
Citation: Alam, K.H.; Rohen, Y.;

Saleem, N. Fixed Points of (α, β, F∗)

and (α, β, F∗∗)-Weak Geraghty

Contractions with an Application.

Symmetry 2023, 15, 243. https://

doi.org/10.3390/sym15010243

Academic Editor: Alexander

Zaslavski

Received: 23 December 2022

Revised: 12 January 2023

Accepted: 13 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Fixed Points of (α, β, F∗) and (α, β, F∗∗)-Weak Geraghty
Contractions with an Application
Khairul Habib Alam 1 , Yumnam Rohen 1 and Naeem Saleem 2,*

1 Department of Mathematics, National Institute of Techmology Manipur, Imphal 795004, India
2 Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
* Correspondence: naeem.saleem2@gmail.com

Abstract: This study aims to provide some new classes of (α, β, F∗)-weak Geraghty contraction and
(α, β, F∗∗)-weak Geraghty contraction, which are self-generalized contractions on any metric space.
Furthermore, we find that the mappings satisfying the definition of such contractions have a unique
fixed point if the underlying space is complete. In addition, we provide an application showing the
uniqueness of the solution of the two-point boundary value problem.
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1. Introduction and Preliminaries

The Banach contraction theorem [1] has numerous extensions and generalizations. In
1973, Micheal A. Geraghty [2] introduced an intriguing contraction. By taking this into
account, he examined some auxiliary functions for the existence and uniqueness of map-
pings in any complete metric spaces. The idea of α-contractive and α-admissible mappings
was first presented in 2012 by Samet et al. [3], who also produced a number of fixed-point
results for mappings that satisfy such contraction conditions. Later in 2013, Karapinar
et al. [4] introduced an idea of triangular α-admissible mapping, which extended the scope
of the α-admissibile mappings. Cho et al. [5] introduced the idea of α-Geragthy contrac-
tion mappings, which generalizes the idea of α-admissible mappings. Chandok [6] state
and proved some interesting fixed point results for (α, β)-admissible Geraghty contractive
mappings in 2015. On the other hand, Wardowski [7] in 2012 introduced the concept of
F-contraction, while Wardowski et al. [8] defined the F-weak contraction and demonstrated
some fixed point results as a generalization of Banach’s result in 2014. The outcomes of
this deduction are presented in the publications [9–13] in the setting of generalized metric
spaces. By altering the criteria of Wardowski [7], the authors in [14–16] developed a new
class of functions and established numerous generalized contraction theorems. The findings
of Alfaqih et al. [15], who introduced F∗-weak contraction, and Badre [16], who introduced
F∗∗-weak contraction, are the ones that will have the biggest impact on our main findings.

Furthermore, symmetry is a potential property of a Banach space, which is closely
connected to fixed point problems (as discussed in [17]). This enhances the practical appli-
cation of the subject to different fields. Since symmetry is a self-mapping of object A such
that the structure is preserved, Saleem et al. [18] and Sain [19] provided several possible
ways that this mapping could occur. By using the concept of symmetry, Neugebauer [17]
obtained several applications of a layered compression expansion fixed-point theorem in
the existence of solutions of a 2nd ordered difference equation with Dirichlet boundary
conditions.

This paper contains the following notations: N is the collection of natural numbers, R
is the collection of real numbers, and the group of positive real numbers is designated as R+.
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After the subsequent result of the Banach contraction theorem M. Edelstein [20]
first presented in 1962, we will now review certain definitions, findings, and examples
as follows:

Theorem 1 ([20]). For all ϑ1, ϑ2 ∈ V with ϑ1 6= ϑ2, a self-mapping H : V −→ V in a compact
metric space (V, d) is such that d(Hϑ1, Hϑ2) < d(ϑ1, ϑ2). Then H must have a unique fixed point
in V.

Definition 1 ([2]). A self-mapping H : V −→ V, where (V, d) is any metric space, is called a
Geraghty contraction if there is a function

β : (0,+∞) −→ [0, 1) with lim
n→+∞

rn = 0 whenever lim
n→+∞

β(rn) = 1 (1)

such that for all ϑ1, ϑ2 ∈ V,

d(Hϑ1, Hϑ2) ≤ β(d(ϑ1, ϑ2))d(ϑ1, ϑ2).

Consider the collection of this type of β function as B.

Example 1. The functions 1
1+r , e−r belong to the collection B.

Definition 2 ([3]). Let H : V −→ V and α : V ×V −→ [0,+∞) are two mappings. Then, the
self-mapping H is called α-admissible if for all ϑ1, ϑ2 ∈ V,

α(Hϑ1, Hϑ2) ≥ 1, whenever α(ϑ1, ϑ2) ≥ 1. (2)

Definition 3 ([5]). A self-mapping H : V −→ V, where (V, d) is any metric space, is called
α-Geraghty generalized contraction mapping if there exist mappings α : V ×V −→ R and β ∈ B

such that for all ϑ1, ϑ2 ∈ V,

α(ϑ1, ϑ2)d(Hϑ1, Hϑ2) ≤ β(M(ϑ1, ϑ2))M(ϑ1, ϑ2), (3)

where M(ϑ1, ϑ2) = max{d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2)}.

Definition 4 ([7]). A self-mapping H : V −→ V, where (V, d) is any metric space, is called an
F-contraction if for some τ > 0 and for all ϑ1, ϑ2 ∈ V, d(Hϑ1, Hϑ2) > 0, we have

τ + F(d(Hϑ1, Hϑ2)) ≤ F(d(ϑ1, ϑ2)). (4)

where F : R+ −→ R is a mapping that satisfies:

(F1) r < s⇒ F(r) < F(s), f or all r, s ∈ R+;
(F2) lim

n→∞
rn = 0 if and only if lim

n→∞
F(rn) = −∞, where {rn}n∈N is any sequence in R+;

(F3) for some δ ∈ (0, 1), lim
r→0+

rδF(r) = 0.

