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Abstract: Let D be a digraph with n vertices and a arcs. The Laplacian and the signless Laplacian
matrices of D are, respectively, defined as L(D) = Deg™ (D) — A(D) and Q(D) = Deg™ (D) + A(D),
where A(D) represents the adjacency matrix and Deg™ (D) represents the diagonal matrix whose
diagonal elements are the out-degrees of the vertices in D. We derive a combinatorial representation
regarding the first few coefficients of the (signless) Laplacian characteristic polynomial of D. We
provide concrete directed motifs to highlight some applications and implications of our results. The
paper is concluded with digraph examples demonstrating detailed calculations.
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1. Introduction

We consider a digraph D = (V,T') of order n, where the vertex set is given by
V ={v1,v2,...,0,} and |V| = n. The set of arcs is denoted by I', which contains or-
dered pairs of distinct vertices. Throughout this paper, digraphs mean directed graphs
without loops or multiple arcs. Two vertices, u and v, of D are adjacent when they are
linked via an arc (#,v) € T, or (v,u) € T, and they are called doubly adjacent when
{(u,v), (v,u)} € I. For any vertex v;, the set

N = {v; € V: {(v5,9)), (v}, 0)} € T}

contains all vertices that are doubly adjacent of v;.

A sequence of vertices W : u = ug,uq,...,u; = vis called a walk W, which has length
I from vertex u to vertex v. Here, (1x_1,uy) isan arcin D for 1 < k <. W is a closed walk
if u = v. If each pair of different vertices 1, v in D admits a walk from u to v and a walk
(i)

from v to u, then D is strongly connected. Let ¢, be the number of closed walks having

length 2 originated from v;. In the digraph D, the sequence (cél), céz), ce cé”)

walk sequence of length 2.

A digraph D is weakly connected or connected when the undirected version G of D
is connected. N

A digraph D is called symmetric if (#,v) and (v,u) € T, forallu,v € V. G — G
forms a one-to-one mapping between simple graphs and symmetric digraphs, where el
and G share the same vertices and each edge uv of G is mapped to symmetric arcs (1, v)
and (v, u). Clearly, a graph corresponds to a symmetric digraph under this mapping.

We define the adjacency matrix A(D) as a n X n binary matrix with rows and columns
indexed by the vertices. The element a;; takes a;; = 1, if (vi, vj) € I'and a;; = 0 otherwise.
We refer the readers to [1,2] for some recent works on the spectral properties of A(D).
Denote by Degt (D) = diag(d{,dy,...,d;) the diagonal matrix of out-degrees. The
matrices L(D) = Deg™ (D) — A(D) and Q(D) = Degt (D) + A(D) are known as the

) is a closed

Symmetry 2023, 15, 52. https:/ /doi.org/10.3390/sym15010052

https://www.mdpi.com/journal /symmetry


https://doi.org/10.3390/sym15010052
https://doi.org/10.3390/sym15010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2226-7828
https://orcid.org/0000-0002-2817-3400
https://doi.org/10.3390/sym15010052
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010052?type=check_update&version=2

Symmetry 2023, 15, 52

20f12

Laplacian and the signless Laplacian matrix of the digraph D. We call the eigenvalues
of the matrices L(D) and Q(D) the Laplacian and the signless Laplacian eigenvalues
of D, respectively. Let P;(D,x) and Py(D, x) be the characteristic polynomials of the
matrices L(D) and Q(D), respectively. They are the Laplacian and the signless Laplacian
characteristic polynomial of D. Some recent results on the spectral properties of L(D),
Q(D) and related results can be found in, e.g., [3-12].

Two graphs that are non-isomorphic are co-spectral if they have the same spectrum rel-
evant to a given graph matrix. Apparently, two isomorphic graphs have the same spectrum
relevant to a given graph matrix. If two graphs share the same spectrum relevant to a given
matrix, is it true that they are isomorphic? This is one of the most investigated and difficult
problems in spectral theory of graphs and digraphs. It yields the following problem.

Problem 1. With respect to a given graph (digraph) matrix, which graphs (digraphs) are determined
by their spectra?

