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Abstract: We propose a solution to the symmetric nonlinear Ψ-Caputo fractional integro differential
equations involving non-instantaneous impulsive boundary conditions. We investigate the existence
and uniqueness of the solution for the proposed problem. Banach contraction theorem is employed to
prove the uniqueness results, while Krasnoselkii’s fixed point technique is used to prove the existence
results. Additionally, an example is used to explain the results. In this manner, our results represent
generalized versions of some recent interesting contributions.
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1. Introduction

Ordinary differentiation and integration principles are unified and generalized by the
non-integer order integrals and derivatives known as fractional calculus (FC). For more
details on fractional derivatives (FD), with geometric, physical interpretations and with a
historical overview, one can refer to [1–16] and the references therein.

There has been a lot of research conducted so far on fractional differential equations
(FDEs) with initial and boundary conditions (BCs). The reason for this is FDEs efficiently
describe many real-world processes such as in chemistry, biology, signal processing, and
many others (see, e.g., [4,7–9,13,17–21]). Additionally, FDEs have interesting applications
in solving inverse problems, and in the modeling of heat flow in porous material (see,
e.g., [22–24]).

Numerous models in the study of the dynamics of phenomena that experience abrupt
changes in the state use differential equations with impulses. It has been observed that
certain dynamics of evolution processes cannot be adequately characterized by instan-
taneous impulses. For instance: Pharmacotherapy, high or low levels of glucose, etc. A
circumstance like that can be observed as an impulsive activity that begins suddenly at one
point in time and lasts for some amount of time. Non-instantaneous ( N-InI) systems are
types of systems which are more suitable to study the dynamics of evolution processes. For
more details, one can refer [17,25–30].

These days, one of the major topics of mathematical analysis is the study of FC domain.
In [28] X. Yu discussed the existence and β-Ulam-Heyrs stabilty of fractional differential
equations (FDEs) with involving of N-InI. The new class of Ulam-Heyrs stabilty of fractional
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integral BCs was studied in [14]. In [16] A. Zada et al. established the Ulam-stability on
Caputo sense of multipoint BCs with N-InI. In [15] A. Zada et al. discussed the stability of
FDEs with non instantaneous BCs of the form

cDqy(t) = E (t, y(t)), t ∈ (tj, sj], q ∈ (0, 1],

y(t) = Gi(t, y(t)), t ∈ (sj−1, tj], i = 1, . . . , n,

y(0) = Iqy(t)|t=0 = 0

y(T ) = Iqy(t)|t=T ;

where cDq and Iq is a Caputo and Riemann-Liouville fractional integral, respectively.
Recently, R. Agarwal et al. [17] established the N-InI and BCs in Caputo FDEs. In [26]

C. Long et al. studied the N-InI FDEs with integral BCs. Non instantaneous impulses
with the fractional boundary value problems was referred to in [29]. In [25] V. Gupta et al.
established the nonlinear fractional boundary value with N-InI using the Caputo fractional
derivative. In [26] C. Long et al. discussed the following FDEs to solve the new boundary
value problem for N-InI

cDp
0,tw(t) = E (t, w(t)), t ∈ (si, ti+1] ⊂ [0, T ], p ∈ (0, 1),

w(t) = Hi(t,w(t)), t ∈ (ti, si], i = 1, . . . , m,

w(T ) = w(0) + χ
∫ T

0
w(s)ds;

where E , Hi are continuous and χ is constant.
In [27], A. Salim et al. established the following Hilfer-type fractional derivative with

N-InI involving BCs

(cDp,r
ωi

℘)(t) = E (t,℘(t)), cDp,r
ωi℘(t)

, t ∈Ji, i = 0, . . . ,m

℘(t) = Hi(t,℘(t)), t ∈ (ti, si], i = 1, . . . ,m,

v1

(
βJ 1−ι

a+
℘
)
+ v2

(
βJ 1−ι

b ℘
)
= v3;

where cDp,r
ωi

and βJ 1−ι
a+

-are the generalized Hilfer derivative of order r ∈ (0, 1) and the
function E is continuous.