Consider the collection of this type of function F as F .

Example 2. The functions ln r, ln r + r,− 1√
r , ln(r + r2) belong to the collection F .

Remark 1. From the Inequality (4) and Condition (F1) of Definition 4, we have d(Hϑ1, Hϑ2) <
d(ϑ1, ϑ2) when d(Hϑ1, Hϑ2) > 0, and also when d(ϑ1, ϑ2) = 0 we have d(Hϑ1, Hϑ2) = 0; thus,
F-contractions are continuous.

Theorem 2 ([7]). An F-contraction is a self-mapping H : V −→ V, where (V, d) is a complete
metric space and must have a unique fixed point ϑ∗ ∈ V and sequence {Hnϑ0}n∈N converges to ϑ∗

for every ϑ0 ∈ V.
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Proposition 1 ([21]). Let {ϑn} be any sequence in any metric space (V, d) which is not Cauchy
and

lim
n→+∞

d(ϑn+1, ϑn) = 0,

then for any ε > 0, there will be subsequences {ϑpn}, {ϑqn} of the sequence {ϑn} with

n ≤ qn < pn, d(ϑpn−1, ϑqn) < ε ≤ d(ϑpn , ϑqn), ∀n ∈ N

and
lim

n→+∞
d(ϑpn , ϑqn) = lim

n→+∞
d(ϑpn−1, ϑqn−1) = ε.

Definition 5 ([8]). A self-mapping H : V → V, where (V, d) is any metric space, is called an
F-weak contraction if for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0, there exists τ > 0 and F ∈ F
satisfies

τ + F(d(Hϑ1, Hϑ2)) ≤ F
(

max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),

d(ϑ1, Hϑ2) + d(ϑ2, Hϑ1)

2

})
.

Remark 2. Since for every F-contraction H, we have

τ + F(d(Hϑ1, Hϑ2) ≤ F(d(ϑ1, ϑ2))

≤ F
(

max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),

d(ϑ1, Hϑ2) + d(ϑ2, Hϑ1)

2

})
,

This implies that every F-contraction is an F-weak contraction.

Example 3. Let H : [0, 1]→ [0, 1] be given by

H(ϑ) =

{ 1
2 if ϑ ∈ [0, 1)
1
4 if ϑ = 1

Clearly, H is not continuous and from Remark 1, H is not an F-contraction. For any ϑ1 ∈ [0, 1)
and ϑ2 = 1, we have

d(Hϑ1, Hϑ2) = d
(

1
2

,
1
4

)
=
∣∣∣1
2
− 1

4

∣∣∣ = 1
4
> 0

and

max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),
d(ϑ1, Hϑ2) + d(ϑ2, Hϑ1)

2

}
≥

d(ϑ2, Hϑ2) =
3
4

.

So, if we take F(r) = ln r, r ∈ R+, H becomes an F-weak contraction for τ = ln 3.
This example proves that every F-weak contraction may not be an F-contraction.

Theorem 3 ([8]). If an F-weak contraction H : V → V, where (V, d) is a complete metric space is
such that either H or F is continuous, then H must have unique a fixed point ϑ∗ ∈ V and sequence
{Hnϑ0}n∈N will converge to ϑ∗ for any choice ϑ0 ∈ V.
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Definition 6 ([14]). A mapping H : V → V, where (V, d) is any metric space, is called an
F-Suzuki contraction if for all ϑ1, ϑ2 ∈ V, there exists τ > 0 that satisfies

1
2

d(ϑ1, Hϑ1) < d(ϑ1, ϑ2)⇒ τ + F(d(Hϑ1, Hϑ2)) ≤ F(d(ϑ1, ϑ2)).

where F : R+ → R be a mapping that satisfies:

(F1) For all r, s ∈ R+ with r < s⇒ F(r) < F(s).
(F2′) inf F = −∞.
(F3′) F is continuous on R+.

Consider the collection of this type of function F as F.

Example 4. The functions − 1
r ,− 1

r + r, 1
1−er , 1

er−e−r belong to F.

Theorem 4 ([14]). An F-Suzuki contraction self-mapping H : V −→ V, where (V, d) is a
complete metric space, must have a unique fixed point ϑ∗ ∈ V and sequence {Hnϑ0}n∈N must
converge to ϑ∗ for every ϑ0 ∈ V.

Theorem 5 ([14]). Let H : V → V be a self map, where (V, d) is a complete metric space. If for all
ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0, there exists τ > 0 and F ∈ F that satisfies

τ + F(d(Hϑ1, Hϑ2)) ≤ F(d(ϑ1, ϑ2)).

Then, H must have a unique fixed point ϑ∗ ∈ V and sequence {Hnϑ0}n∈N will converge to ϑ∗ for
any ϑ0 ∈ V.

Remark 3. The condition (F3) of Definition 4 and (F3′) of Definition 6 do not depend on each
other. Indeed, for p ≥ 1, F(r) = − 1

rp does not satisfy (F3) but satisfies (F1), (F2) of Definition 4
and also the condition (F3′) of Definition 6. So, we have, F * F . Again, F(r) = − 1

(r+[r])t for

t ∈ (0, 1
a ), a > 1 does not satisfy (F3′) but satisfies (F1), (F2) and also (F3) of Definition 4 for

k ∈ ( 1
a , 1). Consequently, F * F. Additionally, if F(r) = ln r, then F ∈ F ∩ F. Consequently,

F ∩ F 6= φ. As a result, some functions with fixed points do not satisfy the contraction condition
by functions that belongs to F .

Alfaqih et al., in [15], introduced a new collection F ′ of functions F : (0, ∞) → R
satisfying only one side implication condition:

(F2′′) lim
n→∞

F(rn) = −∞⇒ lim
n→∞

rn = 0, where {rn}n∈N is sequence in R+

Clearly, F ⊂ F ′. The example given below demonstrates that in general, the converse
inclusion is not true.