A graph G is determined by its spectrum relevant to a given graph matrix if there is
no other graph sharing the same spectrum as G relevant to the graph matrix. When two
graphs admit the same spectrum relevant to a given graph matrix, they share the same
characteristic polynomial as well as the coefficients of the characteristic polynomial. This
observation prompted many researchers to examine carefully the coefficients of charac-
teristic polynomial relevant to a given graph matrix. Apparently, if two graphs differ in
at least one coefficient of their characteristic polynomial relevant to a given graph matrix,
they cannot be co-spectral regarding the graph matrix. Many results have been reported
in the literature on this problem. Sachs [13] and Mowshowitz [14] established the coef-
ficients of the adjacency characteristic polynomial of an arbitrary digraph. It is revealed
that the coefficients of the adjacency characteristic polynomial of a tree count matchings.
The formulas for the first four coefficients of the Laplacian characteristic polynomial of
a graph were derived in [15]. Cvetkovi¢ et al. [16] presented the formulas for the first
three coefficients of the signless Laplacian characteristic polynomial of a graph. Guo et.
al [17] provided combinatorial expression for the first few coefficient of the (normalized)
Laplacian and the signless Laplacian characteristic polynomials of a graph. Based upon
the fifth coefficient of the adjacency characteristic polynomial of trees, Lepovic et al. [18]
showed that no starlike trees are co-spectral. The coefficients of the Laplacian characteristic
polynomial were employed [19] to reveal the Laplacian spectra of three-rose graphs. Some
recent results can be found in, e.g., [20-22].

The issue of spectral determination in digraphs related to adjacency matrices has
also been considered. Some families of digraphs are characterized through adjacency
spectra [23]. Recently, some researchers [11] studied the spectral determination problem
for oriented graphs relevant to a generalized skew matrix.

With motivation from the above works, we aim to investigate the coefficients of the
characteristic polynomial of the (signless) Laplacian matrices of a digraph. We obtain
algebraic expressions for the first few coefficients of the (signless) Laplacian characteristic
polynomials of a digraph.

Given a graph G = (V, E) with the vertex set V(G) = {x1,x2,...,x,}, let G; be the
graph obtained from G by scrapping the ith vertex x; and its incident edges. The graph
G is reconstructible if it can be determined (up to isomorphism) by all vertex-deleted
graphs G;. Ulam’s reconstruction conjecture states that every graph with n > 3 vertices is
reconstructible. Many variations of this problem have been considered, and one of them is
the spectral reconstruction problem. It claims that “a graph G is spectrally reconstructible
if it can be determined up to isomorphism by the adjacency characteristic polynomial of
G and the adjacency characteristic polynomials of its vertex deleted subgraphs G;”. Our
study of coefficients of the characteristic polynomial of the (signless) Laplacian matrices of
a digraph is also motivated by this line of research.
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2. Laplacian Coefficients of D

In this section, we establish an algebraic representation for the first five Laplacian
coefficients of a digraph.

To determine the coefficients of a Laplacian characteristic polynomial of a digraph D,
we need the following Lemma, which can be found in [24].

Lemma 1. Let B = (b;j) be a n x n matrix having the characteristic polynomial
n
®(B,y) =det(yl —B) =y" + )_¢i(G

Let s = tr(BX) be the trace of BX. Then, for the coefficients of ®(B, ), we have the following:
cq = —syand kcy = —sp — c1Sk_1 — C2Sk_o — ... —ax_1¢1, k=2,3,...,n. 1)

The following interesting result about the trace of the product of matrices can be found
n [24].

Lemma 2. For n x n matrices A and B, we have tr(AB) = tr(BA).

The following result is the main result of this section and shows how the first five
coefficients of the Laplacian characteristic polynomial of a digraph D can be expressed in
terms of the structure of the digraph.

