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Abstract: Deep learning techniques excel at capturing and understanding the symmetry inherent in
data patterns and non-linear properties of photovoltaic (PV) power, therefore they achieve excellent
performance on short-term PV power forecasting. In order to produce more precise and detailed
forecasting results, this research suggests a novel Autoformer model with De-Stationary Atten-
tion and Multi-Scale framework (ADAMS) for short-term PV power forecasting. In this approach,
the multi-scale framework is applied to the Autoformer model to capture the inter-dependencies
and specificities of each scale. Furthermore, the de-stationary attention is incorporated into an
auto-correlation mechanism for more efficient non-stationary information extraction. Based on the
operational data from a 1058.4 kW PV facility in Central Australia, the ADAMS model and the other
six baseline models are compared with 5 min and 1 h temporal resolution PV power data predictions.
The results show in terms of four performance measurements, the proposed method can handle the
task of projecting short-term PV output more effectively than other methods. Taking the result of
predicting the PV energy in the next 24 h based on the 1 h resolution data as an example, MSE is
0.280, MAE is 0.302, RMSE is 0.529, and adjusted R-squared is 0.824.

Keywords: photovoltaic power; deep learning; short-term forecasting; transformer model; nonsta-
tionarity; multi-scale analysis

1. Introduction

The growing need for clean energy around the world may be partially met by photo-
voltaic (PV) power, a renewable, safe, and adaptable distributed energy supply [1]. Over
the past few decades, PV power has drawn more attention [2]; its integration has had
substantial positive effects on the economy and the environment. Due to its erratic and
intermittent nature, significant PV penetration, however, also poses a number of new diffi-
culties for the operation of current grid systems [3]. These difficulties include intermittent
power generation, high installation costs, and the PV power supply’s vulnerability to
weather conditions [4]. Forecasting PV electricity is an effective way to deal with these
difficulties. For large-scale PV penetration in the primary power grid, precise forecasting of
PV energy generation is acknowledged as a requirement [5]. The approaches of forecasting
PV power can be categorized into three groups depending on the forecasting time horizon:
long-term PV power forecasting (LTPVF), middle-term PV power forecasting (MTPVF),
and short-term PV power forecasting (STPVF). Short-term forecasting is the process of
predicting the amount of PV power that will be produced over the next hour, several hours,
day, or even seven days. Forecasting for medium-term PV electricity is performed over
periods of time longer than a week to a month. The long-term forecasts of PV power
generation range from one month to one year.

Many studies have been conducted recently that go in-depth on the subject of short-
term photovoltaic power forecasting (STPVF). The traditional statistical method, e.g., the
Autoregressive Integrated Moving Average (ARIMA) was previously employed as the
initial STPVF attempt. Support vector machine (SVM), Gaussian process regression (GPR)
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and extreme learning machine (ELM) are three conventional machine learning (ML) models
that are used frequently in STPVF. However, in the STPVF challenge with complex and
lengthy data, these techniques perform poorly. The dependable forecasting performance
needed for the construction of reliable PV energy systems cannot be attained by standard
methodologies for PV energy prediction. Deep learning (DL) techniques based on neural
networks are significantly more favored than typical statistical approaches and machine
learning techniques for understanding the long-term patterns of PV power data. Recently,
both STPVF situations have used a variety of deep learning neural networks, including
recurrent neural network (RNN), gated recurrent units (GRU), long short-term memory
(LSTM), convolutional neural network (CNN) and transformer-based models. Deep learn-
ing approaches have been used to make some progress, although these techniques still
have major drawbacks. As an illustration, consider single-step forecasting, sophisticated
computing, and significant memory costs.

Furthermore, it was commonly acknowledged in earlier studies to use a decomposi-
tion technique or stationarization to pre-process time series for nonstationary and nonlinear
signals. This can make the raw time series less complex and non-stationary, which will
increase prediction accuracy and provide deep models a more stable data distribution.
Decomposition and stationarization are typically used to pre-process historical data be-
fore projecting future series for forecasting activities. However, this pre-processing is
constrained by the simple decomposition impact of historical series and ignores the se-
ries’ long-term hierarchical interaction with its underlying patterns. Wu et al. suggested
Autoformer as an alternative to transformers for long-term time series prediction based
on the concept of decomposition [6]. The Autoformer model is enabled to split the in-
formation about long-term trends of anticipated hidden series gradually by embedding
deconstruction blocks as the internal operators. The inherent non-stationarity of real-world
time series, however, also serves as useful guidance for identifying temporal connections
for forecasting. For predicting real-world burst events, the stationarized series that lacks
inherent non-stationarity may be less useful.

