there exists ρ > 0 such that

J(u) ≤ 0, u ∈W−0 , ‖u‖ ≤ ρ,

J(u) ≥ 0, u ∈W+
0 , ‖u‖ ≤ ρ.

Then
Cq(J, 0) ∼= δq,mZ, q ∈ Z
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if m = µ0 or m = µ0 + ν0.

In our detailed proofs, the following Mountain Pass Lemma is also needed.

Proposition 5. Based on [24], let S be a real Banach space and J ∈ C1(S,R) satisfy (PS). Further,
if J(0) = 0 and
(Q3) there exists constants ρ, a > 0 such that J|∂Bρ

≥ a;
(Q4) there exists e ∈ S\Bρ such that J(e) ≤ 0.
Then, J possesses a critical value c ≥ a given by

c = inf
h∈Γ

sup
u∈[0,1]

J(h(u)),

where
Γ = {h ∈ C([0, 1], S)|h(0) = 0, h(1) = e}.

3. Main Results and Proofs

In this section, we state our main results and present the associated proofs at length.
Denote

λm = lim
|u|→0

f ((i, j), u)
u

, ∀(i, j) ∈ Ω, (8)

λk = lim
|u|→∞

f ((i, j), u)
u

, ∀(i, j) ∈ Ω, (9)

and
g((i, j), u) = f ((i, j), u)− λku, g0((i, j), u) = f ((i, j), u)− λmu,

where G((i, j), u) =
∫ u

0 g((i, j), τ)dτ, G0((i, j), u) =
∫ u

0 g0((i, j), τ)dτ. For any (i, j) ∈ Ω,
assume that:
(I±0 ) there exists some δ > 0 such that ±G0((i, j), u) ≥ 0 as |u(i, j)| ≤ δ;
(I1) there exists u1 > 0 and u2 < 0 such that f ((i, j), u1) = f ((i, j), u2) = 0;
(I2) there exists constants A, B > 0 and 0 < r < 1 such that |g((i, j), u)| ≤ A|u(i, j)|r + B;

(I3) lim inf
‖v‖→∞,v∈W0

1
‖v‖2r

T1
∑

i=1

T2
∑

j=1
G((i, j), u) ≥ 4β2

α ;

(I4) lim sup
‖v‖→∞,v∈W0

1
‖v‖2r

T1
∑

i=1

T2
∑

j=1
G((i, j), u) ≤ − 4β2

α ,

where α = min{1− λk
λk+1

, λk
λk−1
− 1} and β = A(T1T2)

1−r
2 λ
− 1+r

2
1 .

Our main results are as follows:

Theorem 1. Let (I1) and (I2) hold. Then, Problems (1) and (2) possess at least five nontrivial
solutions if one of the following conditions is fulfilled:
(1) (I3), (I+0 ), k, m ≥ 2 and k 6= m;
(2) (I3), (I−0 ), k ≥ 2, m > 2 and k 6= m− 1;
(3) (I4), (I+0 ), k > 2, m ≥ 2 and k 6= m− 1;
(4) (I4), (I−0 ), k, m > 2 and k 6= m.

Theorem 2. Suppose (I1), (I2) and (I3)[(I4)] are satisfied. Moreover, if one of the following
conditions is met:
(1) (I+0 ) with m 6= k[m 6= k− 1]; (2) (I−0 ) with m 6= k + 1[m 6= k].
Then, Problems (1) and (2) have at least one nontrivial solution.

Theorem 3. Assume (I1), (I2) and (I4)[(I3)] are true. Further, if k = 1 and either:
(1) (I+0 ) with m ≥ 1[m > 1]; or (2) (I−0 ) with m > 1[m 6= 2].
Then, Problems (1) and (2) have at least two nontrivial solutions.
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According to the propositions given in Section 2, (PS) is necessary. Therefore, first,
we must verify that J satisfies (PS) at length.

Lemma 1. If J satisfies (I2), (I3) or (I4), then J satisfies (PS).

Proof. Suppose that {un} ⊆ S and there exists a constant M > 0 such that

|J(un)| ≤ M, J′(un)→ 0, as n→ ∞.

