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Abstract: The dynamic electrical conductivity of dense Zr plasma near melting is calculated using
ab initio molecular dynamics and the Kubo–Greenwood formula. The antisymmetrization of the
electronic wave function is considered with the determinant of one-electron wave functions; exchange
and correlation effects are treated via an exchange–correlation functional. Optical properties are
restored using the Kramers–Kronig transformation. The influence of computational parameters and
inner shell electrons on the results is thoroughly investigated. We demonstrate the convergence of
our computations and analyze comparison with experimental data.
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1. Introduction

Zirconium finds many applications because this metal is refractory (the melting tem-
perature Tm = 2127 K [1]), hard, and resistant to chemically aggressive environments. It
applies in metallurgy as a composite component of steels, and as molds for molten metals.
Zirconium alloys are applied in the nuclear industry for nuclear reactor fuel cladding
because of their low neutron-capture cross-section and resistance to corrosion under service
conditions. Zirconium also has a lot of applications in space and aeronautic industries (ZrO
is one of the perspective materials for some details of jet engines), and medicine (dental
and bone prostheses). These are the reasons why the study of zirconium properties is the
subject of great interest in science and technology.

The properties of Zr near melting were studied experimentally and theoretically. The
work [2] provides the first experimental measurements of the melting curve of zirconium at
pressures up to 29 GPa. Though significant progress has been achieved in the measurements
of melting during the last two decades there are still essential experimental difficulties
for refractory metals even at low pressures [3]. The lattice structure and thermodynamic
properties of β-phase Zr were studied by classical molecular dynamics simulations [4].
The properties of Zr in the vicinity of the binodal curve were studied in [5,6] using the
similarity laws. Ab initio molecular dynamics simulations were used to explore the local
structure of dense Zr plasma melting and its evolution upon undercooling to describe
neutron scattering experiments [7,8].

Nevertheless, experimental data on the transport and optical properties of liquid
zirconium are almost lacking. The resistivity of solid zirconium was measured in many
works in the range of temperature 1–2127 K; these data were collected by Desai [9]. In
dynamical experiments by Korobenko et al. [10–12] the electrical explosion of Zr foils and
wires were applied to widen the range of resistivity measurements in liquid zirconium up
to 4100 K. The optical properties of liquid Zr are poorly known and the data are available
only near the melting temperature [13–17] while in the solid phase a lot of experiments can
be found [18–22]. Meanwhile, transport and optical properties of dense metallic plasma
are crucial for magnetohydrodynamic and radiative magnetoplasmadynamic codes [23].
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On the other hand, ab initio calculations, which are based on quantum molecular
dynamics (QMD), finite-temperature density functional theory (DFT), and the Kubo–
Greenwood formula, allow us to obtain transport and optical properties from first prin-
ciples in the wide range of temperatures [24–35]. In such calculations, liquid metal is
treated as a strongly coupled degenerate plasma. This means that the electronic subsystem
should be described by a wave function that is antisymmetric in the permutation of any
two electrons [36]. In DFT this is usually achieved by using a determinant composed of
one-electron wave functions. For the exchange interaction energy and correlation effects,
however, approximations of complicated quantum many-particle calculations exist which
are traditionally called exchange-correlation functionals [37]. This simplification speeds up
computations dramatically while providing good accuracy.

In this paper, we present the first ab initio calculation of the dynamic electrical con-
ductivity of liquid zirconium. We also investigate the influence of simulation parameters
on the obtained results and restoration of optical properties.

2. Computational Methods
2.1. Problem Formulation

In this work, calculations consist of three subsequent stages.
At the first stage, a QMD simulation is performed. In QMD the initial parameters

are temperature (Te = Ti, where Te and Ti are the temperatures of electrons and ions,
accordingly) and density ρ. The atoms of the substance are placed in a supercell with the
lattice parameter corresponding to a given density. Other parameters of the simulation
(k-points grid size, number of bands, cutoff energy for plane waves, etc.) are chosen
to provide the convergence of thermodynamic properties. Then the QMD simulation is
carried out at a given temperature (the temperature is maintained by a thermostat) and
the ionic trajectories are calculated. At each ionic step, the electronic structure is calculated
in the framework of finite-temperature DFT. The ionic positions are determined using the
Hellman–Feynman forces obtained from the electronic structure calculation in which the
Born–Oppenheimer approximation is applied. After reaching equilibrium, a set of ionic
configurations is selected for the next stages of the study. The number of configurations is
chosen to ensure the convergence of the calculated properties, while the distance between
neighboring configurations should be large enough to ensure the absence of correlations.
In this work, 9 configurations were chosen for averaging after the system had reached the
equilibrium state, and every 300th QMD step was chosen.