In response to the above-mentioned drawbacks, we propose a novel Autoformer model
with de-stationary attention and multi-scale framework (ADAMS) for the research of STPVF.
The forecast modeling of PV power data is performed for capturing and understanding
the symmetry inherent and non-stationarity in data patterns by the ADAMS model and
employing it in order to predict future PV power data. On the Yulara datasets, where the
PV power data is taken from DKASC, which is located at the Desert Knowledge Precinct
in Central Australia, the performance of the proposed model is validated. Large random
variations and non-stationary data patterns are present in this data. Therefore, it is essential
to be able to recover the fluctuation curves while assessing the performance of models.
ADAMS performs satisfactorily in the experiment while forecasting fluctuation curves.
Additionally, the suggested ADAMS has reduced compute complexity and memory cost
to 0(L logL), and it can perform several steps of predicting. The primary innovations and
novelties in this paper are as follows:

1. An improved ADAMS model is proposed for STPVF. The extra multi-scale frame-
work and de-stationary attention is added to the Autoformer model. According to
the results, the ADAMS is contributing to extract features more deeply and handle
complicated, non-stationary data, which lowers forecasting error.

2. Some additional methods are used as the baselines to test the efficacy of the ADAMS
that is proposed. Autoformer, Informer, Transformer, LSTM, GRU, and RNN are
all used in this paper. They are utilized for short-term PV power forecast with
prediction lengths of 4 to 24. The MSE, MAE, RMSE, and adjusted R-squared

(
R2

a
)

were employed as evaluation measures for accuracy.
3. More tests with a temporal resolution of one hour were conducted to further demon-

strate the usefulness of the proposed ADAMS. According to expectations, the sug-
gested ADAMS model achieves the best performance across all experimental fore-
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casting models when compared to earlier projects, giving strong evidence that the
suggested model works.

The remainder of this research is organized as follows: the second section gives
a detailed summary of previous work relevant to STPVF. The third section introduces
thoroughly the suggested ADAMS neural network. Next, the fourth section illustrates the
experimental preparation and framework. The fifth section contains the STPVF experiment
using ADAMS and the analysis of the result. Finally, the sixth section sums up this study.

2. Related Work

Time series statistical analysis known as ARIMA is commonly employed in forecasting.
Numerous academics have assessed the model in various forecasting applications. While
the forecasting accuracy increased as the forecasting horizon was expanded, ARIMA has
performed poorly in long-term time series. Because the long-term data has a lot of high-
dimension hidden features, there are not enough parameters in ARIMA, which prevents it
from fitting these long-term data.

Machine learning techniques have recently been suggested for forecasting PV power.
Traditional techniques of machine learning, such as SVM, are frequently suggested for
predicting PV power. In a study they released in 2020, Pan et al. shown that using SVM for
the very short-term prediction is feasible and using ant colony optimization to determine
the best parameters of this model [7]. For the purpose of anticipating hourly PV power
generation, Zhou et al. used the ELM to model the input features, a genetic algorithm
to optimize the relevant parameters of their forecasting model [8]. They also adopted a
customized similar day analysis based on five meteorological components.

Despite the widespread use of ML techniques, there are still a number of significant
drawbacks, including the following: (1) they heavily depend on the quality of the feature
engineering used; (2) they are unable to deal with complex feature scenarios with high
irregularity; and (3) they exhibit unstable predictive power, making them inappropriate
as a component for the reliable decision making required for any power system. They are
unsuitable as a part of the trustworthy decision-making required for any power system
since they have unstable forecasting ability, strongly depend on the level of the feature
engineering employed, and are unable to handle complicated feature situations with
high irregularity. Consequently, to provide more accurate predictions, ML algorithms are
frequently integrated with other methods.

Recurrent networks are effective in simulating dependencies in sequential data, as
shown in recent DL literature. Because of its ability to extract hidden information during
graph processing using the convolution principle, CNN has received a lot of attention in
the field of computer vision (CV). A growing number of studies have been published on
hybrid CNN models for PV power forecasting in order to adapt to time-series forecasting
applications. A CNN-BiGRU hybrid technique was suggested in one study by Zhang
et al. to anticipate PV power for a PV power facility in Korea range [9]. Zang et al.
used a hybrid method based on CNN to precisely predict how much energy a short-term
photovoltaic system would produce [10]. The training time series must be brief due to
the convolution calculation’s high computing complexity, and a lack of data could result
in a major overfitting issue. In natural language processing, RNN and its unique variant,
LSTM, which is built with a memory cell architecture to record essential information, have
been frequently proposed. The LSTM and RNN techniques have been suggested in prior
studies for STPVF. For instance, Gao et al. proposed a day-ahead power output time-series
forecasting methods based on LSTM, in which ideal weather type and non-ideal weather
types have been separately discussed [11].