Since S is a T1T2-dimensional Hilbert space, it suffices to show that {un} is bounded.
Otherwise, we can assume that ‖un‖ → ∞ as n → ∞. Recall the expression of J; for any
(i, j) ∈ Ω, we have

〈J′(un), ϕ〉 = 〈un, ϕ〉 − λk

T1

∑
i=1

T2

∑
j=1

(un(i, j), ϕ(i, j))−
T1

∑
i=1

T2

∑
j=1

(g((i, j), un(i, j)), ϕ(i, j)).

Set ϕ = w+
n ∈W+, based on (I2), which yields

α‖w+
n ‖2 ≤

(
1− λk

λk+1

)
‖w+

n ‖2 ≤ ‖w+
n ‖2 − λk‖w+

n ‖2
2

=
T1

∑
i=1

T2

∑
j=1

(g((i, j), un(i, j)), w+
n (i, j)) + 〈J′(un), w+

n 〉

≤‖w+
n ‖+

T1

∑
i=1

T2

∑
j=1

(A|un(i, j)|r + B)|w+
n (i, j)|

≤‖w+
n ‖+ B

√
T1T2‖w+

n ‖2 + A‖w+
n ‖2‖un‖r

2r

≤
(

1 +
B
√

T1T2√
λk+1

)
‖w+

n ‖+ A(T1T2)
1−r

2 ‖un‖r
2‖w+

n ‖2

≤c1‖w+
n ‖+ β‖un‖r‖w+

n ‖,

(10)

where c1 := 1 + B
√

T1T2√
λk+1

. Thus,

‖w+
n ‖2 ≤ c1

α
‖w+

n ‖+
β

α
‖w+

n ‖‖un‖r.

Further,

‖w+
n ‖ ≤

c1

α
+

β

α
‖un‖r,

which implies that
‖w+

n ‖
‖un‖

→ 0, as n→ ∞. (11)

Together with Equation (10), we have

‖w+
n ‖2 − λk‖w+

n ‖2
2 ≤c1

(
c1

α
+

β

α
‖un‖r

)
+ β‖un‖r

(
c1

α
+

β

α
‖un‖r

)
=

c2
1

α
+

2c1β

α
‖un‖r +

β2

α
‖un‖2r.

(12)

Take ϕ = w−n ∈W−, which is similar to Equation (10), to obtain
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−α‖w−n ‖2 ≥
(

1− λk
λk−1

)
‖w−n ‖2 ≥ ‖w−n ‖2 − λk‖w−n ‖2

2

=
T1

∑
i=1

T2

∑
j=1

(g((i, j), un(i, j)), w−n (i, j)) + 〈J′(un), w−n 〉

≥ − ‖w−n ‖ − B
√

T1T2‖w−n ‖2 − A‖w−n ‖2‖un‖r
2r ≥ −c2‖w−n ‖ − β‖w−n ‖‖un‖r,

(13)

where c2 := 1 + B
√

T1T2√
λ1

. Then,

α‖w−n ‖2 ≤ c2‖w−n ‖+ β‖w−n ‖‖un‖r,

which means that ‖w−n ‖ ≤ c2
α + β

α ‖un‖r, that is,

‖w−n ‖
‖un‖

→ 0, as n→ ∞. (14)

Furthermore,

‖w−n ‖2 − λk‖w−n ‖2
2 ≤− α‖w−n ‖2 ≤ α‖w−n ‖2

≤c2

(
c2

α
+

β

α
‖un‖r

)
+ β‖un‖r

(
c2

α
+

β

α
‖un‖r

)
=

c2
2

α
+

2c2β

α
‖un‖r +

β2

α
‖un‖2r.

(15)

On the other hand, when we recall the expressions of c1 and c2, we obtain c2 > c1 > 0.
Combining Equation (12) with Equation (15), it follows that

J(un) =
1
2
(‖wn‖2 − λk‖wn‖2

2)−
T1

∑
i=1

T2

∑
j=1

G((i, j), un(i, j))

≤ β2

α
‖un‖2r +

c2
2

α
+

2c2β

α
‖un‖r −

T1

∑
i=1

T2

∑
j=1

G((i, j), vn(i, j))

−
T1

∑
i=1

T2

∑
j=1

[G((i, j), un(i, j))− G((i, j), vn(i, j))].

