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Abstract: With the help of low-dimensional reference equations (ordinary differential equations)
and the corresponding coordinate transformations, the non-stationary 4D quantum oscillator in an
external field is reduced to an autonomous form. The latter, in particular, reflects the existence of a
new type of dynamical symmetry that reduces the equation of motion of a non-stationary oscillator
to an autonomous form that does not change with time. By imposing an additional constraint on the
wave function of the isotropic oscillator, we have obtained the total wave functions of the reacting
hydrogen atom in two different cases: (a) when the non-stationary frequency has two asymptotic
values and there is no external field; and (b) when, in addition to the non-stationary frequency, an
external force acts on the hydrogen atom. The transition S-matrix elements of various elementary
atomic–molecular processes are constructed. The probabilities of quantum transitions of the hydrogen
atom to others, including new bound states, are studied in detail, taking into account the influence of
external forces.

Keywords: time-dependent 4D quantum oscillator; reference equation method; dynamical symmetry;
hydrogen atom in external field; transition S-matrix element

1. Introduction

The hydrogen atom still remains one of the most important systems for research due to
its wide application in practice, and it is also a reference problem for testing new theoretical
concepts of non-relativistic quantum mechanics. In addition, it is well known that the
hydrogen atom is perhaps the most important and rich in hidden symmetries system in
quantum physics. Already from Pauli’s investigation, the Lie algebra of the symmetry
group can be identified as SO(4). However, a reasonable question arises: where does
this “accidental” symmetry come from? Fock addressed this question thoroughly in his
celebrated work “On the theory of the hydrogen atom” [1] and explained the degeneracy
of the energy levels of the Kepler problem (or hydrogen atom) in terms of the dynamical
symmetry group SO(4). In particular, he showed that if one makes a stereographic projec-
tion in momentum space and rescales momenta with energy eigenvalues, then the problem
is equivalent to a geodesic flow on a sphere with unit radius S3. A dynamical symmetry
group isomorphic to O(4) was used by Schwinger [2] to derive the Green’s function of the
Coulomb field in the momentum representation, but a more complete discussion of the
group theory application to the hydrogen atom was given by Bander and Itzykson [3].

As a generalization of Levi–Civita’s parabolic coordinates, Kustaanheimo and Stiefel [4]
introduced a coordinate transformation as applied to the corresponding classical problem.
Boiteux used these coordinate transformations and proved that the bound states of the hy-
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drogen atom correspond to the energy states of a 4D isotropic oscillator with one additional
constraint [5].

The main goal of this work is to construct a mathematically rigorous and consistent
representation of the reacting hydrogen atom (RHA) using the explicit and hidden symmetries
of a 4D isotropic harmonic oscillator. Recall that RHA is understood to mean a hydrogen
atom that is free in the (in) asymptotic state, while in the (out) asymptotic state, as a result
of an elementary atomic–molecular process, it transits to another quantum state, including
the possibility of forming a bound state with another atom or molecule (chemical reaction).

To achieve this goal from a mathematical point of view, it is necessary to solve the
problem of separating variables in a second-order partial differential equation (PDE) of a fairly
general form, which in itself is a very complex and important independent mathematical
problem. Note that as Miller showed in his monograph [6], the problem of separation
of variables in PDE is closely related to one of the most powerful methods of modern
mathematics and mathematical physics, namely the theory of Lie algebras.

In this paper, at the first stage, it is shown that with the help of the so-called reference
equations, i.e., a system of four ordinary differential equations of small dimension, the
original non-stationary Schrödinger equation for an isotropic 4D oscillator is reduced to
an autonomous form with a constant frequency. At the second stage, using coordinate
transformations and imposing an additional constraint on the wave function, the initial
equation for the oscillator is reduced to the equation of a hydrogen atom in an external
field. In the third stage, we construct the S-matrix elements of the transitions and the
probabilities of the corresponding elementary processes involving the hydrogen atom.

In conclusion, the question of the further development of the theory of the reacting
hydrogen atom is considered in detail, taking into account its presence in a medium with
a finite temperature. The latter can be extremely useful for its wide use in solving many
applied problems in physics and chemistry.