Example 5. The function ln( r
2 + sin r) ∈ F ′ does not satisfy (F1) of Definition 4. In addition, the

functions cos r− 1
r , sin r− 1

r ∈ F ′ do not satisfy both (F1) and (F3) of Definition 4.

Definition 7 ([15]). A self-mapping H : V → V, where (V, d) is a metric space, is called an
F∗-weak contraction if for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0, there are some τ > 0 and F ∈ F ′
that satisfy

τ + F(d(Hϑ1, Hϑ2)) ≤ F(m(ϑ1, ϑ2)), (5)

where m(ϑ1, ϑ2) = max{d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2)}.

Theorem 6 ([15]). An F∗-weak contraction H : V → V, where (V, d) is a complete metric space,
is such that F is continuous; then, H must have a unique fixed point ϑ∗ ∈ V and for all ϑ0 ∈ V,
lim

n→∞
Hnϑ0 = ϑ∗. Moreover, lim

n→∞
m(Hnϑ0, ϑ∗) = 0 if and only if H is continuous at ϑ∗.
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The set F′ of mappings F : R+ → R fulfilling (F1), (F2′′) and (F3) was utilized by
Sachin V. Bedre [16] to define a new contraction in his paper. We define set F ′′ fulfilling
(F1) and (F2′′).

Definition 8 ([16]). A self-mapping H : V → V, where (V, d) is a metric space, is called an
F∗∗-weak contraction if for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0, there are some τ > 0 and F ∈ F′

which satisfies
τ + F(d(Hϑ1, Hϑ2)) ≤ F(m′(ϑ1, ϑ2)), (6)

where

m′(ϑ1, ϑ2) = max{d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2), d(ϑ1, Hϑ2), d(ϑ2, Hϑ1)}.

Theorem 7 ([16]). An F∗∗-weak contraction H : V → V, where (V, d) is a complete metric space
is such that F is continuous; then, H must have a unique fixed point ϑ∗ ∈ V and for all ϑ0 ∈ V,
lim

n→∞
Hnϑ0 = ϑ∗. Moreover, lim

n→∞
m′(Hnϑ0, ϑ∗) = 0 if and only if H is continuous at ϑ∗.

2. Main Results

We use the definitions of F∗ and F∗∗-weak contractions to define the (α, β, F∗)-weak
Geragthy contraction and (α, β, F∗∗)-weak Geraghty contraction as well as two new classes
of contractions. In addition, we state and prove some results for the functions that will
satisfy the definitions and some more extra conditions. There are also some examples
satisfying our results and having a unique fixed point. There are some corollaries that are
deduced from our main result.

Definition 9. Let (V, d) be a metric space and α : V × V −→ [0,+∞). Then, a mapping
H : V −→ V is called an (α, β, F∗)-weak Geraghty generalized contraction if for some F ∈ F ′,
τ > 0, and for a β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m(ϑ1, ϑ2))F(m(ϑ1, ϑ2)), (7)

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0, and α(ϑ1, ϑ2) ≥ 1,
where m(ϑ1, ϑ2) = max{d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2)}.

Definition 10. Let (V, d) be a metric space and α : V × V −→ [0,+∞). Then, a mapping
H : V −→ V will be called an (α, β, F∗∗)-weak Geraghty generalized contraction if for some
F ∈ F ′′ and τ > 0 and for a β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m′(ϑ1, ϑ2))F(m′(ϑ1, ϑ2)), (8)

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1,
where

m′(ϑ1, ϑ2) = max{d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2), d(ϑ1, Hϑ2), d(ϑ2, Hϑ1)}.

Remark 4. Note that m(ϑ1, ϑ2) ≤ m′(ϑ1, ϑ2) and F ′′ ⊂ F ′. So, for F ∈ F ′′, every (α, β, F∗)-
weak Geraghty generalized contraction is again an (α, β, F∗∗)-weak Geraghty generalized con-
traction. However, for F ∈ F ′, an (α, β, F∗)-weak Geraghty generalized contraction is not an
(α, β, F∗∗)-weak Geraghty generalized contraction.

Theorem 8. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is an
(α, β, F∗)-weak Geraghty generalized contraction and F is continuous; then, the self-mapping H
has a unique fixed point ϑ∗ ∈ V and sequence {Hnϑ0}n∈N must converge to ϑ∗ for every ϑ0 ∈ V.
Moreover, H is a continuous at ϑ∗ if and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.
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Proof. For arbitrary ϑ0 ∈ V, let us define a sequence {ϑn} by:

ϑ1 = Hϑ0,
ϑ2 = Hϑ1,

...
ϑn+1 = Hϑn, ∀n ∈ N.

If there is m ∈ N with ϑm+1 = ϑm, then we have proved it, since then ϑm is the required
point. Suppose ϑn 6= ϑn+1, ∀n ∈ N. Since α(ϑn, ϑn−1) ≥ 1, we have

τ + F(d(Hϑn, Hϑn−1)) ≤ α(ϑn, ϑn−1)(τ + F(d(Hϑn, Hϑn−1))
≤ β(m(ϑn, ϑn−1))F(m(ϑn, ϑn−1))

⇒ τ + F(d(ϑn+1, ϑn)) ≤ β(m(ϑn, ϑn−1))F(m(ϑn, ϑn−1)),
where

m(ϑn, ϑn−1) = max{d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1)}
= max{d(ϑn, ϑn+1), d(ϑn, ϑn−1)}

Let m(ϑn, ϑn−1) = d(ϑn, ϑn+1), then

τ + F(d(ϑn+1, ϑn)) ≤ β(m(ϑn, ϑn−1))F(m(ϑn, ϑn−1))
⇒ τ + F(d(ϑn+1, ϑn)) ≤ F(m(ϑn, ϑn−1)), Since β(m(ϑn, ϑn+1)) ≤ 1.

which implies τ < 0, which is a contradiction.