(16)

Notice that S = W+ ⊕W− ⊕W0; thus, Equations (11) and (14) indicate

‖vn‖
‖un‖

→ 1, as n→ ∞. (17)

Note that (I3) is valid. For any given ε > 0, there exists some R > 0 such that

−
T1

∑
i=1

T2

∑
j=1

G((i, j), vn(i, j)) ≤ (−4 + ε)
β2

α
‖vn‖2r, vn ∈W0 with ‖vn‖ ≥ R. (18)
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Owing to the Mean Value Theorem, it holds that∣∣∣∣∣ T1

∑
i=1

T2

∑
j=1

[G((i, j), un(i, j))− G((i, j), vn(i, j))]

∣∣∣∣∣
=

∣∣∣∣∣ T1

∑
i=1

T2

∑
j=1

wn(i, j)
∫ 1

0
g((i, j), vn(i, j) + twn(i, j))dt

∣∣∣∣∣
≤

T1

∑
i=1

T2

∑
j=1

∣∣∣∣wn(i, j)
∫ 1

0
[A|vn(i, j) + twn(i, j)|r|+ B]dt

∣∣∣∣
≤

T1

∑
i=1

T2

∑
j=1

A[|vn(i, j)|r|wn(i, j)|+ |wn(i, j)|1+r] +
B
√

T1T2√
λ1
‖wn‖

≤A‖vn‖r
2r‖wn‖2 + β‖wn‖1+r +

B
√

T1T2√
λ1
‖wn‖

≤β‖vn‖r
(

2c2

α
+

2β

α
‖un‖r

)
+ β‖un‖1+r +

B
√

T1T2√
λ1

(
2c2

α
+

2β

α
‖un‖r

)
.

(19)

Therefore, Equations (18) and (19) lead to

J(un) ≤
β2

α

[
‖un‖2r + 2‖un‖r‖vn‖r + (−4 + ε)‖vn‖2r

]
+ β‖un‖1+r

+
2c2β

α
‖un‖r + c3 +

2βc2

α
‖vn‖r

=
β2

α
‖un‖2r[1 +

2‖vn‖r

‖un‖r −
(4− ε)‖vn‖2r

‖un‖2r +
α

β‖un‖1−r +
2c2

β‖un‖r

+
c3α

β2‖un‖2r +
2c2‖vn‖r

β‖un‖2r ],

(20)

where c3 := 2B
√

T1T2c2
α
√

λ1
+ 2βc2

α +
c2

2
α . Since ε is arbitrary and 0 < r < 1, Equation (20) implies

that J(un)→ −∞, as n→ ∞, which is contradictory. Therefore, {un} is bounded, and this
completes the proof.

To show J is coercive, we present the following two lemmas.

Lemma 2. Let (I2) be true. Then, for any u ∈W+, J(u)→ +∞ as ‖u‖ → ∞.

Proof. For any u ∈W+, it holds that

J(u) =
1
2
(‖u‖2 − λk‖u‖2

2)−
T1

∑
i=1

T2

∑
j=1

G((i, j), u(i, j))

≥α

2
‖u‖2 −

T1

∑
i=1

T2

∑
j=1

[G((i, j), u(i, j))− G((i, j), 0)]−
T1

∑
i=1

T2

∑
j=1

G((i, j), 0)

=
α

2
‖u‖2 −

T1

∑
i=1

T2

∑
j=1

u(i, j)
∫ 1

0
|g((i, j), tu(i, j))|dt− c4

≥α

2
‖u‖2 − β‖u‖1+r − B

√
T1T2√

λk+1
‖u‖ − c4.

(21)

Note, 0 < r < 1 and α, β > 0; then, Equation (21) implies that

J(u)→ +∞, as ‖u‖ → ∞.
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Thus, this proof is finished.

Lemma 3. If J satisfies (I2) and (I3), then for each u ∈W− ⊕W0, J(u)→ −∞ as ‖u‖ → ∞.

Proof. For any u = w− + v ∈W− ⊕W0, we have

J(u) =
1
2
(‖u‖2 − λk‖u‖2

2)−
T1

∑
i=1

T2

∑
j=1

G((i, j), u(i, j))

≤− α

2
‖w−‖2 −

T1

∑
i=1

T2

∑
j=1

[G((i, j), u(i, j))− G((i, j), v(i, j))]−
T1

∑
i=1

T2

∑
j=1

G((i, j), v(i, j))

=− α

2
‖w−‖2 −

T1

∑
i=1

T2

∑
j=1

w−(i, j)
∫ 1

0
|g((i, j), v(i, j) + tw−(i, j))|dt

−
T1

∑
i=1

T2

∑
j=1

G((i, j), v(i, j)).