2. Statement of the Problem

Let us consider the problem of a 4D oscillator with a non-stationary frequency under
the action of an external force:

i
∂Ψ
∂t

= Ĥ(x, t)Ψ, x = (x1, . . . , x4) ∈ R4, (1)

where R4 denotes the 4D configuration space and the operator Ĥ(x, t) is the Hamiltonian
of the 4D quantum harmonic oscillator (QHO), which is represented in the following form:

Ĥ(x, t) =
4

∑
l=1

{
−1

2
∂2

∂x2
l
+

1
2

Ω2(t)x2
l − F(t)xl

}
, xl , t ∈ (−∞,+∞). (2)

Mind that Equations (1) and (2) are written in units of m = } = 1, where m is the mass of
the oscillator and } is the Plank constant.

We suppose that the problem is described by two (in), (at t → −∞) and (out), (at
t→ +∞) asymptotic subspaces. In particular, let the frequency Ω(t) and the external force
F(t) satisfy the following conditions:

lim
t→±∞

Ω(t) = Ω±, lim
t→±∞

F(t) = 0, (3)

where Ω− and Ω+ denote constant frequencies in the (in) and (out) asymptotic subspaces,
respectively.

Based on the conditions (3), it follows that the quantum system in the asymptotic subspaces
(in) and (out) is described by pure states of orthonormal 4D bases of an isotropic oscillator.

Below, we will consider two typical cases:

1. When there is no external force acting on the non-stationary oscillator, i.e., F(t) ≡ 0
and we have the case of a quantum parametric oscillator (QPO), and
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2. When an external force acts on the non-stationary oscillator, i.e., F(t) 6= 0.

3. Reduction of the 4D QHO Equation to the Autonomous Form

Let us consider the classical oscillator problem, which will play a key role in the further
constructions. Without taking into account external influence, it satisfies the following
homogeneous second-order ordinary differential equation (ODE):

ξ̈ + Ω2(t)ξ = 0, ξ̇ = dξ/dt. (4)

The solution of Equation (4) will be sought in the form:

ξ(t) = σ(t)eiγ(t), σ(t) = |ξ(t)|, γ(t) =
∫ t

−∞

dt′

σ2(t′)
, (5)

where σ(t) specifies the length scale at time t, and τ = γ(t)/Ω− denotes the corresponding
time scale.

It is assumed that the solution ξ(t) satisfies the initial condition:

ξ(t) ∼ eiΩ−t, at t→ −∞. (6)

As a consequence, it is obvious that limt→−∞ σ(t) = 1.
Now, let us consider the equation of an oscillator that is affected by an external force:

η̈ + Ω2(t)η − F(t) = 0, η(−∞) = η̇(−∞) = 0. (7)

Using Green’s function method (see for example [7]), we can construct the solution of the
inhomogeneous Equation (7) by representing it in terms of the complex solution of the
homogeneous Equation (4):

η(t) =
1√
Ω−

{
ξ∗(t) d(t) + ξ(t) d∗(t)

}
, d(t) =

i√
Ω−

∫ t

−∞
ξ(t′)F(t′)dt′. (8)

3.1. The Parametric Quantum Oscillator

Given the representation (5) and the condition (6) (see also [7]), the solution of
Equations (1) and (2) can be written as:

Ψ(x, t) =
(

1
σ2

4

∏
l=1

exp
{
− i

2
σ̇

σ
x2

l

})
Ψ−(y, τ), (9)

where σ̇ = dσ/dt denotes the derivative with respect to time, and Ψ−(y, τ) is the wave
function of a 4D isotropic harmonic oscillator (IHO) with constant frequency Ω−. In addi-
tion, y = (y1, . . . , y4) is the displacement of the quantum oscillator in the 4D space, and
yl = xl/σ(t) denotes a new space coordinate.

Substituting the expression (9) into Equations (1) and (2) and taking into account (4),
we obtain the following Schrödinger equation:

i
∂

∂τ
Ψ− =

1
2

4

∑
l=1

[
− ∂2

∂y2
l
+ Ω2

−y2
l

]
Ψ−, (10)

where {y, τ} denotes a new space–time.
It is easy to see that (10) is an autonomous equation that does not change its form

during the evolution. In other words, with the help of an ordinary differential Equation (4),
which we will call a low-dimensional reference equation, the master Equations (1) and (2)
are reduced to an autonomous form. The latter obviously reflects the presence of a hidden
dynamical symmetry in the quantum system under consideration. The sequence of mathe-
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matical operations that makes it possible to reduce the master equation to an autonomous
form will be referred to below as the reference equation method (REM).