In [18] M. S. Abdo et al. discussed the Ψ-Caputo FDE with fractional BCs, as follows

cDp;Ψ℘(t) = F (t,℘(t)), t ∈ [a, b],

℘
[k]
Ψ (a) = ℘k

a, k = 0, 1, . . . , n− 2,

℘
[n−1]
Ψ (b) = ℘b, k = 0, 1, . . . , n− 2;

where cDp;Ψ-Ψ is the Caputo derivative and F is the continuous function.
In [31] D. B. Dhaigude et al. established the solution of the following nonlinear

Ψ-Caputo fractional differential equations involving BCs

cDp;Ψ
t ℘(t) = F (t,℘(t)), 0 < t ≤ T ,

G (℘(0),℘(T )) = 0;

where cDp;Ψ
t -Ψ-Caputo derivative and F is continuous function.
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In this paper, we examine the symmetric Ψ-Caputo fractional integro-differential
equations with non instantaneous impulsive BCs of the form

cDp;Ψ℘(t) = F (t,℘(t), B℘(t)), t ∈ (si, ti+1], 0 < p < 1, (1)

℘(t) = Hi(t,℘(t)), t ∈ (ti, si], i = 1, . . . ,m, (2)

a℘(0) + b℘(T ) = c; (3)

where cDp;Ψ is the Ψ-Caputo FD of order p. a, b, c are real constants with a+ b 6= 0 and
0 = s0 < t1 ≤ t2 < . . . < tm ≤ sm ≤ sm+1 = T ,- pre-fixed, F : [0, T ]×R×R −→ R
and Hi : [ti, si] × R −→ R is continuous. Moreover, B℘(t) =

∫ t
0 k(t, s)℘(s)ds and

k ∈ C (D,R+) with domain D = {(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T }.

Main Contributions:

1. The main motivation for this work is to use the Ψ-Caputo fractional derivative to
present a new class of N-InI Ψ-CFIDE with BCs;

2. Moreover, we investigate the existence and uniqueness of the solutions of
Equations (1)–(3) using Krasnoselkii’s and Banach’s FPT;

3. We extend the results studied in [18,32] by including Ψ-Caputo FD, nonlinear integral
terms and N-InI conditions.

The remainder of the article is organized as follows: In Section 2, the basic definitions
and lemmas will be used in the main results. In Section 3, we used the suitable conditions
for the existence and uniqueness of solution for the system (1)–(3). The application is also
presented in Section 4.

2. Supporting Notes

Let the space PC ([0, T ],R) = {℘ : [0, T ]→ R : ℘ ∈ C (tk, tk+1],R} be continuous
and there exists ℘(t−k ) and ℘(t+k ) with ℘(t−k ) = ℘(t+k ) satisfying the norm ‖℘‖PC =
sup{|℘(t)| : 0 ≤ t ≤ T }.

Set PC ([0, T ],R) : {℘ ∈PC ([0, T ],R) : ℘′ ∈PC ([0, T ],R)}with norm ‖℘‖PC :=
max{‖℘‖PC , ‖℘′‖PC }. Clearly, PC ([0, T ],R) ended with norm ‖.‖PC .

Definition 1 ([33]). For a continuous function F , the Riemann-Liouville fractional derivative of
order q > 0 is given by

Dp
0+F (t) =

1
Γ(n− p)

(
d

dt

)n ∫ t

0
(t− s)n−p−1F (s)ds, n− 1 < p < n.

Definition 2 ([33]). For a continuous function F , the Riemann-Liouville fractional integral of
order p > 0 is given by

J pF (t) =
1

Γ(p)

∫ t

0
(t− s)p−1F (s)ds,

where Γ is defined by Γ(p) =
∫ ∞

0 e−ssp−1ds.