On one hand,

T1

∑
i=1

T2

∑
j=1

w−(i, j)
∫ 1

0
|g((i, j), v(i, j) + tw−(i, j))|dt

≤ A
T1

∑
i=1

T2

∑
j=1
|v(i, j) + tw−(i, j)|r|w−(i, j)|+ B

T1

∑
i=1

T2

∑
j=1
|w−(i, j)|

≤ A
T1

∑
i=1

T2

∑
j=1
|v(i, j)|r|w−(i, j)|+ A‖w−‖r+1

r+1 +
B
√

T1T2√
λ1
‖w−‖

≤ B
√

T1T2√
λ1
‖w−‖+ β‖w−‖r+1 + β‖v‖r‖w−‖.

(22)

On the other hand, due to (I3), there exists some R > 0 when given ε > 0 such that

T1

∑
i=1

T2

∑
j=1

G((i, j), v(i, j)) ≥
(

4β2

α
− ε

)
‖v‖2r, v ∈W0, ‖v‖ ≥ R. (23)

Combining Equations (22) with (23), it yields that

J(u) ≤− α

2
‖w−‖2 −

(
4β2

α
− ε

)
‖v‖2r +

B
√

T1T2√
λ1
‖w−‖+ β‖w−‖1+r + β‖v‖r‖w−‖

=− α

4

(
‖w−‖ − 2β

α
‖v‖r

)2
− α

4
‖w‖2 + β‖w−‖1+r +

B
√

T1T2√
λ1
‖w−‖

−
(

3β2

α
− ε

)
‖v‖2r → −∞, as ‖u‖ → ∞.

This completes the proof.

In the same manner, as with Lemmas 2 and 3, we present the following lemmas.

Lemma 4. Let (I2) and (I4) be valid. Then, for each u ∈W0 ⊕W+, J(u)→ +∞ as ‖u‖ → ∞.

Lemma 5. If J satisfies (I2), then for any u ∈W−, J(u)→ −∞ as ‖u‖ → ∞.

Before displaying detailed proofs of our main results, we must prove that J has a local
linking at 0.
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Lemma 6. Let Equation (8) and (I+0 ) (or (I−0 )) hold. Then, J has a local linking at 0 with respect to

S = W−0 ⊕ (W−0 )⊥,

where W−0 = span{φ1, · · · , φm} (or W−0 = span{φ1, · · · , φm−1}).

Proof. Suppose that (I+0 ) is satisfied. Thus, there exists δ > 0 such that |u(i, j)| ≤ δ,
‖u‖ ≤ δ

√
T1T2λT1T2 and

F((i, j), u) ≥ 1
2

λmu2.

For u ∈W−0 with 0 < ‖u‖ ≤ δ
√

T1T2λT1T2 , we have

J(u) =
1
2
‖u‖2 −

T1

∑
i=1

T2

∑
j=1

F((i, j), u(i, j)) ≤ 1
2
‖u‖2 − 1

2
λm‖u‖2

2 = 0. (24)

Moreover, Equation (8) means that

lim
u→0

2F((i, j), u)
u2 = lim

u→0

f ((i, j), u)
u

= λm.

Then, for any ε > 0, there exists δ > 0 such that
∣∣∣ 2F((i,j),u)

u2 − λm

∣∣∣ < ε for 0 < |u(i, j)| < δ.

Namely, λm − ε < 2F((i,j),u)
u2 < λm + ε. Thus,

1
2
(λm − ε)u2 < F((i, j), u) <

1
2
(λm + ε)u2.

For u ∈ (W−0 )⊥ with 0 < ‖u‖ < δ
√

T1T2λT1T2 , we have

J(u) ≥ 1
2
‖u‖2 − 1

2
(λm + ε)‖u‖2

2 ≥
1
2

(
1− λm + ε

λm+1

)
‖u‖2. (25)

Set ε < λm+1 − λm, then J(u) > 0. Obviously, J(0) = 0. Therefore, Equations (24) and (25)
guarantee that J has a local linking at 0.

Now, it is time for us to provide the detailed proofs of Theorems 1–3 via the Morse theory.