At the second stage, more precise additional DFT calculations of electronic structure
for the selected configurations are performed. At this stage, we use other values of some
parameters of simulation (finer k-points grid, more number of bands) which can provide
better accuracy compared with the calculations at the first stage. As a result of the second
stage, we have the eigenstates and eigenvalues for electronic bands and corresponding
Fermi-weights.

The first and second stages are made using the VASP package [38,39].
At the third stage, transport and optical properties are calculated. The real part of the

dynamic complex electrical conductivity σ(ω) is reconstructed using the Kubo–Greenwood
formula implemented in the GreeKuP code [30], while the imaginary part can be restored
using the Kramers–Kronig transform (both methods are described in detail below in this
section). At known σ(ω) = σ1(ω) + iσ2(ω) we can obtain optical properties depending on
the radiation frequency ω:

• the complex dielectric constant ε(ω) = ε1(ω) + iε2(ω) as

ε1(ω) = 1− σ2(ω)

ωε0
, ε2(ω) =

σ1(ω)

ωε0
,

where ε0 is the vacuum permittivity;
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• the complex refractive index n(ω) + ik(ω) as

n(ω) =

√∣∣ε(ω)
∣∣+ ε1(ω)

2
, k(ω) =

√∣∣ε(ω)
∣∣− ε1(ω)

2
;

• the normal spectral reflectivity as

R(ω) =

(
1− n(ω)

)2
+ k(ω)2(

1 + n(ω)
)2

+ k(ω)2
;

• the absorption coefficient as

α(ω) = 2k(ω)
ω

c
,

where c is the speed of light in a vacuum;
• the normal spectral emissivity as

E(ω) = 1− R(ω).

2.2. Kubo–Greenwood Formula

The dynamic complex electrical conductivity σ(ω) = σ1(ω) + iσ2(ω) is the coeffi-
cient between the current density jω and the applied electric field Eω of the frequency ω:
jω = σ(ω)Eω.

The Kubo–Greenwood formula [24,26,30,40]

σ1(ω) =
2πe2h̄2

3m2
eωΩ ∑

i,j,α,k

(
W(k)

∣∣〈Ψi,k|∇α|Ψj,k〉
∣∣2( f (εi,k)− f (εj,k)

)
δ(εj,k − εi,k − h̄ω)

)
(1)

is used for calculating the real part of the dynamic electrical conductivity σ1(ω) when
ω 6= 0. In this formula σ1(ω) can be treated as the energy absorption at the frequency ω.
Here Ψi,k are the electronic eigenfunctions and εi,k are the electronic eigenvalues for the
electronic band at a given k-point in the Brillouin zone; W(k) is the k-point weight in the
Brillouin zone, f (εi,k) is the Fermi distribution function; Ω is the supercell volume, e and
me are the electronic charge and mass, accordingly. To find the absorption σ1(ω) we should
take into account all transitions between all possible states i and j. Only levels with energy
difference h̄ω make a contribution to energy absorption at the frequency ω; so, a δ function
is included in the Kubo–Greenwood formula. The δ function is replaced by a Gaussian with
a broadening of ∆E = 0.05 eV. The squared matrix elements |〈Ψi|∇α|Ψj〉|2 represent the
intensity of every transition between electronic energy levels (∇α is the velocity operator
along each spatial direction α).

2.3. Kramers–Kronig Transform

The real and imaginary part of an analytic in the upper half-plane function
σ(ω) = σ1(ω) + iσ2(ω) are connected via the Kramers–Kronig transform (KKT): at a
known real part σ1(ω) the relation

σ2(ω) = −2ω

π
P
∫ ∞

0

σ1(ω
′)

ω′2 −ω2 dω′ (2)

can be used to find the imaginary part σ2(ω) of this function. Here P denotes the Cauchy
principal value. For any stable physical systems, causality implies the condition of ana-
lyticity, and conversely, analyticity implies causality of the corresponding stable physical
system [41].
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In a practical calculation, the upper limit of integration in Formula (2) is some large
finite value ωmax, and to avoid the divergence in the integrand a small parameter η is
introduced in the denominator of the integrand

σ2(ω) ≈ −2ω

π

∫ ωmax

0

σ1(ω
′)

ω′2 −ω2 + iη
dω′. (3)

For performing the KKT (numerical calculation of the Cauchy principal value of the
integral) a parallel C++ program was developed by the authors [42]. The function σ1(ω) is
given as a one-dimension array with different values σi for different values ωi with a step
∆ω. As σ1(ω) may have sawtooth-like behavior at low temperatures due to the small size
of the system we use the trapezoidal rule for integration to avoid additional interpolation
errors. In this program, we can set a different upper integration limit ωmax and change the
integration step ∆ω. The cubic spline of the original function σ1(ω) is used in the case of a
small integration step ∆ω (implemented using GSL library). A user can also increase the
upper integration limit ωmax beyond the maximum frequency value of the array. In this
case, additional elements of the σ1(ω) array are populated with the last value of the original
array. Convergence according to the parameter η was tested and achieved at η ≤ 10−6.