Definition 3 ([33]). For the function F : [0, ∞) → R, the Caputo derivative of order p is
defined as

cDpF (t) =
1

Γ(n− p)

∫ t

0

F (n)(s)
(t-s)p+1−n ds = In−pF (n)(t), t > 0, n− 1 < p < n.
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Definition 4 ([34]). A function F is fractional integrals and FDs with regard to another function
Ψ are defined as follows:

Ip;ΨF (t) =
1

Γ(p)

∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s)ds,

and

Dp;ΨF (t) =
1

Γ(n− p)
(

1
Ψ′(t)

d

dt
)n
∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))n−p−1F (s)ds,

respectively.

Definition 5 ([17]). For noninstantaneous impulsive fractional differential differential
Equations (1)–(3) the intervals (ti, si], i = 1, . . . ,m are called intervals of N-InI, and Hi(t,℘(t)),
i = 1, . . . ,m are called N-InI functions.

Definition 6 ([32]). A function w ∈PC ([0, T ],R) is said to be a solution of (1)–(3) if u satisfied the
equation cDp;Ψ℘(t) = F (t,℘(t), Ψ℘(t)) on J, and the conditions ℘(t) = Hi(t,℘(t)), a℘(0) +
b℘(T ) = c.

Lemma 1. Let 0 < α < 1 and let F : J −→ R be continuous. A function ℘ is a solution of the
Ψ-fractional integral equation

Hm(sm) +
1

Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(t)ds+ ℘0, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si) +

1
Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(t)ds

− 1
Γ(p)

∫ si
0 Ψ′(s)(Ψsi −Ψs)p−1ω(t)ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

(4)

if ℘ is a solution of the initial value problem of the system,

cDp;Ψ℘(t) = ω(t) t ∈ (si, ti+1] ⊂ [0, T ], 0 < p < 1, (5)

℘(t) = Hi(t), t ∈ (ti, si], i = 1, . . . ,m, (6)

℘(0) = ℘0. (7)

We obtain the following lemma as a result of Lemma 1.

Lemma 2. A function ℘ ∈PC ([0, T ],R) is given by, ℘(t) =

Hm(sm) +
1

Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds

− 1
a+b

[
b

Γ(p)

∫ T
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds− c

]
, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si) +

1
Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds

− 1
Γ(p)

∫ si
0 Ψ′(s)(Ψsi −Ψs)p−1ω(s)ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

(8)

is a solution of the system given by

cDp;Ψ℘(t) = ω(t) t ∈ (si, ti+1], 0 < p < 1,

℘(t) = Hi(t), t ∈ (ti, si], i = 1, . . . ,m, (9)

a℘(0) + b℘(T ) = c.
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Proof. Assume that ℘(t) is satisfied for Equation (9). Integrating the first equation of (9)
for t ∈ [0, t1], we have

℘(t) = ℘(T ) +
1

Γ(p)

∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds. (10)

On the other hand, if t ∈ (si, ti+1], i = 1, 2, . . . ,m and again integrating the first
equation of (9), we have

℘(t) = ℘(si) +
1

Γ(p)

∫ t

si
Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds. (11)

Now, by applying impulsive condition, ℘(t) = Hi(t), t ∈ (ti, si], we obtain,

℘(si) = Hi(si). (12)

Consequently, from (11) and (12), we obtain,

℘(t) = Hi(si) +
1

Γ(p)

∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds, (13)

and

℘(t) = Hi(si) +
1

Γ(p)

∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds

− 1
Γ(p)

∫ si

0
(Ψ′(s)Ψsi −Ψs)p−1ω(s)ds, t ∈ (si, ti+1]. (14)

Now, using the BCs a℘(0) + b℘(T ) = c, we obtain

℘(T ) = Hm(sm)−
1

a+ b

[ b

Γ(p)

∫ T

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1ω(s)ds− c

]
, t ∈ [0, t1]. (15)

Hence, with the direct applications of the FDs, integral definitions and lemmas, it is
clear that (10), (14) and (15)⇒ (8). Hence the proof:

FPT play a key role in many interesting recent outputs see, e.g., [20,21,35].