Thanks to its capability to manage long-term interdependence without disappearing
gradient, LSTM has been widely used. However, location information and long-term
correlations are frequently present in energy time series, therefore the LSTM is unable
to acquire a major amount of input properties that can have a considerable impact on
prediction performance. Additionally, because of the restricted computer memory, both
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LSTM and RNN approaches can only predict one timestep forward, which takes more
time if the aim is to provide the prediction of multiple timesteps ahead. This difficulty is
caused by the enormous memory occupation. However, error accumulation, the fatal flaw
in single-step forecasting, significantly enhanced the unreliability of forecasting multiple
timesteps in advance.

In 2017, the Transformer model, which is well-known for its self-attention mechanism,
was suggested and is currently being employed in the field of NLP [12]. The self-attention
mechanisms and the enhanced later version, which have replaced the conventional memory
block in LSTM and the initial attention mechanism, have produced more accuracy in
longer language comprehension. Some academics think it might increase the capacity
for prediction. However, it cannot be directly implemented to time series forecasting
because of the high computation time, large memory utilization, and abrupt decline in
forecasting rate. Many academics have worked hard and provided numerous solutions
to these problems. The sparse decomposition of the attention matrix is considered in
Ref. [13]. The logsparse Transformer is proposed in Ref. [14], which adds a convolutional
self-attention mechanism. Longformer, a linear expansion of the attention mechanism with
series length, is introduced in Ref. [15]. The complication of the entire self-attention in time
and space is reduced by a novel self-attention mechanism in Ref. [16]. An improved version
of Transformer called Informer, which has been tried on four sizable data sets, is established
in Ref. [17]. It offers an alternative answer to the time series prediction issue. However,
rather than concentrating on a section of the time series, all of these approaches with better
self-attention only do so for an individual historical period. Due to the exceedingly small
attention horizon, the single self-attention worked quite badly when the training data had
significant variations.

Wu et al. used an enhanced self-attention method called auto-correlation in a work
they released in 2021 in which they took advantage of a decomposition architecture [6]. The
NBEATS model and high accuracy on the power price dataset were achieved by Oreshkin
and his colleagues, who also introduced the canonical decomposition architecture [18].
The input dimension does, however, have a limit on the original NBEATS. With the use
of an auto-correlation mechanism and a decomposition block, Autoformer built on the
concept of temporal decomposition [19]. Additionally, Autoformer forecasts very long
future data in a single computing step, which takes much less time. In light of the fact that
the Autoformer model obtains high accuracy on numerous datasets but has not been used
for the STPVF job, this research suggests an ADAMS model that will eventually produce a
favorable forecasting accuracy for the STPVF.

3. ADAMS Network Architecture

The goal of PV power forecasting is to estimate future length Lpred from historical
length Lseq. For multi-step forecasting, a new ADAMS is suggested in this paper. The
complexity and non-stationarity of data and the calculation efficiency are the two key
difficulties in PV power forecasting, as mentioned previously. To solve these problems:

1. In addition to replacing the conventional self-attention mechanism, the auto-correlation
mechanism serves to identify temporally dependent trends in large historical data sets.

2. The de-stationary module is incorporated to the auto-correlation mechanism to acquire
hidden characteristics from the non-stationary time series data. In this way, the model
can not only retain the important information of the original sequence, but also
eliminate the non-stationarity of the original data.

3. A projected time series is refined iteratively at many scales with shared weights using
the multi-scale framework, introducing changes to the architecture and a normaliza-
tion method that was especially created to produce considerable speed increases with
little additional computational effort.
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3.1. Decomposition Architecture

To break down complex time patterns into more predictable parts, a deep decomposi-
tion architecture [6] with embedded sequence decomposition is introduced.