Hence m(ϑn, ϑn−1) = d(ϑn, ϑn−1); thus, we have

F(d(ϑn+1, ϑn)) ≤ F(d(ϑn, ϑn−1))− τ

≤ F(d(ϑn−1, ϑn−2))− 2τ

...

≤ F(d(ϑ0, ϑ1))− nτ,

lim
n→+∞

F(d(ϑn+1, ϑn)) = −∞.

which implies
lim

n→+∞
d(ϑn+1, ϑn) = 0. (9)

Now, we will demonstrate that sequence {ϑn} is a Cauchy sequence. On the other hand,
suppose that {ϑn} is not a Cauchy sequence. Then, according to Proposition 1, for any
ε > 0, there will be two subsequences {ϑpn}, {ϑqn} of the sequence {ϑn} which satisfies

n ≤ qn < pn, d(ϑpn−1, ϑqn) < ε ≤ d(ϑpn , ϑqn), ∀n ∈ N (10)

and
lim

n→+∞
d(ϑpn , ϑqn) = lim

n→+∞
d(ϑpn−1, ϑqn−1) = ε. (11)

Then, we will find N ∈ N such that d(ϑpn , ϑqn) > 0, ∀n ≥ N. Putting ϑ1 = ϑpn−1 and
ϑ2 = ϑqn−1 in the contraction condition of the definition, we have

τ + F(d(Hϑpn−1, Hϑqn−1)) ≤ α(ϑpn−1, ϑqn−1)(τ + F(d(Hϑpn−1, Hϑqn−1))

≤ β(m(ϑpn−1, ϑqn−1))F(m(ϑpn−1, ϑqn−1))

⇒ τ + F(d(ϑpn , ϑqn)) ≤ β(m(ϑpn−1, ϑqn−1))F(m(ϑpn−1, ϑqn−1)),
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where

m(ϑpn−1, ϑqn−1) = max{d(ϑpn−1, ϑqn−1), d(ϑpn−1, Hϑpn−1), d(ϑqn−1, Hϑqn−1}
= max{d(ϑpn−1, ϑqn−1), d(ϑpn−1, ϑpn), d(ϑqn−1, ϑqn}.

Thus, using (9) and (11), we have

lim
n→+∞

m(ϑpn−1, ϑqn−1) = ε.

Since F is a continuous, limiting as n→ +∞, from the inequality,

τ + F(d(ϑpn , ϑqn)) ≤ β(m(ϑpn−1, ϑqn−1))F(m(ϑpn−1, ϑqn−1))

≤ F(m(ϑpn−1, ϑqn−1)),

we have τ ≤ 0, i.e., we arrived at a contradiction. So, the sequence {ϑn}n∈N is a Cauchy
sequence. Being (V, d) a complete metric space, the sequence {ϑn} is convergent. Then,
there must be a ϑ∗ ∈ V at which {ϑn} converges.

To prove Hϑ∗ = ϑ∗, if there is a subsequence {ϑpn} of {ϑn} satisfying lim
n→+∞

ϑpn = Hϑ∗,

then Hϑ∗ = ϑ∗. Suppose there is no such subsequence; then, Hϑpn 6= Hϑ∗ for any
subsequence {ϑpn}. In this case, Hϑ∗ 6= ϑ∗, i.e., d(Hϑpn , Hϑ∗) > 0 and d(Hϑ∗, ϑ∗) > 0.
Which gives

τ + F(d(Hϑpn , Hϑ∗)) ≤ β(m(ϑpn , ϑ∗))F(m(ϑpn , ϑ∗)) ≤ F(m(ϑpn , ϑ∗)),

where

m(ϑpn , ϑ∗) = max{d(ϑpn , ϑ∗), d(ϑpn , Hϑpn), d(ϑ∗, Hϑ∗)}
= max{d(ϑpn , ϑ∗), d(ϑpn , ϑpn+1), d(ϑ∗, Hϑ∗)}

⇒ lim
n→+∞

m(ϑpn , ϑ∗) = d(ϑ∗, Hϑ∗).

By limiting, the last inequality becomes τ + F(d(ϑ∗, Hϑ∗)) ≤ F(d(ϑ∗, Hϑ∗)). Again, we
arrived at a contradiction. Hence, Hϑ∗ = ϑ∗.

Now, we will prove the uniqueness of the point ϑ∗. On the contrary, suppose that
there are two distinct points ϑ∗, ϑ∗∗ ∈ V such that {ϑn} converges to both ϑ∗, ϑ∗∗ and
Hϑ∗ = ϑ∗, Hϑ∗∗ = ϑ∗∗. Since ϑ∗ 6= ϑ∗∗, we have d(Hϑ∗, Hϑ∗∗) = d(ϑ∗, ϑ∗∗) > 0 and this
implies

τ + F(d(Hϑ∗, Hϑ∗∗)) ≤ β(m(ϑ∗, ϑ∗∗))F(m(ϑ∗, ϑ∗∗)) ≤ F(m(ϑ∗, ϑ∗∗)),

where

m(ϑ∗, ϑ∗∗) = max{d(ϑ∗, ϑ∗∗), d(ϑ∗, Hϑ∗), d(ϑ∗∗, Hϑ∗∗)}
= d(ϑ∗, ϑ∗∗).