Let us consider the new coordinate system (y1, y2, y3, y4) 7→ (r, θ, φ, ψ) first proposed
by Kustaanheimo and Stiefel (KS transformation) [4] (see also [8]):

y1 = r cos
( θ

2

)
cos
(φ + ψ

2

)
, y2 = r sin

( θ

2

)
cos
(φ− ψ

2

)
,

y3 = r cos
( θ

2

)
sin
(φ + ψ

2

)
, y4 = r sin

( θ

2

)
sin
(φ− ψ

2

)
, (11)

where r =
√

∑4
l=1 y2

l , in addition, φ ∈ [0, 2π] and θ, ψ ∈ [0,+π].
The length element in these coordinates would be:

ds2 = dr2 +
r2

4
(
dθ2 + dφ2 + dψ2 + 2 cos θdφdψ

)
.

Rewriting Equation (10) in the new coordinates and replacing r2 = $, we can find the
following equation for the 4D IHO:

i
∂

∂τ
Ψ̆− = −2

{
1
$

∂

∂$

(
$2 ∂

∂$

)
+

1
$

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

(
∂2

∂φ2 +
∂2

∂ψ2 − 2 cos θ
∂2

∂φ∂ψ

)]
− 1

4
Ω2
−$

}
Ψ̆−. (12)

Recall that Ψ̆−({$}, τ) = Ψ−(y, τ) is the wave function of the IHO in the new coordi-
nates; in addition, the following notation is used for the set of new coordinates; {$} =
($, θ, φ, ψ) ∈ R4.

Since Equation (14) has an autonomous form, its solution can be represented as:

Ψ̆−({$}, τ) = e−iEτΛ({$}), (13)

where E denotes the total energy of the 4D IHO in the new space–time. Substituting (13)
into Equation (14), we obtain:{

1
$

∂

∂$

(
$2 ∂

∂$

)
+

1
$

Ĝ(θ,φ,ψ) +
1
2

E− 1
4

Ω2
−$

}
Λ({$}) = 0. (14)

where the angular operator G̃(θ,φ,ψ) has the form:

G̃(θ,φ,ψ) =

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

(
∂2

∂φ2 +
∂2

∂ψ2 − 2 cos θ
∂2

∂φ∂ψ

)]
.

Representing the wave function Λ({$}) in the form:

Λ({$}) = Λ(0)($)Φ(θ, φ, ψ), (15)

we can obtain two new equations from Equation (14). In particular, the angular part of the
wave function satisfies the following equation:[

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

(
∂2

∂φ2 +
∂2

∂ψ2 − 2 cos θ
∂2

∂φ∂ψ

)
+ λ

]
Φ = 0, (16)
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where λ is some constant, which will be defined below. The radial part of the wave function
satisfies the following second-order ODE:{

1
$2

d
d$

(
$2 d

d$

)
+

[
−

Ω2
−

4
+

E
2$
− λ

$2

]}
Λ(0)($) = 0. (17)

Concerning Equation (16), as we know, this is the equation of a 3D spherical rotator,
which has the following solution:

Φ(θ, φ, ψ) = ΘJKM(θ)ei(Kφ+Mψ), (18)

where

ΘJKM(θ) = z|K−M|/2(1− z)|K+M|/2F(α, β, γ; z), z =
1
2
(1− cos θ),

In addition, the following notations are made:

λ = J(J + 1), J = 0, 1, . . . , M, K = J, J − 1, . . . , 1− J, −J.

Mind that F(α, β, γ; z) is a hyper-geometric function, and its parameters are defined as
follows:

α = −J + |K−M|/2, β = J + |K + M|/2 + |K−M|/2, γ = 1 + |K−M|.