Theorem 1 ([36]). (Banach FPT)
If Q is a closed nonempty subset of a Banach space (BSp.) B. Let N : Q → Q, be a contraction
mapping, then N has a unique FP.

Theorem 2 ([37]). (Krasnoselkii’s FPT)
Suppose a Banach space Y, select a closed, bounded, and convex set ∅ 6= B ⊂ Y. Let A1 and A2 be
two operators: (1) A1x + A2y ∈ B whenever x,y ∈ B; (2) A1 is compact and continuous; (3) A2 is
a contraction mapping. Therefore, ∃ z ∈ B: z = A1z + A2z.

3. Main Results

Theorem 3. Suppose that the following assumption holds.
(Al1): There exists a positive constant L , G , M , Lhi

such that

|F (t,℘1, ω1)−F (t,℘2, ω2)| ≤ L |℘1 − ℘2|+ G |ω1 −ω2|, f or t ∈ [0, T ], ℘1,℘2, ω1, ω2 ∈ R.

|k(t, s, ϑ)− k(t, s, ν)| ≤M |ϑ− ν|, f or t ∈ [ti, si] ϑ, ν ∈ R.

|Hi(t, v1)−Hi(t, v2)| ≤ Lhi
|v1 − v2|, f or v1, v2 ∈ R.
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If

Z : max{ max
i=1,2,...,m

Lhi
+

(L + G M )

Γ(p+ 1)
(tpi+1 + spi ),

Lhi
+

(L + G M )(Ψ(T ))p

Γ(p+ 1)

[
1 +
|b|(L + G M )

|a+ b|

]
} < 1, (16)

then the problems (1)–(3) have a unique solution on [0, T ].

Proof. We define an operator N : PC ([0, T ],R) −→PC ([0, T ],R) by

(N ℘)(t) =



Hm(sm,℘(sm)) +
1

Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

− 1
a+b

[
b

Γ(p)

∫ T
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

]
, t ∈ [0, t1],

Hi(t), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si) +

1
Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

− 1
Γ(p)

∫ si
0 Ψ′(s)(Ψsi −Ψs)p−1F (s,℘(s), B℘(s))ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

It is obvious that N is well defined and N ℘ ∈ PC ([0, T ],R). We now prove that
N is a contraction mapping.
Case 1: For ℘,℘ ∈PC ([0, T ],R) and t ∈ [0, t1], we obtain

|(N ℘)(t)− (N ℘)(t)|

≤ Lhi
|℘(sm)− ℘(sm)|ds+

(L + G M )

Γ(p+ 1)

∫ t

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1|℘− ℘|ds

+
|b|(L + G M )

|a+ b|Γ(p)

∫ T

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1|℘− ℘|ds

≤ Lhi
+

(L + G M )(Ψ(T ))p

Γ(p+ 1)

[
1 +

|b|
|a+ b|

]
‖℘− ℘‖PC .

Case 2: For t ∈ (ti, si], we find that

|(N ℘)(t)− (N ℘)(t)| ≤ |Hi(t,℘(t))−Hi(t,℘(t))|
≤ Lhi

‖℘− ℘‖PC .

Case 3: For t ∈ (si, ti+1], we obtain

|(N ℘)(t)− (N ℘)(t)|

≤ |Hi(si,℘(si)−Hi(si,℘(si)|+
1

Γ(p)

∫ t

0
(t− s)p−1|F (s,℘(s), B℘(s))−F (s,℘(s), B℘(s))|ds

+
1

Γ(p)

∫ si

0
(si − s)p−1|F (s,℘(s), B℘(s))−F (s,℘(s), B℘(s))|ds,

≤
[
Lhi

+
(L + G M )

Γ(p+ 1)
(tpi+1 + spi )

]
‖℘− ℘‖PC .

Therefore, N is a contraction, as in the above inequality

Z =

[
Lhi

+
(L + G M )

Γ(p+ 1)
(tpi+1 + spi )

]
< 1.