So, from the last inequality, τ + F(d(ϑ∗, ϑ∗∗)) ≤ F(d(ϑ∗, ϑ∗∗)), which is a contradiction. So,
we have ϑ∗ = ϑ∗∗, which implies ϑ∗ is unique.
For the last part, let ϑn → ϑ∗ = Hϑ∗ and suppose H is continuous at ϑ∗. Then, Hϑn →
Hϑ∗ = ϑ∗, i.e., lim

n→+∞
d(ϑn, ϑ∗) = 0⇒ lim

n→+∞
d(Hϑn, Hϑ∗) = 0, which gives

lim
n→+∞

m(ϑn, ϑ∗) = lim
n→+∞

(max{d(ϑn, ϑ∗), d(ϑn, Hϑn), d(Hϑ∗, ϑ∗)})

= max{d(ϑ∗, ϑ∗), d(ϑ∗, Hϑ∗)}
= 0.
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Conversely, let

lim
n→+∞

m(ϑn, ϑ∗) = 0

⇒ lim
n→+∞

(max{d(ϑn, ϑ∗), d(ϑn, Hϑn), d(Hϑ∗, ϑ∗)}) = 0

⇒ lim
n→+∞

d(ϑn, Hϑn) = 0

⇒ lim
n→+∞

Hϑn = lim
n→+∞

ϑn = ϑ∗ = Hϑ∗

Thus, H is continuous at ϑ∗.

Example 6. Let V = [0, 1] and du is a usual metric of R. Then, (V, du) is a complete metric space.
Let H : V −→ V given by

H(ϑ) =

{ 3
4 if ϑ ∈ [0, 1)
1
3 if ϑ = 1

,

α : V ×V −→ [0,+∞) given by

α(ϑ1, ϑ2) =

{
1 if ϑ1 ∈ [0, 1)
0 otherwise

,

β ∈ B given by

β(r) =
1

1 + r
, ∀r ∈ [0,+∞),

and F ∈ F ′ given by

F(r) = cos r− 1
r

, for all r ∈ R+.

Then, H becomes a (α, β, F∗)-weak Geragthy contraction for τ = 1, so, by Theorem 8, it has a
unique fixed point. Clearly, 3

4 ∈ [0, 1] is the only one point such that H( 3
4 ) =

3
4 .

Theorem 9. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is an
(α, β, F∗∗)-weak Geraghty generalized contraction and F is continuous; then, the self-mapping H
must have a unique fixed point ϑ∗ ∈ V and sequence {Hnϑ0}n∈N must converge to ϑ∗ for every
ϑ0 ∈ V. Moreover, H is continuous at ϑ∗ if and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Moving forward, we shall have a sequence {ϑn}, in a manner identical to the
demonstration of Theorem 8, such that

τ + F(d(ϑn+1, ϑn)) ≤ β(m′(ϑn, ϑn−1))F(m′(ϑn, ϑn−1)),

where

m′(ϑn, ϑn−1) = max{d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1), d(ϑn, Hϑn−1),

d(ϑn−1, Hϑn)}
≤ max{d(ϑn, ϑn+1), d(ϑn, ϑn−1), d(ϑn−1, ϑn) + d(ϑn, ϑn+1)}
= d(ϑn−1, ϑn) + d(ϑn, ϑn+1).

So, we have

F(d(ϑn+1, ϑn)) ≤ F(d(ϑn, ϑn−1) + d(ϑn, ϑn+1))− τ

≤ F(d(ϑn−1, ϑn−2) + d(ϑn−1, ϑn))− 2τ

...

≤ F(d(ϑ0, ϑ1) + d(ϑ1, ϑ2))− nτ
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which implies
lim

n→+∞
F(d(ϑn+1, ϑn)) = −∞.

⇒ lim
n→+∞

d(ϑn+1, ϑn) = 0. (12)

We will now demonstrate that {ϑn} is Cauchy. On the other hand, suppose that {ϑn} is not
Cauchy. Then, according to Proposition 1 for any ε > 0, there will be two subsequences
{ϑpn}, {ϑqn} of the sequence {ϑn} that satisfies

n ≤ qn < pn, d(ϑpn−1, ϑqn) < ε ≤ d(ϑpn , ϑqn), ∀n ∈ N

and
lim

n→+∞
d(ϑpn , ϑqn) = lim

n→+∞
d(ϑpn−1, ϑqn−1) = ε. (13)

Now,
ε ≤ d(ϑpn , ϑqn) ≤ d(ϑpn , ϑqn+1) + d(ϑqn , ϑqn+1)

⇒ ε ≤ d(ϑpn , ϑqn+1) ≤ d(ϑpn , ϑqn) + d(ϑqn , ϑqn+1),
by limiting n→ +∞ and triangle inequality.

⇒ lim
n→+∞

d(ϑpn , ϑqn+1) = ε, by (12) and (13). (14)

Similarly, we have
⇒ lim

n→+∞
d(ϑpn+1, ϑqn) = ε. (15)

Using the inequalities

d(ϑpn+1, ϑqn+1) ≤ d(ϑpn+1, ϑqn) + d(ϑpn , ϑqn) + d(ϑqn , ϑqn+1),

ε ≤ d(ϑpn , ϑqn) ≤ d(ϑpn , ϑpn+1) + d(ϑpn+1, ϑqn+1) + d(ϑqn , ϑqn+1),

and (12)–(15), we have
⇒ lim

n→+∞
d(ϑpn+1, ϑqn+1) = ε. (16)

Again

m′(ϑpn−1, ϑqn−1) = max{d(ϑpn−1, ϑqn−1), d(ϑpn−1, Hϑpn−1), d(ϑqn−1, Hϑqn−1),

d(ϑpn−1, Hϑqn−1), d(ϑqn−1, Hϑpn−1)}
= max{d(ϑpn−1, ϑqn−1), d(ϑpn−1, ϑpn), d(ϑqn−1, ϑqn),

d(ϑpn−1, ϑqn), d(ϑqn−1, ϑpn)}.

Thus using (12)–(16) we have

lim
n→+∞

m′(ϑpn−1, ϑqn−1) = ε.