As for the equation for the radial wave function (17), it is not difficult to see that
it describes the wave function of the hydrogen atom and has an exact solution (see for
example [9]):

Λ(0)
nJ ($) = e−ρ/2ρJ L2J+1

n−J−1(ρ), ρ = 2
√

Ω−$, n = 1, 2, . . . (19)

where Lm
n (x) denotes the associated Laguerre polynomial; in addition, recall that for an

isolated hydrogen atom, the energy is E = −Ω− = −1/n2.
Thus, by combining (9), (13), (15) and (18), we can write the wave function of the

reacting 4D isotropic quantum oscillator in the explicit form:

Ψ̆M({$}, t) =
(

1
σ2

4

∏
l=1

exp
{
− i

2
σ̇σy2

l ({$})
})

Λ(0)
nJ ($)ΘJKM(θ)ei(Kφ+Mψ−Eτ). (20)

whereM = (n, J, K, M) denotes a set of quantum numbers describing the quantum state.
However, given that ∑4

l=1 y2
l = $, the wave function (20) can be rewritten as:

Ψ̆M({$}, t) =
1
σ2 e−iEτ(t)−iσ̇σ$/2Λ(0)

nJ ($)ΘJKM(θ)ei(Kφ+Mψ). (21)

Returning to the problem of the hydrogen atom, we note that the wave function of
the reacting hydrogen atom is easily found by requiring the following constraint condition
∂Ψ̆−/∂ψ = 0 for the total wave function of the 4D IHO. It is easy to check that this condition
is equivalent to the case when we put the quantum number M = 0 in the wave function for
the isotropic harmonic oscillator. In other words, we can write the exact expression for the
wave function IHO evolving from the asymptotic subspace (in) with frequency Ω− to the
asymptotic subspace (out), where the oscillator frequency is equal to Ω+:

Ψ̆M0({$0}, t) =
CnJK

σ2(t)
e−iEτ(t)−iσ̇σ$/2Λ(0)

nJ ($)ΘJK(θ)eiKφ, (22)

where CnJK is some constant to be defined below; in addition,M0 = (n, J, K) denotes the
set of quantum numbers characterizing the hydrogen atom, ΘJK(θ) = ΘJKM(θ)

∣∣
M=0 and
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{$0} = ($, θ, φ). In the limit t→ −∞ or in the (in) subspace, the total wave function (22)
must match with the asymptotic wave function Φ̆−M0

({$0}):

Ψ̆M0({$0}, t) −−−−→
t→−∞ Φ̆−M0

({$0}) = CnJKΛ(0)
nJ ($)ΘJK(θ)eiKφ.

Note that the constant CnJK can be found from the normalization condition for the wave
function of an isolated hydrogen atom. In particular, if this is completed in the 3D Euclidean
space R3 3 ($, θ, φ), then we obtain:

C′nJK =
∫ ∞

0

∫ π

0

∫ 2π

0

∣∣Λ(0)
nJ ($)ΘJK(θ)

∣∣2$2 sin θd$dθdφ =

√
(n− J − 1)!
2n(n + J)!

·
( 2

n

) 3
2
. (23)

However, we complete all the construction of the problem in the 4D space, so the normal-
ization of the 3D wave function (22) must also be performed in the 4D space. This new
constant CnJK will obviously be different from C′nJK represented by formula (23). Since
the coefficient C′nJK does not depend on the quantum number K, in what follows, we will
replace CnJK with CnJ .

3.2. Non-Stationary QHO under the Influence of an External Force

Let now consider the case of the non-stationary QHO subjected to an external force,
i.e., F(t) 6= 0. Our goal now is to reduce the problem to the QPO case.

The wave function of a non-stationary QHO, taking into account the external force
action, can be represented as [10]:

Ψ̄(x, t) =
( 4

∏
l=1

exp
{

i[η̇(t)x̄l + Sl(t)]
})

Ψ̄−(x̄, τ), x̄l = xl − η(t), (24)

where η(t) and Sl(t) are unknown functions that we define below based on the requirement
of reducing Equations (1) and (2) to an autonomous form; in addition, x̄ = x̄(x̄1, . . . , x̄4) ∈
R4 denotes the displacement of the oscillator center of mass in 4D Euclidean space. Substi-
tuting (24) into Equations (1) and (2), we obtain:

i
∂Ψ̄−

∂t
=

4

∑
l=1

{
−1

2
∂2

∂x̄l
2 +

1
2

Ω2(t)x̄2
l +

[
η̈ + Ω2(t)η − F(t)