Thus, the problem (1)–(3) has a unique solution for each ℘ ∈PC ([0, T ],R).
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Theorem 4. Suppose that the condition (Al1) is satisfied and the following assumption holds well:
(Al2): There exists a constant Lgi > 0, such that

|F(t,W1, ω1)| ≤ Lgi(1 + |W1|+ |ω1|), t ∈ [si, ti+1], ∀ W1, ω1 ∈ R.

(Al3): There exists a function κi(t), i = 1, 2, . . . , m, such that

|Hi(t,W1, ω1)| ≤ κi(t), t ∈ [ti, si], ∀ W1, ω1 ∈ R.

Assume that Mi : supt∈[ti,si ]
κi(t) < ∞, and K := max Lhi < 1, for all i = 1, 2, .., m. Then,

the problem (1)–(3) has at least one solution on [0, T ].

Proof. Let us consider Bp,r = {℘ ∈ PC ([0, T ],R) : ‖℘‖PC ≤ r}. Let Q and R be two
operators on Bp,r defined as follows:

Q℘(t) =


Hm(sm,℘(sm)), t ∈ [0, t1],
Hi(t,℘(t)), t ∈ (ti, si], i = 1, 2, . . . ,m,
Hi(si,℘(si)), t ∈ (si, ti+1], i = 1, 2, . . . ,m.

and

R℘(t) =



1
Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

− 1
a+b

[
b

Γ(p)

∫ T
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

]
, t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, . . . ,m,
1

Γ(p)

∫ t
0 Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

− 1
Γ(p)

∫ si
0 Ψ′(s)(Ψs(i) −Ψ(s))p−1F (s,℘(s), B℘(s))ds, t ∈ (si, ti+1], i = 1, 2, . . . ,m.

step 1: For ℘ ∈ Bp,r then Q℘+R℘ ∈ Bp,r.
case 1: For t ∈ [0, t1],

|Q℘+R℘| ≤ |Hm(sm,℘(sm))|+
1

Γ(p)

∫ t

0
(t− s)p−1|F (s,℘(s), B℘(s))|ds

+
1

a+ b

[ b

Γ(p)

∫ T

0
Ψ′(s)(Ψ(t)−Ψ(s))p−1F (s,℘(s), B℘(s))ds

]
,

≤
[
Lgi +

Lgi(Ψ(T ))p

Γ(p+ 1)

[
1 +

|b|
|a+ b|

]]
(1 + r) ≤ r.

case 2: For each t ∈ (ti, si],

|Q℘+R℘| ≤ |Hi(t, W1(t))| ≤Mi.

case 3: For each t ∈ (si, ti+1],

|Q℘+R℘(t)| ≤ |Hi(si,℘(si))|+
1

Γ(p)

∫ t

0
(t− s)p−1|F (s,℘(s), B℘(s))|ds

+
1

Γ(p)

∫ si

0
(si − s)p−1|F (s,℘(s), B℘(s))|ds,

≤Mi +

[
Lgi(s

p
i + tpi+1)

Γ(p+ 1)

]
(1 + r) ≤ r.

Thus
Q℘+R℘ ∈ Bp,r.
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step 2: Q is contraction on Bp,r.
case 1: ℘1,℘2 ∈ Bp,r then t ∈ [0, t1],

|Q℘1(t)−Q℘2(t)| ≤ Lgm |℘1(sm)− ℘2(sm)| ≤ Lgm‖℘1 − ℘2‖PC .

case 2: For each t ∈ (ti, si], i = 1, 2, . . . ,m,

|Q℘1(t)−Q℘2(t)| ≤ Lgi‖℘1 − ℘2‖PC .

case 3: For t ∈ (si, ti+1],

|Q℘1(t)−Q℘2(t)| ≤ Lgi‖℘1 − ℘2‖PC .

We can deduce the following from above inequalities:

|Q℘1(t)−Q℘2(t)| ≤ K ‖℘1 − ℘2‖PC .