Theorem 1. Let D be a connected digraph of order n > 3 with a arcs having vertex out-degrees
n .
di’ > d;“ > ... >df. Let PL(D,x) = x" + '21 a;x""~" be the Laplacian characteristic polynomial
1=

of D. Then,
(1) a; = —a,

n
2 m=5-1% (@72+d),
i=1
6) a=§La(Ch)- 1 a1 DRSS (@ rP+d)) -2,
(4) and
1 1& & i 1 & 4a+3
o =Y n(Ch) — 3 Y@ - e - 2 Y- B e
i=1 i=1 i=1 i=1 i=1
1 n
-7 L (n(P(vivjoiv0) + (P (oo )
i=1
Ly oy a )
— C p—
41 1 32 i=1
a? 1 at
—T L (@ )*g@“dﬂzﬂg))) tu

Here, c;(;) is the number of closed walks of length 2 at the vertex v;, n(CL) is the number
of directed cycles of length 3 at the vertex v;, n(C}) is the number of directed cycles of length 4
at the vertex v;, n(P} (vivjurvjv;)) is the number of paths on 3 vertices v, vj, vy at the vertex v;
with arcs (v;,v}), (v, vx), (vx, ), (v}, 0;), n(P%(vinvivkvi)) is the number of paths on 3 vertices
v;, v}, vy, at the vertex v; with arcs (v;, v;), (v}, v;), (vi, vk), (v, v;) and M; = Y df

(vi,0)).(vj,0;)EE(D)

is the sum of the out-degrees of the vertices which are both out-neighbor and the in-neighbor of the
vertex v;.
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Proof. Let s; = tr(L(D)¥) be the trace of the matrix L(D)¥, where L(D) = Deg™ (D) —
n
A(D) is the Laplacian matrix of D and k € N. We have, s; = tr(L(D)) = ¥ d = a, the

i=1
number of arcs. This shows by using Lemma 1 that a; = —s; = —a. By a simple calculation,

it can be seen that
L(D)? = (Deg* (D) ~ A(D))” = (Deg*(D))? - Deg™ (D)A(D) ~ A(D)Deg* (D) + A(D)2. (2)

Clearly, tr(Degt (D)A(D)) = tr(A(D)Deg™ (D)) by Lemma 2. It is easy to establish
that each of the diagonal entries of Degt (D)A(D) are zero, therefore we obtain

tr(Deg™ (D)A(D)) = tr(A(D)Deg™ (D)) = 0.

Additionally, tr((Deg* (D))?) = Y. (di)? and tr(A(D)?) = Y. ¥ ayay = % cb),
t=1 i=1j= t=1
where cgt) is the number of symmetric pair of arcs or the number of closed walks of length
2 at the vertex v;. Therefore, from (2), we obtain

—_
|

M:

s = tr(L(D)?) = tr((Degt(D))?) — 2tr(Degt (D)A(D)) + tr(A(D)?) = ((d+) + cg>).

t=1

Using this together with Lemma 1, we arrive at

(—s2 —a1s1) % i( P+l )

By binomial theorem with index 3, it can be seen that

NI~

ap) =

L(D)* = (Deg*(D) = A(D))?

= Deg™(D)> — Deg* (D)*A(D) — Deg™ (D) A(D)Deg™ (D) — A(D)Deg™ (D)?
+ Deg™ (D)A(D)? + A(D)Degt (D)A(D) + A(D)*Deg™ (D) — A(D)>. (3)

Clearly, by Lemma 2, we have
tr((Deg™ (D))*A(D) = tr(Deg™ (D)A(D)Deg™ (D)) = tr(A(D)Deg™ (D)?)
and each of the diagonal entries of Deg™ (D)?A(D) are zero, it follows that
tr((Deg* (D))?A(D)) = tr(Deg* (D)A(D)Deg* (D)) = tr(A(D)(Deg* (D))?) = 0.

Additionally, tr(Deg* (D)A(D)?) = tr(A(D)Deg* (D)A(D)) = tr(A(D)?*Deg* (D)),
by Lemma 2 and the -th diagonal entry of Deg™ (D)A(D)? is cy)df , it follows that

tr(Deg™ (D)A(D)?) = tr(A(D)Deg™ (D)A(D)) = tr(A(D)*Deg™ (D Zc(t .
Further, tr((Deg* (D))?) = ¥ (d;)? and
=1
3 = 21 Zikzlaijajkaki = (number of directed cycles of length3in D) = tzln(Cg)
i=1j=1k= =