Being F continuous, limiting as n→ +∞, from the inequality,

τ + F(d(ϑpn , ϑqn)) ≤ β(m′(ϑpn−1, ϑqn−1))F(m′(ϑpn−1, ϑqn−1))

≤ F(m′(ϑpn−1, ϑqn−1)),

we have τ ≤ 0; i.e., we arrived at a contradiction. So, the sequence {ϑn}n∈N is Cauchy.
Since (V, d) is complete, the sequence {ϑn} is convergent. Then, there must be a ϑ∗ ∈ V at
which {ϑn} converges.

To prove Hϑ∗ = ϑ∗, if there is a subsequence {ϑpn} of {ϑn} satisfying lim
n→+∞

ϑpn = Hϑ∗,

then Hϑ∗ = ϑ∗. Suppose there is no such subsequence; then, Hϑpn 6= Hϑ∗ for any
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subsequence {ϑpn}. In this case, Hϑ∗ 6= ϑ∗, i.e., d(Hϑpn , Hϑ∗) > 0 and d(Hϑ∗, ϑ∗) > 0,
which gives

τ + F(d(Hϑpn , Hϑ∗)) ≤ β(m′(ϑpn , ϑ∗))F(m′(ϑpn , ϑ∗)) ≤ F(m′(ϑpn , ϑ∗)),

where

m′(ϑpn , ϑ∗) = max{d(ϑpn , ϑ∗), d(ϑpn , Hϑpn), d(ϑ∗, Hϑ∗), d(ϑpn , Hϑ∗),

d(Hϑpn , ϑ∗)}
= max{d(ϑpn , ϑ∗), d(ϑpn , ϑpn+1), d(ϑ∗, Hϑ∗), d(ϑpn , Hϑ∗),

d(ϑpn+1, ϑ∗)}
⇒ lim

n→+∞
m′(ϑpn , ϑ∗) = d(ϑ∗, Hϑ∗).

By limiting, the last inequality becomes τ + F(d(ϑ∗, Hϑ∗)) ≤ F(d(ϑ∗, Hϑ∗)), which is a
contradiction. Hϑ∗ = ϑ∗.

Now, we will prove the uniqueness of the point ϑ∗. On the contrary, suppose there
are two distinct points ϑ∗, ϑ∗∗ ∈ V such that {ϑn} converges to both ϑ∗, ϑ∗∗ and Hϑ∗ =
ϑ∗, Hϑ∗∗ = ϑ∗∗. Since ϑ∗ 6= ϑ∗∗, we have d(Hϑ∗, Hϑ∗∗) = d(ϑ∗, ϑ∗∗) > 0, and this implies

τ + F(d(Hϑ∗, Hϑ∗∗)) ≤ β(m′(ϑ∗, ϑ∗∗))F(m′(ϑ∗, ϑ∗∗)) ≤ F(m′(ϑ∗, ϑ∗∗)),

where

m′(ϑ∗, ϑ∗∗) = max{d(ϑ∗, ϑ∗∗), d(ϑ∗, Hϑ∗), d(ϑ∗∗, Hϑ∗∗), d(ϑ∗, Hϑ∗∗), d(ϑ∗∗, Hϑ∗)}
= d(ϑ∗, ϑ∗∗).

By limiting, the last inequality becomes τ + F(d(ϑ∗, ϑ∗∗)) ≤ F(d(ϑ∗, ϑ∗∗)), which is a
contradiction. So, we have ϑ∗ = ϑ∗∗, which implies ϑ∗ is unique.

For the last part, let ϑn → ϑ∗ = Hϑ∗ and suppose H is continuous at ϑ∗. Then,
Hϑn → Hϑ∗ = ϑ∗, i.e., lim

n→+∞
d(ϑn, ϑ∗) = 0⇒ lim

n→+∞
d(Hϑn, Hϑ∗) = 0, which gives

lim
n→+∞

m′(ϑn, ϑ∗) = lim
n→+∞

(max{d(ϑn, ϑ∗), d(ϑn, Hϑn), d(Hϑ∗, ϑ∗), d(ϑn, Hϑ∗),

d(ϑ∗, Hϑn)})
= max{d(ϑ∗, ϑ∗), d(ϑ∗, Hϑ∗)}
= 0.

Conversely, let

lim
n→+∞

m′(ϑn, ϑ∗) = 0

⇒ lim
n→+∞

(max{d(ϑn, ϑ∗), d(ϑn, Hϑn), d(Hϑ∗, ϑ∗), d(ϑn, Hϑ∗), d(ϑ∗, Hϑn)}) = 0

⇒ lim
n→+∞

d(ϑn, Hϑn) = 0

⇒ lim
n→+∞

Hϑn = lim
n→+∞

ϑn = ϑ∗ = Hϑ∗

Thus, H is continuous at ϑ∗.

Example 7. Let V = V1 ∪V2, where

V1 =

{
3n

3k + 1
: n, k ∈ {0, 1, 2 . . .}

}
∪
{

0
}

,

V2 =

{
3n

3k + 2
: n, k ∈ {0, 1, 2 . . .}

}
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and du is a usual metric of R. Then, (V, du) is a complete metric space. Let H : V −→ V be given
by

H(ϑ) =

{ 3x
5 i f x ∈ V1
x
8 i f x ∈ V2

,

α : V ×V −→ [0,+∞) be given by

α(ϑ1, ϑ2) =

{
1 if ϑ1 ∈ V
0 otherwise

,

β ∈ B be given by

β(r) =
1

1 + r
, ∀r ∈ [0,+∞),

and F ∈ F ′′ be given by

F(r) = − 1
r2 , for all r ∈ R+.

Then, H becomes a (α, β, F∗∗)-weak Geragthy contraction for τ = 5
2 , so, by Theorem 9, it has a

unique fixed point. Clearly, 0 ∈ V is the only one point such that H(0) = 0.

Corollary 1. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is
such that for some F ∈ F ′ and τ > 0 and for any mapping β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m1(ϑ1, ϑ2))F(m1(ϑ1, ϑ2)),

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1.
Where,

m1(ϑ1, ϑ2) = max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),
d(ϑ1, Hϑ1)d(ϑ2, Hϑ2)

d(ϑ1, ϑ2)

}
.