]
x̄l

+
[
Ṡl(t)−

1
2

η̇2 +
1
2

Ω2(t)η2 − F(t)η
]}

Ψ̄−. (25)

It is easy to see that Equation (25) can be reduced to the case of a parametric oscillator
with F(t) = 0. In particular, this can be completed if we require that the following
inhomogeneous equation holds for the classical oscillator (see also (7)):

η̈ + Ω(t)η = F(t), (26)

and also for the following equalities:

Ll(t) = Ṡl(t) =
1
2

η̇2 − 1
2

Ω2(t)η2 + F(t)η, (27)

where Ll(t) is the classical Lagrangian of the 1D oscillator.
Thus, we were able to determine the unknown functions ηl(t) and Sl(t) and, what is

very important, reduce the problem to the case of the QPO. Combining (9), (24) and (27) for



Symmetry 2023, 15, 252 7 of 12

the wave function of a non-stationary QHO that is subjected to an external force, we can
write the following expression:

˘̄ΨM({$̄}, t) =
1

σ2(t)
e−iEτ−iσ̇σ$̄/2Λ(0)

nJ ($̄)

( 4

∏
l=1

ei
[

η̇σȳl({$̄})+Sl(t)
])

ΘJKM(θ)ei(Kφ+Mψ), (28)

where ȳl = x̄l/σ denotes the scaled coordinate shift; in addition, $̄ = ∑4
l=1 ȳ2

l is the radius;
{$̄} = ($̄, θ, φ, ψ) ∈ R4 denotes a set of coordinates, and finally, Sl(t) =

∫ t
−∞ Ll(t′)dt′ is the

action of the 1D classical oscillator. If we now set M = 0, then the wave function (28) will
describe the reacting hydrogen atom, taking into account the external fields’ influence.

In the end, we note that the wave function (28) must be normalized in a 4D space
before using it in some other constructions, such as calculating the matrix elements of
quantum transitions, for example.

4. Transition Probabilities between (in) and (out) Asymptotic Quantum States

In this section, we construct the transition probabilities between two asymptotic states
(in) and (out) for the QPO. Particular attention will be paid to the case when the quantum
number M = 0, i.e., the problem of the hydrogen atom under the influence of external
fields, which leads to a change in the frequency.

Taking into account the condition (3) for the external force, we can claim that in (in)
and (out) asymptotic subspaces, the QPO will be described by purely quantum states:

Φ̆∓M({$}) = Λ(0)∓
n J ($)ΘJKM(θ)ei(Kφ+Mψ), (29)

where Λ(0)∓
n J ($) = e−ρ∓/2(ρ∓)J L2J+1

n−J−1(ρ∓) and ρ∓ = 2Ω∓$ denote the radial parts of the
wave functions of the hydrogen atom in the corresponding asymptotic subspaces. In other
words, our task will be to calculate the probability of transitions between asymptotic states
Φ̆−M({$}) and Φ̆+

M′({$}). In particular, if we assume that in the (in) asymptotic subspace
the QPO was in a pure quantum state Φ̆M({$}), then the evolving total wave function of
the oscillator Ψ̆−M({$}, t) can be represented in the form:

Ψ̆M({$}, t) = ∑
M′

SM′M(t)Φ̆+
M′({$}). (30)

Calculating the expansion coefficient of the sum SMM′(t), we obtain:

SM ;M′(t) =
∫
R4

Ψ̆M({$}, t)Φ̆+
M′({$})d

4V({y}), (31)

where the infinitesimal volume in the new coordinates is defined as follows:

d4V({y}) =
∣∣∣∂(x1, x2, x3, x4)

∂($, ϑ, φ, ψ)

∣∣∣d$dϑdφdψ = σ4(t)
∣∣∣∂(y1, y2, y3, y4)

∂($, ϑ, φ, ψ)

∣∣∣d$dϑdφdψ,

in addition, in expression (31), the symbol {·} denotes the complex conjugate function. As
for the determinant of coordinate transformations in the integral (31), we can calculate it
explicitly using expressions (11):

∣∣∣∂(·)
∂(·)

∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1
2
√

$ cos θ
2 cos φ+ψ

2 −
√

$
2 sin θ

2 cos φ+ψ
2 −

√
$

2 cos θ
2 sin φ+ψ

2 −
√

$
2 cos θ

2 sin φ+ψ
2

1
2
√

$ cos θ
2 sin φ−ψ

2

√
$

2 sin θ
2 cos φ−ψ

2 −
√

$
2 cos θ

2 cos φ−ψ
2

√
$

2 cos θ
2 cos φ−ψ

2
1

2
√

$ cos θ
2 sin φ+ψ

2 −
√

$
2 sin θ

2 sin φ+ψ
2

√
$

2 cos θ
2 cos φ+ψ

2

√
$

2 cos θ
2 cos φ+ψ

2
1

2
√

$ sin θ
2 sin φ−ψ

2

√
$

2 cos θ
2 sin φ−ψ

2

√
$

2 sin θ
2 cos φ−ψ

2 −
√

$
2 sin θ

2 cos φ−ψ
2

∣∣∣∣∣∣∣∣∣∣∣
.

Recall that the calculation shows that the value of the determinant is
∣∣ ∂(·)

∂(·)
∣∣ = $ sin θ

16 .
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The transition S-matrix element can be obtained from the expression (31) in the limit
t→ +∞, the square of the modulus of which will denote the transition probability between
Φ̆−M({$}) and Φ̆+

M′({$}) quantum states:

WM ;M′ = lim
t→+∞

|SM ;M′(t)|2. (32)

For definiteness, below, we are going to study quantum transitions involving the
hydrogen atom in more detail. We are going to consider two asymptotic states described
by the following wave functions:

Φ̆−M0
({$0}) = e−ρ/2ρJ L2J+1

n−J−1(ρ), Φ̆+
M′0

({$0}) = e−ν$/2(νρ)J′L2J′+1
n′−J′−1(νρ), (33)

where ρ = ρ− = 2Ω−$ and ν = Ω+/Ω−.
Note that if we assume that the wave function Φ̆−M0

({$0}) describes an isolated
hydrogen atom, then the wave function Φ̆+

M′0
({$0}) that includes the frequency Ω+ 6= Ω−

will describe the conditionally bonded hydrogen atom. Our task will be to calculate
the probability of transition between these two quantum states WM0M′0 . Taking into
account that the elementary atomic–molecular process occurs in the 4D Euclidean space
R4 3 ($, θ, φ, ψ), the transition S-matrix element can be written as:

SM0 ;M′0(t) =
σ4(t)

16

∫ ∞

0

∫ π

0

∫ π

0

∫ 2π

0
Ψ̆M0({$0}, t)Φ̆+

M′0
({$0})$ sin θd$dθdφdψ, (34)

whereM0 = (n, J, K) andM′
0 = (n′, J′, K′) denote the sets of quantum numbers of the

hydrogen atom, respectively, in (in) and (out) asymptotic states.
Before proceeding to the calculation of the S-matrix element by the formula (34), it is

necessary to normalize both the total and the asymptotic wave functions. In particular, for
the full wave function, this normalization constant will have the form:

CnJK(t) =
4

σ2(t)

(∫ ∞

0

∫ π

0

∫ π

0

∫ 2π

0

∣∣Ψ̆M0({$0}, t)
∣∣2$ sin θd$dθdφdψ

)−1/2

. (35)

Substituting the expression for the hydrogen wave function (22) into (35), we find:

CnJ(t) =
4

σ2(t)

(∫ ∞

0
ρ2J+1e−ρ

[
L2J+1

n−J−1(ρ)
]2d$

)−1/2

. (36)

Now, using a simple formula [11]:∫ ∞

0
zλe−zLλ

m(z)Lλ
n(z)dz =

Γ(n + λ + 1)
n!

δmn, Re(λ) > −1,

we can calculate the integral (36) for the normalization constant:

CnJ(t) =
4

σ2(t)

√
(n− J − 1)!
Γ(n + J + 1)

. (37)

Given (37), the wave function of the reacting hydrogen atom Ψ̆M0
({$0}, t) normalized in

4D space can be written as:

Ψ̆M0
({$0}, t) = CnJ(t)Ψ̆M0({$0}, t). (38)
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Note that the normalized wave function for an isolated hydrogen atom Φ̆−M0
({$0}) can be

obtained from (38) in the t→ −∞ limit, when σ(t)→ 1 and CnJ(t)→ C0
nJ = 4

√
(n−J−1)!
Γ(n+J+1) .