Therefore, from (3), we obtain
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s3 = tr(L(D)’) = tr((Deg™ (D))%) — 3tr((Deg™ (D))*A(D) + 3tr(Deg™ (D)A(D)?) — tr(A(D)%)

n
(@) +3Y dr — Y n(ch).
1 t=1 =1

M:

-
Il

Using these observations together with Lemma 1, we arrive at

(—53 —a152 — 11251)

- f - 0 ()

i=1 i=1 1:1 i=1

W=

az =

Lastly, by binomial theorem with index 4, we have

L(D)* :(Deg+(D) - A(D))4
=(Deg™(D))* — (Deg™(D))*A(D) — (Deg* (D))*A(D)Deg™ (D)
— Deg™ (D) A(D)(Deg*(D))?
+ (Deg™(D))*A(D)* + Deg* (D) A(D)*Deg ™ (D) + Deg* (D) A(D)Deg™* (D) A(D)

(D)A(D)® — A(D)(Deg*(D))* + A(D)(Deg ™ (D))*A(D)
A(D)Deg" (D)A(D)Deg" (D)

A(D)Deg*(D)A(D)? + A(D)*(Deg ™ (D))
— A(D)*Deg*(D)A(D)? — A(D)’Deg* (D) + A(D)*. )

- Deg

Using Lemma 2, we have
tr((Deg™ (D))*A(D)) = tr((Deg*(D))*A(D)Deg" (D)) = tr(Deg* (D)A(D)(Deg™ (D))?)
= tr(A(D)(Deg" (D))%)
and the i-th diagonal entry of (Deg™ (D))3A(D) is zero, we get
tr((Deg™(D))*A(D)) = tr((Deg™ (D))*A(D)Deg™ (D)) = tr(Deg™ (D)A(D)(Deg™ (D))?)
— tr(A(D)(Deg* (D))?) = 0.
Additionally, by Lemma 2
tr((Deg*(D))?A(D)?) = tr(A(D)(Deg ™ (D))*A(D)) = tr(Deg™ (D)A(D)?Deg ™ (D))
= tr(A(D)*(Deg™ (D))?)

and the i-th diagonal entry of (Deg " (D))*A(D)? is (d;")?c, () we obtain

tr((Deg™ (D))*A(D)?) = tr(A(D)(Deg" (D ))ZA(D)) tr(Deg* (D)A(D)*Deg™ (D))

= tr(A(D)?(Deg™ ( = Y (d)%Y.

i

EII

Again by Lemma 2, we have

tr(Deg* (D)A(D)Deg " (D)A(D)) = tr(A(D)Deg* (D) A(D)Deg* (D))
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and the i-th diagonal entry of Deg™ (D)A(D)Deg ™ (D)A(D) is
n
dj_ Z d,jaikllki = dl+ Z d;_ = d?_Ml',
k=1 (vi,0%),(v,v;) EE(D)

where M; is the sum of the out-degrees of the vertices which are both out and in-neighbors
of the vertex v;. It follows that

tr(Deg™ (D)A(D)Degt (D)A(D)) = tr(A(D)Degt (D)A(D)Deg™ (D)) = fde,;
i=1
Using Lemma 2, we have
tr(Deg* (D)A(D)%) = tr(A(D)Deg™ (D) A(D)?)
= tr(A(D)*Deg* (D) A(D)) = tr(A(D)*Deg* (D))

and the i-th diagonal entry of Deg™ (D)A (D)3 is

H M:

n .
Z ijAjk ki = djn((cé)/

where 1(C%) is the number of directed 3-cycles at the vertex v;. It follows that

tr(Deg*(D)A(D)’) = tr(A(D)Deg* (D)A(D)?) = tr(A(D)*Deg* (D)A(D))

— tr(A(D)*Deg" (D)) = Y d; n(C).

i=1

Further, tr((Degt(D))*) = i (d)* and
i=1

n n
D ) ik
k=11=1

M:

-3

i=1j

Il
—_

-

Il
-

= (number of directed four cyclesin D) 4 ¥ n(P3 (vivjvkv;jv;))

n no
+ Y n(P3(vvjoio;) + Y B
i=1 i=1
:2 (Ci) —0—2( (P (vivjorojv;)) + n(P3(vivj0050;) )—I—Zc(l)