If F is continuous, then the self-mapping H : V −→ V must have a unique fixed point ϑ∗ ∈ V and
sequence {Hnϑ0}n∈N must converge to ϑ∗ for every ϑ0 ∈ V. Moreover, H is continuous at u∗ if
and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Putting ϑ1 = ϑn, ϑ2 = ϑn−1, m1 becomes

m1(ϑn, ϑn−1) = max
{

d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1),

d(ϑn, Hϑn)d(ϑn−1, Hϑn−1)

d(ϑn, ϑn−1)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1), d(ϑn−1, ϑn),

d(ϑn, ϑn+1)d(ϑn−1, ϑn)

d(ϑn, ϑn−1)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1)

}
.

which shows that the proof is now similar to Theorem 8.

Corollary 2. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is
such that for some F ∈ F ′ and τ > 0 and for any mapping β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m2(ϑ1, ϑ2))F(m2(ϑ1, ϑ2)),
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for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1.
Where,

m2(ϑ1, ϑ2) = max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),

d(ϑ1, Hϑ2)d(ϑ2, Hϑ1)

d(ϑ1, ϑ2)

}
.

If F is continuous, then the self-mapping H : V −→ V must have a unique fixed point ϑ∗ ∈ V and
sequence {Hnϑ0}n∈N must converge to ϑ∗ for every ϑ0 ∈ V. Moreover, H is continuous at ϑ∗ if
and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Putting ϑ1 = ϑn, ϑ2 = ϑn−1, m2 becomes

m2(ϑn, ϑn−1) = max
{

d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1),

d(ϑn, Hϑn−1)d(ϑn−1, Hϑn)

d(ϑn, ϑn−1)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1), d(ϑn−1, ϑn),

d(ϑn, ϑn)d(ϑn−1, ϑn+1)

d(ϑn, ϑn−1)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1)

}
.

which shows that the proof is now similar to Theorem 8.

Corollary 3. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is
such that for some F ∈ F ′ and τ > 0 and for any mapping β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m3(ϑ1, ϑ2))F(m3(ϑ1, ϑ2)),

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1.
Where,

m3(ϑ1, ϑ2) = max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),

d(ϑ1, Hϑ1)d(ϑ1, Hϑ2) + d(ϑ2, Hϑ2)d(ϑ2, Hϑ1)

d(ϑ1, Hϑ2) + d(ϑ2, Hϑ1)

}
.

If F is continuous, then the self-mapping H : V −→ V must have a unique fixed point ϑ∗ ∈ V and
sequence {Hnϑ0}n∈N must converge to ϑ∗ for every ϑ0 ∈ V. Moreover, H is continuous at ϑ∗ if
and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Putting ϑ1 = ϑn, ϑ2 = ϑn−1, m3 becomes

m3(ϑn, ϑn−1) = max
{

d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1),

d(ϑn, Hϑn)d(ϑn, Hϑn−1) + d(ϑn−1, Hϑn−1)d(ϑn−1, Hϑn)

d(ϑn, Hϑn−1) + d(ϑn−1, Hϑn)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1), d(ϑn−1, ϑn),

d(ϑn, ϑn+1)d(ϑn, ϑn) + d(ϑn−1, ϑn)d(ϑn−1, ϑn+1)

d(ϑn, ϑn) + d(ϑn−1, ϑn+1)

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1)

}
.

which shows that the proof is now similar to Theorem 8.
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Corollary 4. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is
such that for some F ∈ F ′′ and τ > 0 and for any mapping β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m4(ϑ1, ϑ2))F(m4(ϑ1, ϑ2)),

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1.
Where,

m4(ϑ1, ϑ2) = max
{

d(ϑ1, ϑ2),
d(ϑ1, Hϑ1) + d(ϑ2, Hϑ2)

2

}
.

If F is continuous, then the self-mapping H : V −→ V must have a unique fixed point ϑ∗ ∈ V and
sequence {Hnϑ0}n∈N must converge to ϑ∗ for every ϑ0 ∈ V. Moreover, H is continuous at ϑ∗ if
and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Putting ϑ1 = ϑn, ϑ2 = ϑn−1, m4 becomes

m4(ϑn, ϑn−1) = max
{

d(ϑn, ϑn−1),
d(ϑn, Hϑn) + d(ϑn−1, Hϑn−1)

2

}
= max

{
d(ϑn, ϑn−1),

d(ϑn, ϑn+1) + d(ϑn−1, ϑn)

2

}
≤ d(ϑn, ϑn+1) + d(ϑn−1, ϑn).

which shows that the proof is now similar to Theorem 9.

Corollary 5. Suppose a self-mapping H : V −→ V, where (V, d) is a complete metric space, is
such that for some F ∈ F ′′ and τ > 0 and for any mapping β ∈ B, we have

α(ϑ1, ϑ2)(τ + F(d(Hϑ1, Hϑ2)) ≤ β(m5(ϑ1, ϑ2))F(m5(ϑ1, ϑ2)),

for all ϑ1, ϑ2 ∈ V with d(Hϑ1, Hϑ2) > 0 and α(ϑ1, ϑ2) ≥ 1.
Where,

m5(ϑ1, ϑ2) = max
{

d(ϑ1, ϑ2), d(ϑ1, Hϑ1), d(ϑ2, Hϑ2),
d(ϑ1, Hϑ2) + d(ϑ2, Hϑ1)

2

}
.

If F is continuous, then the self-mapping H : V −→ V must have a unique fixed point ϑ∗ ∈ V and
sequence {Hnϑ0}n∈N must converge to ϑ∗, for every ϑ0 ∈ V. Moreover, H is continuous at ϑ∗ if
and only if lim

n→+∞
m(Hnϑ0, ϑ∗) = 0.