Proof of Theorem 1. For brevity, here, we only prove case (1) at length, as proofs of the
other cases are similar and, thus, omitted. Clearly, J(0) = 0 and Lemma 2 guarantee that J
is bounded from below by (W−∞ )⊥ := W+. Further, Lemma 3 shows that J(u) → −∞ as
‖u‖ → ∞ for any u ∈W−∞ := W− ⊕W0. Therefore, Proposition 3 ensures that

Cµ∞+ν∞(J, ∞) = Ck(J, ∞) � 0, (26)

where µ∞ = dim W−, ν∞ = dim W0. Obviously, 0 is an isolated critical point. If Equation (8)
is valid, then 0 is degenerate with µ0 = dim W−0 , ν0 = dim span{φm}. Thus, Lemma 6
guarantees J has a local linking at u = 0. Moreover, Proposition 4 indicates that

Cq(J, 0) ∼= δq,mZ, q ∈ Z, (27)

where m = µ0 + ν0. Consider m 6= k; then,

Cq(J, ∞) � Cq(J, 0),

if q = µ∞ + ν∞. Lemma 1 proves that J satisfies (PS), which leads to J satisfying (D). Then,
Proposition 2 implies that there exists some u∗ 6= 0 such that

Cµ∞+ν∞(J, u∗) � 0. (28)
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Since there exists some u1 > 0 such that f ((i, j), u1) = 0, we intend to find the local
minimizer of J. For each (i, j) ∈ Ω, define

J̃(u) =
1
2
‖u‖2 −

T1

∑
i=1

T2

∑
j=1

F̃((i, j), u(i, j)), u ∈ S,

where F̃((i, j), u) =
∫ u

0 f̃ ((i, j), τ)dτ, and

f̃ ((i, j), u) =

{
f ((i, j), u), u ∈ [0, u1],

0, u < 0 or u > u1,

Therefore, J̃ is continuous and coercive. Moreover, J̃ is bounded from below and satisfies
(PS). Thus, there exists a minimizer ũ+

0 of J̃. By maximum principle, we can obtain ũ+
0 = 0

or 0 < ũ+
0 (i, j) < u1 for any (i, j) ∈ Ω. Furthermore, Equation (8) means that 0 is not a

minimizer. In the sequence, ũ+
0 6= 0 is a local minimizer of J̃. Further, ũ+

0 > 0 is a local
minimizer of J, which means that ũ+

0 is nondegenerate. Therefore, ũ+
0 is an isolated critical

point of J, which leads to J′′(u+
0 ) as a Fredholm operator with a finite Morse index and

zero nullity. Due to Proposition 1, we can find that

Cq(J, ũ+
0 )
∼= δq,0Z, q ∈ Z. (29)

For the case that there exists some u2 < 0 such that f ((i, j), u2) = 0, repeating the above
steps shows that ũ−0 < 0 is a local minimizer of J and

Cq(J, ũ−0 ) ∼= δq,0Z, q ∈ Z. (30)

Now, we denote F̂((i, j), v) =
∫ v

0 f̂ ((i, j), τ)dτ, where

f̂ ((i, j), v) = f ((i, j), v + ũ+
0 )− f ((i, j), ũ+

0 ), (i, j) ∈ Ω, v ∈ S.

The corresponding functional is then given by

Ĵ(v) =
1
2
‖v‖2 −

T1

∑
i=1

T2

∑
j=1

F̂((i, j), v(i, j)), (i, j) ∈ Ω, v ∈ S.

If v is a nontrivial critical point of Ĵ, then v + ũ+
0 is a nontrivial critical point of J satisfying

Cq( Ĵ, v) = Cq(J, v + ũ+
0 ), q ∈ Z.

Moreover, for all (i, j) ∈ Ω, define

f̂+((i, j), v) =

{
f̂ ((i, j), v), v ≥ 0,

0, v < 0,

and construct the corresponding functional as

Ĵ+(v) =
1
2
‖v‖2 −

T1

∑
i=1

T2

∑
j=1

F̂+((i, j), v(i, j)), v ∈ S,

where F̂+((i, j), v) =
∫ v

0 f̂+((i, j), τ)dτ. It is easy to deduce that Ĵ+ satisfies (PS). Since ũ+
0

is a local minimizer of J, this leads to v = 0 being a local minimizer of Ĵ+. What is more,
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for e ∈ span{φ1}, Ĵ+(te)→ −∞ as t→ +∞. Then, Proposition 5 implies that Ĵ+ possesses
a critical point v+ > 0 such that

Cq( Ĵ, v+) ∼= δq,1Z, q ∈ Z.