Now, from (4), we have
sy = tr(L(D)*) = tr((Deg* (D))*) — 4tr((Deg ™ (D))*A(D)) +4tr((Deg* (D))*A(D)?)
4 2tr(Deg™ (D)A(D)Deg™ (D)A(D)) — 4tr(Deg™ (D)A(D)?) + tr(A(D)*)

n n . n n . n
=Y (@) -4y (@) +2) A M —4 Y din(Ch) + Y n(Ch)
| i=1 i=1 i=1

i=1

s
_

noo
+ Z ( (P3 (vivjopvvi)) + n(P%(vivjvivkvi)) + Z cg).

i=

,_n
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Using these observations together with Lemma 1, we arrive at

( S4 — 153 — A5 — 01351)
L)
1 i=1

s 2 LR SONNLE VPSR ()
) ( (P3 (v i0j0k0;j0;)) + n(Ps (v,-vjv,-vkv,-)> ~1 Y o+ 3 Y (df )Y +a) dfc
i—1 i=1 i=1 i=1

zi< o) 5B ) +

i=1

N

a, =

+z<z‘>_1” ihg (4a+43) &
1 )CZ 2;diMl 12 =1

n(C)

»JMH
M:

|
m:

+
1 (C3

»-IM»—\W

This completes the proof of the theorem. [J

The k-th spectral moment of a digraph D is defined as the sum of the k-th powers
of the adjacency eigenvalues of D. Likewise, the Laplacian spectral moments of D are
defined as

tr(L(D)¥) = iyi(D)k, k=1,2,...,
i=1

where y1(D), u2(D), ..., piy—1(D), un(D) are the Laplacian eigenvalues of D.
The next result presents the formula for the first four Laplacian spectral moments of D.

Corollary 1. Let D be a connected digraph of order n > 3 with a arcs having vertex out-degrees
dif >df > .- >d}. Then,

1 L wmD)=q
i=1

@ L uwDP =% (@ 7+ “),
i=1 i=1

3) YL ui(D)P=y(@d)P+3 z cid +F— ¥ n(CL), and
i=1 i=1 i= i=1

(4)

n
Y wi(D)* = Z(,ﬁ 42 (dh)? c2 +22d+M —4Zd+ (C5) + Y n(Ch)
i=1 i=1 i=1 i=1 i=1

i( (Pi( 0;VVkV;V i) +n(P3(v; vv; Ukv))) +;C§i).

where cg), n(C%), M;, n(P3 (vjvjorvjv;)) and n(P3(vivjvvv;)) are defined in Theorem 1.

3. The Signless Laplacian Coefficients of D

In this section, we present algebraic representation for some of the signless Laplacian
coefficients of D.

The next Theorem is the main result of this section and gives the first five coefficients
of the signless Laplacian characteristic polynomial of a digraph D in terms of structure of
the digraph.

Theorem 2. Let D be a connected digraph of order n > 3 with a arcs having vertex out-degrees
n .
d;“ > d; > ..o >df Let Po(D,y) = y" + ¥ bjy"~" be the signless Laplacian characteristic
i=1

polynomial of D. Then,
(1) by =-—
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n
2 bh=%5-1% (@72+d),
i=1
n n n
(3 b=-tyna@)-ydlar -1y @rP+4y (@h+d)) -2,
i=1 i=1 i=1 i=1
(4) and
b= — L dn(C) -1 L (- £ — 1 F arM - 43§ ou(ch)
i=1 i=1 i=1 i=1 i=1
_% 'é ( (P3 (UzU]UkU] v;)) +n(P§(vlv,v Vk0; )) % il Céi) + é d:r)S +a ;1 d+céz)
2 n n 2 ;4_ = =
SR (P (R @) 5

Here, cg) is the number of closed walks of length 2 at the vertex v;, n(C}) is the number
of directed cycles of length 3 at the vertex v;, n(CY) is the number of directed cycles of length 4
at the vertex v;, n(Pg (Uivjvkv]-vi)) is the number of paths on vertices v, vj, vy at the vertex v;
with arcs (v, vj), (vj, vk), (v, v7), (v, 0), P3(v;) = vivjVVKY; is the number of paths on vertices
v;, v}, vy at the vertex v; with arcs (v;, v;), (v}, v;), (vi, vk), (v, v;) and M; = Y df

(0i,v7),(vj,v;)EE(D)

is the sum of the out-degrees of the vertices which are both out-neighbor and the in-neighbor of the
vertex v;.