3. Results and Discussion

In this work 250 atoms of Zr in the supercell with periodical boundary conditions
are simulated, the density is 6 g/cm3, and the temperature is 2250 K. Convergence of
thermodynamic and transport properties on the number of atoms was achieved. QMD
simulation was performed using the Baldereschi mean value point for the Brillouin zone
evaluation. The average pressure obtained in the QMD calculation is about zero. At the
second stage of calculation (see Section 2.1) 2 × 2 × 2 k-points grid in the Brillouin zone
was used. The cutoff energy was set to 400 eV. The convergence of transport properties on
the number of k-points was also checked. The number of bands at this stage was chosen
to provide the range of frequencies for σ1 from 0 up to ωmax = 50 eV. So, in our case, 8000
orbitals were taken in the DFT calculation with about 6000 unoccupied ones to account for
high-energy transitions in the Kubo–Greenwood Formula (1).

The behavior of the real and imaginary parts of the dynamic electrical conductivity
in the range of frequencies 0–50 eV is shown in Figure 1. The PAW potential for Zr
with 12 valence electrons was used in our calculation, so the impact of the inner shell
electrons (4s4p) on electrical conductivity may be observed. Indeed, σ1(ω) demonstrates a
pronounced hump in the region of 25–33 eV. To analyze the cause, we derive the electronic
density of states (DOS) from the QMD eigenenergies. The projected DOS, obtained from
the decomposition of the wavefunctions by spherical harmonics, for the bcc lattice with
the same density is also shown in Figure 2 to help assess the contribution of individual
orbitals. We can conclude that the 4p-electrons are the reason for the hump in the real part
of electrical conductivity in Figure 1.
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Figure 1. The real and imaginary part of the dynamic electrical conductivity of liquid Zr at
ρ = 6 g/cm3 and T = 2250 K.
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The generalized gradient approximation of Perdew, Burke, and Ernzerhof [43] is used
as the main exchange-correlation (XC) functional in our calculations, since it provides the
best agreement with the experimental normal density of Zr [44]. Nevertheless, below we
will present a comparison of the calculation results with other XC-functionals as well.

 s
 Fermi Dirac

Figure 2. Electronic DOS of liquid Zr at ρ = 6 g/cm3 and T = 2250 K, calculated from QMD. The
green, red, and violet areas represent the partial (projected) DOS for ideal bcc Zr at ρ = 6 g/cm3.
Energy is given relative to the Fermi level EF. The Fermi–Dirac distribution at T = 2250 K is shown
by the orange dashed line.

The Gaussian broadening ∆E was chosen to provide a smooth σ1 profile and conver-
gence of calculated σ1(ω = 0) ≡ σDC. If we decrease the Gaussian broadening ∆E, then the
dependence σ1(ω) becomes fluctuating, see Figure 3. The σ1(ω = 0) values obtained by
extrapolating the σ1(ω)-curve to zero frequency, differ less than 0.5% at different ∆E. Mean-
while, our calculation shows that QMD with the Kubo–Greenwood formula underestimates
the electrical resistivity ρ = 1/σDC of liquid Zr at 2250 K by more than 6% in comparison
with the available experiments, specifically 132 µΩ·cm in our calculation compared to
measured 141.7 [9] at 2127 K, 139.7 [11] and 148.3 µΩ·cm [10] at 2250 K, correspondingly.

Further study was devoted to the investigation of the dependence of optical properties
(mainly, normal spectral emissivity) on the integration range [0; ωmax] (see Formula (3))
and on the integration step ∆ω.

The behavior of σ2(ω) corresponding to different integration ranges is shown in
Figure 4, while Figure 5 represents the behavior of σ2(ω) calculated with different integra-
tion steps.

Through the analysis of these figures, we can conclude that the integration range
influences the imaginary part of dynamic conductivity in the range of high frequencies,
whereas the integration step affects the imaginary part of dynamic conductivity in the
range of low frequencies.

The dependence of the calculated normal spectral emissivity on the upper integration
limit ωmax is shown in Figure 6. The calculation of normal spectral emissivity E at a
wavelength of 900 nm (corresponds to 1.3776 eV) for liquid Zr was analyzed. We vary the
upper integration limit from 5 to 50 eV using the original calculated σ1(ω) (see Figure 1)
and beyond that up to 104 eV using different assumptions. The real part of the dynamic
conductivity σ1(ω) is also shown (the red dashed line corresponds to the original calculated
σ1(ω)). We can see a double peak on the σ1(ω)-curve in the vicinity of ω = 30 eV, so,
varying the integration range, we can take this peak into account (if we set ωmax ≥ 40 eV)
or not (ωmax ≤ 20 eV). We found that the inclusion of the peak insignificantly (less than
0.5%) changes the calculated emissivity value (red line with open dots).
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Figure 3. The real part of the dynamic conductivity calculated with a different broadening ∆E of the
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the region 0–1 eV.
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Figure 6. The behaviour of σ1(ω) (left axis) and normal spectral emissivity E at wavelength
λ = 900 nm (right axis) which are calculated using different σ1(ω) integration range. The green, blue,
and olive lines are the three different options for the continuation of σ1(ω)-curve.