3.1.1. Series Decomposition Block

One of the most crucial techniques for time series forecasting is decomposition, which
can divide the series into trend-cyclical and seasonal components, to learn about compli-
cated temporal information in the context of long-term forecasting. These two sections
each depict the series’ long-term development and seasonality. However, since the future
is simply uncertain, direct decomposition is not feasible for next series. We introduce a
series decomposing block as an internal operation of model to address this conundrum.
This block can gradually recover the long-term stable trend from projected intermediary
hidden factors. To put it more specifically, we modify the moving average to eliminate
cyclical variations and emphasize long-term trends. The procedure is as follows for length
L input series X ∈ RL×d:

Xt = AvgPool(Padding(X))
Xs = X− Xt,

(1)

where, respectively, Xs, Xt ∈ RL × d indicate the seasonal and trend-cyclical components
that were extracted. To maintain the same series length, we use the AvgPool(·) moving
average with the padding procedure. To summarize the aforementioned equations, which
is a model inner block, we utilize:

Xs, Xt = SeriesDecomp(X). (2)

3.1.2. Model Inputs

The past Lseq time steps Xen serve as the encoder part’s inputs. The seasonal part
is denoted as Xdes. Xdet stand for the trend-cyclical part. In order to be refined, Xdes
and Xdet are both present in the input of the ADAMS model decoder. Each initialization
has two components: a placeholder with length O filled with scalars, and a component
deconstructed from the second half Xen, with length Lseq/2 to supply late information. Xen
is the input of the encoder. It is expressed as follows:

Xens, Xent = SeriesDecomp
(

X
en(

Lseq
2 : Lseq)

)
Xdes = Concat(Xens, X0)

Xdet = Concat(Xent, Xmean),

(3)

where Xens, Xent, respectively, represent the cyclical and seasonal elements of Xen, and
X0, Xmean, respectively, stand for the blank spaces filled with 0 and the average of Xen.

3.1.3. Encoder

The encoder concentrates on the seasonal component modeling. Past seasonal data
from the encoder’s output will be used as cross information to help the decoder improve
forecast outcomes. Let us say there are N encoder layers. The summary equations for the
l-th encoder layer are Xl

en = Encoder(Xl−1
en ). Details are shown as follows:

Sl,1
en , _ = SeriesDecomp

(
Auto−Correlation

(
Xl−1

en

)
+ Xl−1

en

)
Sl,2

en , _ = SeriesDecomp
(

FeedForward
(

Sl,1
en

)
+ Sl,1

en

)
,

(4)

where “_” denotes the portion of the trend that was deleted. The output of the l-th encoder
layer is indicated by Xl

en = Sl,2
en , l ∈ {1, . . . , L}. Xl

en is the embedded Xen. The seasonal
component is represented as Sl,i

en, i ∈ {1, 2} after the i-th series decomposition block in the
l-th layer, respectively.
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3.1.4. Decoder

The accumulating architecture for trend-cyclical elements and the layered auto-correlation
technique for seasonal elements are both included in the decoder. The internal auto-
correlation and encoder-decoder auto-correlation found in each decoder layer allow for
the improvement of prediction and use of historical seasonal data, respectively. It should
be noted that the architecture collects the prospective trend from the intermediary hidden
variables throughout the decoder, enabling the model to gradually improve the trend
forecasting and remove disturbance information for the discovery of addictions based on
the period in the auto-correlation. Assume there are M layers in the decoder. The equations
of the l-th decoder layer can be condensed as Xl

de = Decoder
(

Xl−1
de + XN

en

)
using the

potential variable XN
en from the encoder. It is possible to formalize the decoder as follows:

Sl,1
de , Tl,1

de = SeriesDecomp(Auto−Correlation
(

Xl−1
de

)
+ Xl−1

de

)
Sl,2

de , Tl,2
de = SeriesDecomp(Auto−Correlation

(
Sl,1

de , XN
en

)
+ Sl,1

de

)
Sl,3

de , Tl3
de = SeriesDecomp(FeedForward

(
Sl,2

de

)
+ Sl,2

de

)
Tl

de = Tl−1
de + Wl,1 ∗ Tl,1

de + Wl,2 ∗ Tl,2
de + Wl,3 ∗ Tl,3

de ,

(5)

where the output of the l-th decoder layer is indicated by Xl
de = Sl,3

de , l ∈ {1, . . . , L}. The
i-th sequence decomposition in the l-th layer is represented by Sl,i

de, Tl,i
de , i ∈ {1, 2, 3}, which

stand for seasonal factors and periodic factors, respectively. The projector for the i-th
extracted trend Tl,i

de , i ∈ {1, 2, 3} is represented by Wl,3.

3.2. Auto-Correlation Mechanism

For the purpose of realizing series-wise connections and making better use of the
information in the sequence, the auto-correlation technique [6] is added to substitute the
attention method of point-to-point connections. In this module, based on the theory of
random process, the self-attention mechanism of point-wise connection is discarded, and
the auto-correlation technique of series-wise connection is realized, which has complexity
and breaks the bottleneck of information utilization.