We normalize the asymptotic wave function Φ̆+
M′0({$0}) in a similar way.

Now, given that the following more general integral can be computed exactly [11]:

∫ ∞

0
zα−1e−pzLλ

m(az)Lβ
n(bz)dz =

Γ(α)(λ + 1)m(β + 1)n

m!n!pα

m

∑
j=0

(−m)j(α)j

(λ + 1)j j!

(
a
p

)j

×

n

∑
k=0

(−n)k(j + α)k
(β + 1)kk!

(
b
p

)k

, Re(α) > 0, Re(p) > 0, m, n ∈ N, (39)

we can proceed to the calculation of the S-matrix element (34).
Taking into account that the deformation of the wave function of the reacting hydrogen

occurs only along the radial coordinate and substituting (22), (37), (38) and (33) into the
expression (34), we can find:

SM0 ;M′0(t) = δJ J′δKK′

∫ ∞

0
e−iσ̇σ$/2e−ρ/2ρJ L2J+1

n−J−1(ρ)e
−ν$/2(νρ)J′L2J′+1

n′−J′−1(νρ)ρdρ

= B0
nJKB0

n′ J′K′δJ J′δKK′ν
J′
∫ ∞

0
e−q(t)ρρJ+J′+1L2J+1

n−J−1(ρ)L2J′+1
n′−J′−1(νρ)dρ, (40)

where q(t) =
(
iσ̇(t)σ(t) + 1 + ν

)
/2 and B0

nJ = C0
nJ/4. The integral (40) can be simplified

by writing it in the form:

SnJ ; n′ J(t) = AnJ ; n′ J

∫ ∞

0
ρ2J+1e−q(t)ρL2J+1

n−J−1(ρ)L2J+1
n′−J−1(νρ)dρ,

where AnJ ; n′ J = νJ
√

(n−J−1)!(n′−J−1)!
Γ(n+J+1)Γ(n′+J+1) .

Continuing the calculations taking into account (39), we find:

SnJ ; n′ J(t) = AnJ ; n′ J
1

q2(J+1)(t)

Γ(2J + 2)(2J + 1)n−J−1(2J + 1)n′−J−1

(n− J − 1)!(n′ − J − 1)!
×

n−J−1

∑
j=0

(J − n + 1)j(2J + 2)j

(2J + 1)j j!qj(t)

n′−J−1

∑
k=0

(J − n′ + 1)k(j + 2J + 2)k
(2J + 2)kk!

[
ν

q(t)

]k

(41)

With the help of (39), we can explicitly write the first two elements of the S-matrix:

S10 ; 10(t) =
4

[1 + ν + iσ̇(t)σ(t)]2
, S21 ; 21(t) =

16ν

[1 + ν + iσ̇(t)σ(t)]4
. (42)

As we can easily see, there are strict selection rules for quantum transitions. Only those
transitions are possible that can be represented in the form Sn(n−1) ; n(n−1) ; n ∈ N. Returning
to the transition probability issue, we note that in this case, it is very important to study
the S-matrix elements’ behaviour in the t → +∞ limit, when the frequency Ω(t) tends
to a constant value Ω+. To carry out the necessary research, we need to turn to the
classical oscillator problem (4), since the modulus of its solution determines the function
σ(t) = |ξ(t)|.

In the (out) subspace, i.e., in the t→ +∞ limit, Equation (4) is simplified and, accord-
ingly, its solution can be formally represented as a combination of the incident and reflected
waves [7]:

ξ(t) = c1eiΩ+t − c2e−iΩ+t, |c1|2 − |c2|2 =
Ω−
Ω+

, (43)
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where c1 and c2 are some complex constants that can be found after solving Equation (4)
over the entire time interval −∞ < t < +∞.