In this figure, three different options of integration range continuation up to 104 eV
are also considered. As the first option (blue dashed line), we cut the σ1(ω)-curve at
ω = 24 eV, then we extend the σ1(ω)-curve using the value σ1(24 eV) = 40,537 Sm/m.
The corresponding calculated E is shown as the open blue dots. As the second option
(green dashed line), we extend the σ1(ω)-curve after ω = 50 eV using the last value
σ1(50 eV) = 27,748 Sm/m. The corresponding calculated E is shown as the open green dots.
Finally, as the third option (olive dashed line), we extend the σ1(ω)-curve after ω = 50 eV
using the maximum value of the σ1(ω)-curve peak: σ1(30.451 eV) = 785,802 Sm/m. The
corresponding calculated E is shown as the open olive dots.

In the first and second cases, we can see that the continuation of the σ1(ω) with a
constant value practically does not change (<0.1%) the calculated emissivity (insignificant
rising of the blue and green line with open dots). The third option can be considered as an
attempt to analyze the influence of deep-lying inner-shell electrons on the calculation of
optical properties and to obtain an upper estimate for the 900 nm normal spectral emissivity
for liquid Zr at 2250 K. We can see that the emissivity increases no more than 1.1% compared
to the emissivity value calculated using the original σ1 (olive line with open dots).

The influence of the integration step on the accuracy of the normal spectral emissivity
calculation is shown in Figure 7. The yellow point shows the emissivity calculated using the
default integration step (∆ω0 = 0.001 eV), the green line shows similar calculations with
bigger ∆ω, the magenta line represents the cases when we reduce ∆ω in comparison with
∆ω0, find the corresponding σ1 values by the cubic spline interpolation and then calculate
the emissivity using this reduced ∆ω. The blue line shows the error (which is the difference
between the value of emissivity at ∆ω and ∆ωmin = 5× 10−6 eV). We can see that the ∆ω
influence becomes unimportant when ∆ω ≤ 0.01 eV (in this case the error . 0.1%).
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calculated with a given ∆ω and with ∆ωmin = 5× 10−6 eV.

Returning to the influence of the Gaussian broadening ∆E on the recovery of optical
properties, Figure 8 illustrates the deviation from the emissivity default value (when
∆E = 0.05 eV). As can be seen, ∆E has a very negligible effect on the calculated E .

Finally, we analyze the effect of an XC-functional on the calculated properties using
well-known non-empirical functionals: PBE, LDA [45], and AM05 [46]. We provide a
comparison for the same ions configurations obtained with PBE to show a direct impact
of an XC-functional on the optical properties restoration. However, since the choice of an
XC-functional has a significant influence on pressure, we have added the calculation for
6.45 g/cm3 and 2250 K, which provides near-zero pressure for liquid Zr with LDA.
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Figure 8. Normal spectral emissivity calculated with a different broadening ∆E for the Gaussian used
for the representation of δ-function in the Kubo–Greenwood formula. The bottom subfigure shows
the deviation from the reference value (when ∆E = 0.05 eV) in percentages.
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We found negligible differences between PBE and AM05, while LDA gives a noticeable
difference in σ1 calculations, see Figure 9. However, this difference has a limited effect on the
calculated optical properties. The comparison of the calculated normal spectral emissivity
of liquid Zr with experimental data in the vicinity of Tm is shown in Figure 10. We can see
that the slopes of E(λ) obtained in this work using different XC-functionals are consistent
with the linear fit of the experimental data by Krishnan et al. [16] and Cezarliyan et al. [47].
The values of normal spectral emissivity from first-principle calculations with PBE and
AM05 functionals agree better with other experiments for λ = 650 [13] and 684.5 nm [14,17]
than the results obtained using LDA.
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4. Conclusions

Our conclusions are as follows:

• We have presented the dynamic electrical conductivity of dense Zr plasma at T = 2250 K
and ρ = 6 g/cm3 using the QMD approach and Kubo–Greenwood formula for the
first time.

• We have analyzed the influence of simulation parameters of the numerical integration
(integration range, integration step) in KKT and the choice of an exchange-correlation
functional on the obtained results using normal spectral emissivity as an example.

• We have shown that the inner shell electrons give a limited contribution to the optical
properties, so taking into account only the valence electrons provides a good estimate
for transport and optical properties.

• We have demonstrated good agreement with the results of our calculations with
experiments.
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