3.2.1. Period-Based Dependencies

The similar phasing points across eras is seen to actually produce identical sub-
processes. For a real separate-time series {Xt}, we can use the following equations to
derive the autocorrelation, which can be expressed as:

RXX(τ) = lim
L→+∞

1
L

L

∑
t=1

XtXt−τ . (6)

The resemblance between {Xt} and lag τ series {Xt−τ} is reflected by RXX(τ). We
utilize the autocorrelation RXX(τ) as the unnormalized confidence of the anticipated period
length. After the calculation process, the largest feasible range of k period lengths τ1, . . . , τk
are selected. The aforementioned estimated periods are used to construct the period-based
dependencies, which can then be weighted using the relevant autocorrelation.

3.2.2. Time Delay Aggregation

The sub-series are connected between estimated periods by the period-based depen-
dencies. In order to roll the series based on a chosen time lag of τ1, . . . , τk, we therefore
provide the time delay aggregation block. In contrast to the point-wise dot-product aggre-
gation in the self-attention mechanism, this process can line up same sub-series that are
in the similar phasing point of predicted periods. The sub-series is then combined using
softmax normalized confidences.
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We receive query Q, key K, and value V for the alone head scenario and series X with
length-L after the projection process. It can thus easily take the role of self-attention. The
process of auto-correlation is presented as below:

τ1, τ2, . . . , τk = arg TopK
τ∈{1,2,...,L}

(
RQ,K(τk)

)
R̂Q,K(τ1)

, . . . , R̂Q,K(τk)
= Softmax

(
RQ,K(τ1)

, . . . , RQ,K(τk)

)
Auto−Correlation (Q, K, V) =

k
∑

i=1
Roll(V, τi)R̂Q,K(τi),

(7)

where, c is a hyper-parameter. Let bk = c× log Lc, and argTopK(·) is to obtain the argu-
ments of the TopK autocorrelations. The series Q and K have an autocorrelation called
RQ,K. The process to X with time lag is represented by Roll(X, τ). It causes components
that have been moved past the first position to be reintroduced at the last position. K, V are
from the encoder XN

en and will be scaled to length-O, and Q is from the previous block of
the decoder for the encoder-decoder auto-correlation.

For the multi-head version adopted in this paper, with dmodel channels, h heads, and
the i-th head’s query, key, and value denoted as Qi, Ki, Vi individually. The multi-head
auto-correlation are calculated as:

Multi−Head(Q, K, V) = Woutput. ∗Concat(head1, . . . , headh)
where headi = Auto−Correlation(Qi, Ki, Vi).

(8)

3.2.3. Efficient Computation

Period-based dependencies are intrinsically sparse and point to sub-processes that
are in the similia phasing place as the parent period. In this case, we choose the longest
delays in order to avoid choosing the opposite phases. Equations (7) and (8) have an
O(L logL) complexity due to the fact that we aggregate series with length L. Based on the
Wiener-Khinchin theorem, when the time series {Xt} are given, RXX(τ) can be determined
using Fast Fourier-Transforms for the autocorrelation computation (Equation (6)).

SXX( f ) = F(Xt)F̃ (Xt) =
∫ +∞
−∞ Xte−j∗2πt f dt

∫ +∞
?∞ Xte−j2πt f dt

RXX(τ) = F−1(SXX( f )) =
∫ +∞
−∞ SXX( f )ei2π f τd f , (9)

where F−1 is the FFT’s inverse and τ ∈ {1, . . . , L}, F stands for the FFT. SXX( f ) is in the
frequency domain, and “∗” denotes the conjugate operation. It should be noted that the FFT
may calculate the series autocorrelation of all lags in {1, . . . , L} at once. Auto-correlation
achieves O(L logL) complexity as a result.

3.3. Multi-Scale Framework

For accurate time series prediction, it is necessary to introduce structural prior consid-
ering multi-scale information. Autoformer introduced some emphasis on scale-awareness
by mandating separate computational routes for the trend and seasonal components of
the input time series. However, this structural prior only concentrated on two scales: low-
frequency and high-frequency components. A multi-scale framework [20] with a cross-scale
normalizing mechanism was created in order to detect the timing dependent patterns in
long history data and to substitute for the conventional self-attention method in light of
their significance to forecasting. We present an original iterative scale-refinement paradigm
that is easily adaptable to various transformer-based time series forecasting architectures.
At the same time, we apply cross-scale normalization to the transformer’s outputs to reduce
distribution shifts between scales and windows.