Given (43) for the σ(t) function, it is easy to find the following expression:

σ(t) =
√

c̄2
1 + c̄2

2 + 2c̄1 c̄2 cos(δ1 − δ2 − 2Ω+t), (44)

where c̄j = |cj| and δj = arg(cj), j = 1, 2.
Continuing the calculations and taking into account (44), we find that:

σ̇(t)σ(t) = −2c̄1 c̄2Ω+ sin(δ1 − δ2 − 2Ω+t), (45)

and accordingly, the S-matrix elements will be:

S10 ; 10(t) =
4

χ2(t)
, S21 ; 21(t) =

16ν

χ4(t)
, (46)

where χ(t) = [1 + ν− i2c̄1 c̄2Ω+ sin(δ1 − δ2 − 2Ω+t)].
From (46), it becomes obvious that in the limit of t→ +∞, the elements of the S-matrix

do not converge to constant limits but perform periodic oscillations. Based on this, it is
necessary to additionally integrate the elements of the S-matrix over the oscillation period:

S̄nJ ; n′ J =
Ω+

π

∫ π/Ω+

0
SnJ ; n′ J(t)dt,

Accordingly, the transition probability per unit time will be determined as follows:

WnJ ; n′ J = |S̄nJ ; n′ J |2.

The analysis shows that quantum transitions can be calculated in a similar way also for
the model of a reacting hydrogen atom when it is affected by an external force. However,
in this case, there is no special selection law, and quantum transitions between any states
are possible.

5. Conclusions

In addition to the obvious relevance of the results obtained for the theory of atomic–
molecular collisions and reactions, where the importance of exact results cannot be overes-
timated, the developed approach is also of great importance for the theory of fundamental
processes. The fact is that from the moment of the first attempts to construct a field theory
to obtain fundamental solutions, the main approach was to reduce the dimension of the
problem. However, after Fock’s fundamental work [1], it became obvious to everyone that
the problem can also be simplified by increasing its dimension and bringing it to a form in
which the symmetry of the problem is realized in a natural way and most completely. Recall
that Fock used the dynamic symmetry group SO(4) to explain the degenerate energy levels
of the hydrogen atom. In addition, which is very important, he proved the equivalence of
the considered problem to the propagation of a geodesic flow on the surface of 3D sphere
of unit radius.

The point becomes much more complicated when we consider an arbitrarily moving
non-stationary 4D quantum oscillator, which, logically, should break the hidden symmetries
of a quantum system. Moreover, one would expect that the connection between the
problem of an isotropic harmonic oscillator in a real 4D space and the Kepler problem
in an ordinary 3D space would also be broken [5,12,13]. However, as we showed in this
paper using the example of a non-stationary 4D-isotropic oscillator, by the low-dimensional
reference equation method, the initial Schrödinger equation reduces to an autonomous
form. However, as we have shown in this article, using the low-dimensional reference
Equation (4), the original Schrödinger Equations (1) and (2) for the non-stationary 4D
isotropic oscillator is reduced to an autonomous form (10). In other words, we have proved
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the existence of a new type of dynamical symmetry that preserves the invariant form of the
master equation with respect to time in which the reference equation plays a key role. Note
that the Schrödinger equation also reduces to an autonomous form for the case when an
external force acts on the oscillator. After reducing the equation to an autonomous form, the
coordinate transformation KS (11) is used, which makes it possible to reduce the problem
to the Kepler problem and solve it exactly both for the wave function of the oscillator (see
expressions (21) and (28)) and for the hydrogen atom (see (22) and (28), substituting in it
M = 0).

An important result is the calculation of the explicit expressions of transition S-matrix
elements for a reacting hydrogen atom in the absence of an external field (41) and (42). This
problem is basic for calculating rearrangement processes in the theory of atomic–molecular
collisions, so that in the near future, we can expect a revision of many results for three-
and many-particle reactive collisions and an increase in the efficiency of their calculations.
On the other hand, in view of the special role of the hydrogen atom in the theory of
fundamental processes, it seems to us that the performed calculations make it possible to
shed new light on some approaches to the formulation of the theory of elementary particles,
especially in terms of the influence of hidden symmetries on the selection rules.

Finally, note that the method can be easily generalized to the case when the oscillator
is immersed in a thermostat with a finite temperature (see [14] and also [15]). This, in
particular, will make it possible to construct the thermodynamics of the reacting hydrogen
atom in various media from the first principles of quantum mechanics, which will be very
instructive both from the point of view of the foundations of quantum physics and for
solving many important applied problems of physics and chemistry.
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PDE partial differential equation
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