Proof. Putting ϑ1 = ϑn, ϑ2 = ϑn−1, m5 becomes

m5(ϑn, ϑn−1) = max
{

d(ϑn, ϑn−1), d(ϑn, Hϑn), d(ϑn−1, Hϑn−1),

d(ϑn, Hϑn−1) + d(ϑn−1, Hϑn)

2

}
= max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1), d(ϑn−1, ϑn),

d(ϑn, ϑn) + d(ϑn−1, ϑn+1)

2

}
≤ max

{
d(ϑn, ϑn−1), d(ϑn, ϑn+1), d(ϑn−1, ϑn),

d(ϑn−1, ϑn) + d(ϑn, ϑn+1)

2

}
= d(ϑn−1, ϑn) + d(ϑn, ϑn+1).

which shows that the proof is now similar to Theorem 9.
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3. Application

In order to show the usefulness of our findings, we explore that there is a solution
which is unique to the second-order differential equation of a two-point boundary value
problem for any continuous f : [0, 1]×R −→ R.

{ d2ϑ
dt2 = − f (t, ϑ(t)), t ∈ [0, 1]
ϑ(0) = 0 = ϑ(1).

(17)

The differential equation’s corresponding green function is

S(u, ϑ) =

{
u(1− ϑ), 0 ≤ u ≤ ϑ ≤ 1
ϑ(1− u), 0 ≤ ϑ ≤ u ≤ 1.

(18)

Now, we know that to find the solution of (17) is same as to find the solution ϑ(t) ∈
C[0, 1] of the integral equation.

ϑ(t) =
1∫

0

S(t, x) f (x, ϑ(x))dx, for all t ∈ [0, 1], (19)

i.e., to find the solution of the operator H : C[0, 1] −→ C[0, 1] defined by Hϑ(t) = ϑ(t),
where C[0, 1] is the complete metric space of all continuously real-valued maps on [0, 1]
with its standard ”sup” norm.

Theorem 10. Equation (17) will have a unique solution if for some τ > 0, the map f : [0, 1]×
R −→ R is such that

| f (t, ϑ1(t))− f (t, ϑ2(t))| ≤
16
3

e−τ
{ |ϑ1(t)− ϑ2(t)vert

2

} 1
1+m(ϑ1(t),ϑ2(t)) ,

where

m
(

ϑ1(t), ϑ2(t)
)
= max

{
d
(

ϑ1(t), ϑ2(t)
)

, d
(

ϑ1(t), Hϑ1(t)
)

, d
(

ϑ2(t), Hϑ2(t)
)}

Proof. We have

1∫
0

S(t, x)dx =

t∫
0

S(t, x)dx +

1∫
t

S(t, x)dx

=

t∫
0

x(1− t)dx +

1∫
t

t(1− x)dx

=
[ (1− t)x2

2

]t

x=0
+
[
t
(

x− x2

2

)]1

x=t

=
[ t2 − t3

2

]
+
[ t− 2t2 + t3

2

]
=

t
2
− t2

2
, for all t ∈ [0, 1].

and
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|Hϑ1(t)− Hϑ2(t)| =
∣∣∣ 1∫

0

S(t, x)( f (x, ϑ1(x))− f (x, ϑ2(x)))dx
∣∣∣

≤
1∫

0

S(t, x)| f (x, ϑ1(x))− f (x, ϑ2(x)))|dx

≤ 16
3

e−τ
{ |ϑ1(x)− ϑ2(x)|

2

} 1
1+m(ϑ1(x),ϑ2(x))

1∫
0

S(t, x)dx

≤ 2
3

e−τ
{ |ϑ1(x)− ϑ2(x)|

2

} 1
1+m(ϑ1(x),ϑ2(x)) ,

since max
1∫

0

S(t, x)dx =
1
8

.

≤ 2
3

e−τ
{m(ϑ1(x), ϑ2(x))

2

} 1
1+m(ϑ1(x),ϑ2(x))

which implies

3
2

eτd(Hϑ1(x), Hϑ2(x)) ≤
{m(ϑ1(x), ϑ2(x))

2

} 1
1+m(ϑ1(x),ϑ2(x))

Now, if F(r) = ln( r
2 + sin r), β(r) = 1

1+r and α : C[0, 1]× [0, 1] −→ R defined by

α(ϑ1(x), ϑ2(x)) =
{

1 if ϑ1(x) ∈ C[0, 1]
0 otherwise

,

then

eτ
(

d(Hϑ1(x),Hϑ2(x))
2 + sin d(Hϑ1(x), Hϑ2(x))

)
≤ 3

2
eτd(Hϑ1(x), Hϑ2(x))

≤
{m(ϑ1(x), ϑ2(x))

2

} 1
1+m(ϑ1(x),ϑ2(x))

≤
{m(ϑ1(x), ϑ2(x))

2
+ sin m(ϑ1(x), ϑ2(x))

} 1
1+m(ϑ1(x),ϑ2(x))

Taking ln on both sides, we have

⇒ τ + F(d(Hϑ1(x), Hϑ2(x))) ≤ β(m(ϑ1(x), ϑ2(x)))F(m(ϑ1(x), ϑ2(x))).

Thus, Theorem 8 proves the theorem.

4. Conclusions

In the framework of metric space, we defined two types of generalized contractions,
namely (α, β, F∗)-weak Geraghty contraction and (α, β, F∗∗)-weak Geraghty contraction,
which extends all the composition types of α, β, F contractions. We proved our main results
with examples that the mappings satisfying such weak contraction conditions must have a
unique fixed point. In addition, we stated some corollaries that can be easily concluded
from the main results. In the end, to show the usefulness of our result, we presented one
application in the literature. So, our results consist of original ideas that are meaningful and
can be used for further extensions; also, in the future, we can use the extended results in
different related fields such as differential equations, nonlinear analysis, fractional calculus
models, etc.
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