We repeatedly apply the same neural module at various temporal scales given an
input time-series X(L). The initial look-back window X(L) is fed into the encoder at i-th
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step (0 ≤ i ≤ m) after being scaled down by a factor of si ≡ sm−i using an average pooling
operation. On the other hand, a linear interpolation is used to upsample the input to the
decoder Xout

i−1 by a factor of s. The array of 0s is used to initialize the variable Xdec
i . The

model carries out the following tasks:

xt,i =
1
si

τ+si
∑

τ+1
xτ , τ = t× si

X(L)
i =

{
xt,i

∣∣∣ t0
si
≤ t ≤ t0+lL

si

}
X(H)

i =
{

xt,i

∣∣∣ t0+lL+1
si

≤ t ≤ t0+lL+lH
si

}
,

(10)

where X(L)
i and X(H)

i are the look-back and horizon windows at the i-th step at time t,
respectively. We may define Xenc

i and Xdec
i as the inputs to the normalization if we assume

that x’
t,i−1 is the output of the forecasting module at step i− 1 and time t:

Xenc
i = X(L)

i
x”

t,i = x’
bt/sc,i−1 +

(
x’
bt/sc,i−1 − x’

bt/sc,i−1

)
× t−bt/sc

s

Xdec
i =

{
x”

t,i

∣∣∣ t0+lL+1
si

≤ t ≤ t0+lL+lH
si

}
.

(11)

Finally, we calculate the error between X(H)
i and Xout

i as the loss function to train
the model.

We normalize each input series based on the temporal average of Xenc
i and Xdec

i for a

set of input series
(

Xenc
i , Xdec

i

)
with dimensions lLi × dx and lHi × dx, respectively, for the

encoder and the decoder of the transformer in step i-th.

µXi
= 1

lL,i+lH,i

 ∑
xenc∈Xenc

i

xenc + ∑
xdec∈Xdec

i

xdec


^
X

dec

i = Xdec
i − µXi

, Xenc
i = Xenc

i − µXi
,

(12)

where µXi
∈ Rdx is the average over the temporal dimension of the concatenation of both

look-back window and the horizon.
In keeping with earlier research, we embed our input so that it has the same quantity

of features as the hidden dimension of model. There are three components to the embed-
ding: (1) value embedding, which employs a linear layer to translate each step’s input
observations xt to the model’s dimensionality. To further indicate whether an observation
is originating from the look-back window, zero initialization, or the prediction of the prior
stages, we concatenate a further value of 0, 0.5, or 1, respectively. (2) Temporal embed-
ding, which once more embeds the time stamp associated with each observation into the
model’s hidden dimension via a linear layer. Before transferring the network to the linear
layer, we concatenate an additional value of 1/si − 0.5 as the current scale for the network.
(3) In addition, we employ a fixed positional embedding that is customized for each scale si
as follows:

PE(pos, 2k, si) = sin

(
pos×si

10,000
2k

dmodel

)

PE(pos, 2k + 1, si) = cos

(
pos×si

10,000
2k

dmodel

)
.

(13)

3.4. De-Stationary Attention

Simply weakening non-stationarity may lead to excessive stationarity, and this paper
examines photovoltaic power generation power prediction from the perspective of station-
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arity. We introduce an attention module [21] with de-stationarity to smooth out the time
series and update internal mechanisms to re-incorporate non-stationary information. In this
way, the model can not only learn on the normalized sequence, but also allow the model to
find specific time dependencies based on the complete sequence information before the sta-
tionary. The module consists of two parts: time series non-stationarity is reduced through
series stationarization, and non-stationary data from raw series is reincorporated with
de-stationary attention. These designs enable forecasting model to concurrently enhance
data predictability and maintain model capacity.

In order to reduce the non-stationarity of each input sequence, a simple and effective
stabilization method is adopted for the original input sequence. For each input sequence,
the mean and variance of the input sequence are used to transform it into a Gaussian
distribution with µ = 0 and σ = 1, so as to eliminate the difference of time series statistics
in different time windows:

µX =
1
S

S

∑
i=1

xi, σ2
X =

1
S

S

∑
i=1

(xi − µX)
2, x′i =

1
σX
� (xi − µX), (14)

where the element-wise division is denoted by µx, σx ∈ RC×1, and the element-wise product
is denoted by �. The distribution of the model’s input becomes more stable as a result of
the normalization module’s reduction of the distributional difference among each input
time series.