As a result, u+ = v+ + ũ+
0 > 0 is a mountain pass point of J and

Cq(J, u+) ∼= δq,1Z, q ∈ Z. (31)

Similarly, u− = v− + ũ−0 < 0 is also a mountain pass point of J and

Cq(J, u−) ∼= δq,1Z, q ∈ Z. (32)

Consequently, u±, ũ±0 and u∗ are nontrivial critical points of J, which implies that
Problems (1) and (2) possesses at least five nontrivial solutions. The proof of Theorem 1
is achieved.

Proof of Theorem 2. Lemma 2 ensures that J is coercive on (W−∞ )⊥ := W+, that is, J is
bounded from below by W+. Moreover, Lemma 3 guarantees

J(u)→ −∞, as ‖u‖ → ∞ and u ∈W−∞ := W0 ⊕W−.

Therefore, taking account of Proposition 3, we obtain Cν∞+ν∞(J, ∞) � 0. Since Lemma 1
ensures that J satisfies (PS), this leads to J satisfying (D). Then, Proposition 2 indicates
that there exists some critical point u∗ such that

Cν∞+ν∞(J, u∗) � 0. (33)

Recall Equation (8), where u = 0 is a degenerate critical point of J with finite Morse index
µ0 and zero nullity ν0. Next, we must verify u∗ 6= 0.

Case (1) Let (I+0 ) be true. Since 0 is an isolated critical point of J, according to
Lemma 6, J has a local linking at 0. Then, according to Proposition 4, this means that

Cq(J, 0) ∼= δq,mZ, q ∈ Z, (34)

where m = µ0 + ν0. Notice that m 6= k implies µ∞ + ν∞ 6= µ0 + ν0; therefore, we have

Cq(J, 0) � Cq(J, u∗).

Thus, u∗ 6= 0 is a nontrivial critical point of J.
Case (2) Let 0 be an isolated critical point of J. If (I−0 ) is valid, then Lemma 6

indicates that J has a local linking at 0, and according to Proposition 4, this means that

Cq(J, 0) ∼= δq,mZ, q ∈ Z. (35)

where m = µ0. Since m 6= k + 1, it follows that

Cq(J, 0) � Cq(J, u∗), q ∈ Z.

Namely, u∗ 6= 0 is a nontrivial critical point of J, and Problems (1) and (2) possesses at least
one nontrivial solution. The proof of Theorem 2 is completed.

Proof of Theorem 3. Based on Lemma 1, J satisfies (D). Combining Lemma 1 with
Lemma 4, we obtain that J is bounded from below by (W−∞ )⊥ := W0 ⊕W+. Moreover,
Lemma 5 gives

J(u)→ −∞, as ‖u‖ → ∞, ∀u ∈W−∞ := W−.
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Since k = 1 and W− = ∅, Proposition 3 ensures that C0(J, ∞) � 0. Hence, there exists some
critical point u0 of J such that C0(J, u0) � 0. Therefore,

Cq(J, ∞) ∼= δq,0Z, Cq(J, u0) ∼= δq,0Z, q ∈ Z.

Consequently, u0 is a local minimizer of J. Moreover, based on Equation (8), we conclude
that u = 0 is a degenerate critical point of J satisfying Equations (34) and (35) if (I+0 )[(I

−
0 )]

is valid. Note that m ≥ 1[m > 1], u0 6= 0. If the critical set κ = {u0, 0}, then the Morse
inequality can be expressed as

(−1)0 + (−1)m = (−1)0,

where m = µ0 + ν0[m = ν0]. Of course, this is impossible. As a result, J must have at least
another critical point u1 differing from u0 and 0. Thus, u0 and u1 are two nontrivial critical
points of J, and we complete the proof of Theorem 3.

4. Conclusions

Due to their applications, discrete elliptic Dirichlet problems have been discussed
extensively. In this paper, we considered multiple existence results of nontrivial solutions
for the discrete elliptic Dirichlet problem by combining the variational technique with the
Morse theory. First, we constructed a suitable variational function space and established
the corresponding functional. Then, we achieved a series of results based on the existence
of one, two or five nontrivial solutions under reasonable assumptions via the Morse theory
and local linking. In our future work, we will search for characterized solutions, such as
sign-changing solutions, signed solutions, and ground state solutions for partial difference
equations subject to various boundary conditions by variational methods and critical
point theory.
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