Proof. Let s; = tr(Q(D)¥) be the trace of the matrix Q(D)*, where Q(D) = Deg™ (D) +
A(D) is the signless Laplacian matrix of D and k € N. The rest of the proof follows by
proceeding similar to Theorem 1 and so is omitted. O

The signless Laplacian spectral moments of D are defined as
k - k
tr(Q(D)*) =Y _qi(D)", k=12,...,
i=1
where q1(D), g2(D), ...,q,-1(D), g2(D) are the signless Laplacian eigenvalues of D.

The following Corollary 2 follows from Theorem 2 and presents formula for the first
four signless Laplacian spectral moments of D.

Corollary 2. Let D be a connected digraph of order n > 3 with a arcs having vertex out-degrees
dif >df >--->df. Then,

(1) % (D) =u,
i=1

@ L aDP =% (@)?+d),
i=1 i=1

3 La(DP=Yx@)P+3% d + % n(CL), and
i=1 =1 i=1 i=1

(4)

Y (D) =Y (df iaﬁ )2l +221d+M +4Zld+ n(Ch) + ;n(cg)

+Z( (P3(vv]vkv ))+n(P3(vvvvkv ) Zcz.

i=1

Here, cgi), n(C%), My, n(P} (vivjorvjv;)) and n(P3(vvjvvkv;)) are defined in Theorem 1.
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% Uk
v Uk Ui 1 Uj Ok Yj 0j (%
' Ct vi Ct Yj P3 (vivjvkvjvi) Pg(vivjvivkvi)
3 4
4. Examples

In this section, we consider some examples of the digraphs to highlight the applications
of Theorems 1 and 2.

Example 1. Let ?n = V10203 ...V, 10y be the directed path on n > 4 vertices witha =n — 1
arcs of the form (v;,v;11), i = 1,2,...,n — 1. For the directed path ?n, we have d;r =1, for

i<n-—1,d}f =0, c§i> =0, for 1 <i < n, as there is no closed walk of length 2 at any vertex,

M; =0, for 1 < i < n. Additionally, n(C) = 0 = n(C}) as there is no triangle and 4-cycle at
any vertex v; in ?n. Further, it is clear that there are no paths of the form P3 (vivjvRvv;) and
P} (vjvjoivv;) in ?n. With this information, it follows that

0 (Pu)=—(n—1), ay(P,) = (n —21)2 _(n ; 1),
1—1% n-=-12 (n-—
(P = o D)
n—1% (m—-1)3 P12 (n—
()= 241) - 41) +11(24 e 41).

Let us add arc (vy,v1) in ?n and let Hy be the resulting digraph. For Hy, it is clear that
a=mnd =1dy =2dy =0d =1fori>3, cél) =1= céz),cg) =0, fori > 3,
My =2,M = 1and M; = 0, for 2 < i < n. Additionally, n(C}) = 0 = n(C}) as there is no
triangle and 4-cycle at any vertex v; in Hy. Further, it is clear that there are no paths of the form
P%(vivjvkvjvi) and Pg(vivjv,-vkvi) in Hy. With this information, it follows that

a1(Hy) = —n, ay(Hy) = n_ (n+4)

n® n(n+4) n
a3(Hi) = — =+ ——F— -3 -5

nt n*(n+4)  (n+4)? nnt+e6) 1ln

a4(H1) = ﬂ - 4 + 3 + 3 + 4 11.