After using the basic model to predict the future value, the output results of the model
are reversely processed by adopting the mean and variance to obtain the final prediction

result
^
y = [ŷ1, ŷ2, . . . , ŷO]

>. The denormalization module can be expressed as follows:

y’ = H
(

x’
)

, ŷi = σx �
(
y′i + µx

)
, (15)

where H denotes the base mode predicting the future value with length-O and
y’ =

[
y′1, y′2, . . . , y′O

]> ∈ RO×C is its output.
Through the transformation of the above two stages, the input of stabilized data can be

obtained from the basic model, which follows a stable distribution and is easier to generalize.
This approach also renders the model equivariant to time series translational and scaling
perturbations, which is advantageous for predicting the photovoltaic power sequence.

The non-stationarity of the original series cannot be fully recovered merely by de-
normalization, even while the statistics of each time series are expressly returned to the
appropriate prediction. The model is more likely to provide outputs that are overly station-
ary and erratic, which is inconsistent with the original series’ inherent non-stationarity. We
present a unique de-stationary attention technique that may approximate the attention that
is received without stationarization and identify the specific temporal correlations from
original non-stationary data in order to address the over-stationarization issue produced
by series stationarization.

In order to learn de-stationary factors from the statistics of each unstationarized x
independently, we use a multi-layer perceptron as the projector. The following formula is
used to calculate de-stationary attention:

log τ = MLP(σx, x), ∆ = MLP(µx, x)

Attn(Q’,K’, V’, τ, ∆) = Softmax
(

τQ’K’>+1∆>√
dk

)
V’,

(16)

where τ, ∆ denote de-stationary factors, the input of MLP is the time series before the origi-
nal smoothing. Therefore, the de-stationary attention technique learns time dependence
from stationary and non-stationary sequences. While retaining the innate temporal depen-
dency of the original sequences, it can profit from the predictability of stationary sequences.
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3.5. Adaptive Loss Function

Time-series forecasting models become more susceptible to outliers when they are
trained using the typical MSE aim. Using targets that are more resistant to outliers, e.g., the
Huber loss [22], is one potential option. However, such targets typically perform poorly
when there are no significant outliers. Because the data are diverse, we instead use the
adaptive loss [23]:

f (ξ, α, c) =
|α− 2|

α

( (ξ/c)2

|α− 2| + 1

) α
2

− 1

, (17)

4. Experimental Preparation and Framework

In this section, we describe how we set up our evaluation framework: the data
used, the choices of baseline model to be compared and their parameter settings, data
preprocessing, and the error metrics applied.

4.1. Experimental Input Data

The Desert Knowledge Australia Solar Center (DKASC) in Alice Springs, Australia,
provided the historic PV energy data used in this study. This information can be freely
accessed at [24] and is part of a public dataset. The Alice Springs, Yulara, and NT solar
power plants are part of the DKASC center. A solar power facility made up of five sites
plus a weather station is called the Yulara Solar System. Therefore, the data is selected from
No.1 (1058.4 kW, poly-Si, Fixed, 2016, Desert Gardens) at Yulara Solar System in this study.
Its location is shown in Figure 1.
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Figure 1. Location information of the system and related attributes of the site 1.

The total installed capacity of the PV system is 1058.4 kW, and both the historical power
data and the weather data have a 5 min time precision. The historical data set includes
Active Power (P), Wind Speed (WS), Wind Direction (WD), Weather Temperature Celsius
(T), Weather Daily Rainfall (DR), Global Horizontal Radiation (GHR), Max Wind Speed
(MWS), Air Pressure (AP), Hail Accumulation (HA), Pyranometer 1(PY1), Temperature
Probe 1 and 2 (TP1&TP2).

We use two datasets for the proposed models to learn, including the 4 months power
data with a resolution of 5 min, from 1 September 2020 to 31 December 2020, a total of
34,080 samples, and the 4 years PV power data with a resolution of 1 h, from 2017 to 2020, a
total of 33,740 samples. Figure 2 displays the historic PV time series of two datasets, where
the label of the vertical axis is the abbreviation of all variable names in the data set, and the
horizontal axis represents the length of the time step of the data set.
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Figure 2. The variation in the experimental data: (a) 5 min resolution; (b) hourly resolution.