Hence, Q is a contraction.
step 3: We prove that R is continuous.

Let ℘n be a sequence 3 ℘n → ℘ in PC ([0, T ],R).
case 1: For each t ∈ [0, t1],

|Q℘n(t)−Q℘(t)| ≤
[
(Ψ(T ))p

Γ(p+ 1)

[
1 +

|b|
|a+ b|

]]
‖F (.,℘n(.), ., )−F (.,℘(.), ., )‖PC .

case 2: For each t ∈ (ti, si], we obtain

|Q℘n(t)−Q℘(t)| = 0.

case 3: For each t ∈ (si, ti+1], i = 1, 2, . . . ,m,

|Q℘n(t)−Q℘(t)| ≤ (ti+1 − si)

Γ(p+ 1)
‖F (.,℘n(.), ., )−F (.,℘(.), ., )‖PC .

Thus, we conclude from the above cases that ‖Q℘n(t)−Q℘(t)‖PC −→ 0 as n→ ∞.
step 4: We prove that Q is compact.

First Q is uniformly bounded on Bp,r.

Since ‖Q℘‖ ≤ Lgi
(T )

Γ(1+p)
< r,

First Q is uniformly bounded on Bp,r.

Since ‖Q℘‖ ≤ Lgi
(T )

Γ(1+p)
< r, we prove that Q maps a bounded set to a Bp,r equicontin-

uous set.
case 1: For interval t ∈ [0, t1], 0 ≤ E1 ≤ E2 ≤ t1,℘ ∈ Br, we obtain

|QE2 −QE1| ≤
Lgi(1 + r)

Γ(p+ 1)
(E2 − E1).

case 2: For each t ∈ (ti, si], ti < E1 < E2 ≤ si,℘ ∈ Bp,r, we obtain

|QE2 −QE1| = 0.

case 3: For each t ∈ (si, ti+1], si < E1 < E2 ≤ ti+1,℘ ∈ Bp,r, we establish

|QE2 −QE1| ≤
Lgi(1 + r)

Γ(p+ 1)
(E2 − E1).

From the above cases, we obtain |QE2 −QE1| −→ 0 as E2 −→ E1 and Q is equicon-
tinuous. Thus Q(Bp,r) is relatively compact, so by using the Ascoli-Arzela theorem, Q
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is compact. Hence, the problem (1)–(3) have at least one fixed point on [0, T ]. Hence the
proof.

4. Example

Let as consider the Ψ-Caputo fractional boundary value problem

Dp℘(t) =
e−t|w|

9 + et(1 + |℘| +
1
3

∫ t

0
e−(s−t)℘(s)ds, t ∈ (0,

1
2
], (17)

℘(t) =
|℘(t)|

2(1 + |℘(t)|) , t ∈ (
1
2

, 1], (18)

℘(0) + ℘(1) = 0. (19)

and L = G = 1
10 , M = 1

3 , p = 5
7 Lh1 = 1

3 , We shall check that condition (3) is satisfied
for appropriate values of p ∈ (0, 1] with a = b = T = 1. Indeed, by using Theorem 4, we
determine that

Lhi
+

(L + G M )

Γ(p+ 1)
(tpi+1 + spi ) ≈ 0.41 < 1,

and{
Lhi

+
(L + G M )(Ψ(T ))p

Γ(p+ 1)

[
1 +
|b|(L + G M )

|a+ b|

]}
≈ 0.485 < 1.

Thus, all assumptions of Theorem 4 are satisfied, so the problem (17)–(19) has a unique
solution [0, T ].

5. Conclusions

In this work, we discuss the existence results for N-InI Ψ-CFIDE with BCs. Our results
guarantee the existence of integral solution via FC theory and Krasnoselkii’s FPT. The
example is used to illustrate the results. Potential future works could be to extend the
problem with more advanced delays. Moreover, we plan to investigate other kinds of
fractional derivatives such as, e.g., Katugampola derivative, conformable derivative, and
many others.
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