Let us add another arc (v3,vy) in Hy and let Hp be the resulting digraph. For Hy, it is clear that
a=n+1,df =1,df =df =2,df =0,d" =1fori >4, =1=c, ¥ =2 =,
fori >4, My = Mz =2,My =3and M; = 0, for4 <i < n. Also, n(C5) = 0 = n(Cj) as
there is no triangle and 4-cycle at any vertex v; in Hp. Further, there are paths Py (v10,030501),
Pg(vzv3vzvlvz) and P31 (v3vav1V2v3) at the vertices vy, vy and vz in Hy. With this information, it

follows that

(n+1)? (n+9)

a(Hy) = —(n+1), ay(Hp) = LB
a3(Hp) = _(nzl)s N (n+1)2(n+9) B (n+313) s
ay(Hy) = (n ;41)4 - (n+1)i(n+9) N (n;9)2 N (n+1)én+13) . % .
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Example 2. Let ?n = V10203 ... Uy_10, 01 be the directed cycle on n > 5 vertices witha = n
arcs of the form (v;,v;41), (vn,v1), i =1,2,...,n— 1. For the directed cycle ?n, we have d;r =1,
forl <i<mn, cg) =0, M,» =0for1l 'g i < n, as there is no closed walk of length 2 at any
vertex. Additionally, n(C}) = 0 = n(C}) as there is no triangle and 4-cycle at any vertex v; in
?n. Further, it is clear that there are no paths of the form P} (vivjvgvv;) and Pg(vivjvivkvi) in
?n. With this information, it follows that

2

m(Ca)=—n, ax(Co) =2 -2,
3 2
n(C=-2+2 -2,

4

nt nd 11?2 n
w(C =552 1

Let us add arc (v, v1) in 87, and let Ky be the resulting digraph. For Ky, it is clear that
a=n+1df =1,df =2,df =1,fori >3, =P =1,c) =o,M =2,M, = 1,
M; =0 for i > 3. Additionally, n(C;) = 0 = n(C}) as there is no triangle and 4-cycle at
any vertex v; in Ky. Further, it is clear that there are no paths of the form P3 (vjvjokvjv;) and

P3(v;vjvv,v;) in Ky. With this information, it follows that

(n+1)2 (n+5)

a(Ky) = —(n+1), ay(Kp) = L2
n 3 n n n
i) = - LD (D) _n 16
n G 2(n n n n 2 n—
a4(1<1)=( ;41) ! “)4( +5) , +1)3( +7) 4;1) L - 13

Similar to Laplacian coefficients a1, a3, a3 and a4 we can obtain the signless Laplacian
coefficients by, by, b3 and by of the digraphs ?n, Hy, ?n and Kj.

5. Conclusions

From Theorem 1, we arrive at the following conclusion about the Laplacian spectral
determination of digraphs.

Theorem 3. If digraphs D1 and D, are Laplacian co-spectral, then (i) D1 and D, have the same order;
(ii) D1 and Dy have the same number of arcs;
(iii) the quantity i ((dl‘*)2 + céi)) is same for D and D»;
i=1
(iv) the quantity i (dF)3+3 i cgi)d;r - i n(C%) is the same for Dy and Dy;
i=1 i=1 i=1
(v) the quantity fj (dF)* — 4 i (d zcg) + 2 i d"M; — 4 i dn(CL) + i n(C%)
i=1 i=1 =1 i=1 i=1

1
1=

n n .
+ X (n(P% (vivjoRvv;)) + n(Pg(vivjvivkv,-))) + ¥ cg) is the same for Dy and Dj.
i=1 i=1

From Theorem 2, we arrive at the following conclusion about the signless Laplacian
spectral determination of digraphs.

Theorem 4. If digraphs D1 and D, are signless Laplacian co-spectral, then (i) D1 and Dy have the
same order;
(ii) D1 and Dy have the same number of arcs;

n .
(iii) the quantity ) ((df)2 + cg)) is the same for D1 and Dy;
i=1
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(iv) the quantity i n(CL) +3 i cg)dlf" + i (d")3 is the same for Dy and Dy;
i=1 i=1 i=1
n n . n n . n .
(v) the quantity Y (d7)* — 4 Z(dlf")zcél) + 2y dM; — 4y dn(Cy) + ¥ n(C)
i=1 i=1 i=1 i=1 i1
+ f (n(P31 (v;vjokvv;)) + n(PBZ(vivjvivkvi))) + i cg) is the same for D1 and D,.
i=1 i=1

From (ii) of Theorems 3 and 4, it is clear that if two digraphs D; and D, have different
numbers of arcs, then these digraphs have different (signless) Laplacian eigenvalues.
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