4.2. Experimental Framework

ADAMS and six other experimental competitive models are suggested in this work.
Autoformer, Informer, Transformer, LSTM, GRU, and RNN are the baseline models. Data
collection, data preparation, data dividing, model training, model evaluation, and results
analysis are all included in the fundamental building blocks of STPVF. Figure 3 depicts the
entire experimental flow diagram, and Table 1 includes a list of the parameter settings for
models like the ADAMS.
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𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 512, 𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 5, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05, 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙 = 12, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 

Informer 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 512, 𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 5, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05, 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙 = 12, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 

Transformer 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 512, 𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑟𝑟𝑟𝑟_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑖𝑖𝑖𝑖𝑖𝑖 = 1, 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 5, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑙𝑙𝑙𝑙𝑙𝑙 = 12, 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 

LSTM 
𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 
𝑇𝑇𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 100, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 

GRU 
𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 100, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001, 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0.05, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑚𝑚𝑚𝑚 

RNN 
𝑠𝑠𝑠𝑠𝑠𝑠_𝑙𝑙𝑙𝑙𝑙𝑙 = 24, 𝑝𝑝𝑝𝑝𝑝𝑝_𝑙𝑙𝑙𝑙𝑙𝑙 = (4,8,12,24), 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 64, 
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑠𝑠 = 100, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0001, 
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Table 1. The parameters for each model.

Model Parameters

ADAMS
dmodel = 512, seq_len = 24, pre_len = (4, 8, 12, 24), itr = 1,
Train_epochs = 5, learn_rate = 0.0001, dropout = 0.05
label_len = 12, batchsize = 64, loss_ f unction = adaptive,

Autoformer
dmodel = 512, seq_len = 24, pre_len = (4, 8, 12, 24), itr = 1,
Train_epochs = 5, learn_rate = 0.0001, dropout = 0.05,
label_len = 12, batchsize = 64, loss_ f unction = mse

Informer
dmodel = 512, seq_len = 24, pre_len = (4, 8, 12, 24), itr = 1,
Train_epochs = 5, learn_rate = 0.0001, dropout = 0.05,
label_len = 12, batchsize = 64, loss_ f unction = mse

Transformer
dmodel = 512, seq_len = 24, pre_len = (4, 8, 12, 24), itr = 1,
Train_epochs = 5, learn_rate = 0.0001, dropout = 0.05
label_len = 12, batchsize = 64, loss_ f unction = mse

LSTM
seq_len = 24, pre_len = (4, 8, 12, 24), batchsize = 64,
Train_epochs = 100, learn_rate = 0.0001,
dropout = 0.05, loss_ f unction = mse

GRU
seq_len = 24, pre_len = (4, 8, 12, 24), batchsize = 64,
Train_epochs = 100, learn_rate = 0.0001,
dropout = 0.05, loss_ f unction = mse

RNN
seq_len = 24, pre_len = (4, 8, 12, 24), batchsize = 64,
Train_epochs = 100, learn_rate = 0.0001,
dropout = 0.05, loss_ f unction = mse

4.3. Data Pre-Processing

The initial step of study involves the collection and pre-processing of data. The data
needs to be preprocessed to ensure the performance of our model. Due to maintenance
issues or device failure, there are occasional cases where data is missing. The chosen
datasets are then processed by deleting any negative numbers for electricity generation
and interpolating any existing missing values. For a variety of reasons, the dataset was
divided into three sections. The training set, validation set, and test set each make up 70%,
20%, and 10% of the datasets, respectively.

4.4. Evaluation Metrics

Four different evaluation indices, including Mean Square Error (MSE), Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and adjusted R-squared (R2

a), were utilized
to assess the performance of the models in this study. These are their expressions:

MSE = 1
N

N
∑

t=1
(pt − p̂t)

2 (18)

MAE = 1
N

N
∑

t=1
|pt − p̂t| (19)

RMSE =

√
1
N

N
∑

t=1
(pt − p̂t)

2 (20)

R2 = 1− ∑t(pt− p̂t)
2

∑t(pt−pt)
2 (21)

R2
a = 1− n− 1

n− k− 1

(
1− R2

)
(22)
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where N is the amount of PV energy sample points utilized to calculate the prediction
error, pt is the actual PV power values, pt is the mean of the prediction period taken into
consideration, and p̂t is the predicted values. MSE is a frequently employed metric to
assess the efficacy of time series forecasting. In this paper, all baseline models used the
MSE as a loss function. The real circumstance of the error between the forecasting value
and the actual value can be better reflected by MAE because it is less sensitive to outliers.
RMSE is prone to high values and accentuates the distance between significant mistakes.
Better performance is indicated by these indicators’ lower levels. R2 denotes R-squared
and it represents the percentage of variance that the model accounts for and displays the
correlation between forecasted and actual values. By considering the effects of additional
independent factors that have a propensity to distort the outcomes of R2 measurements,
R2

a, a modified form of R2, increases accuracy and reliability. Its value ranges from 0 to 1.
The lager value of this indicator means better performance.

5. Experiment and Analysis

The PV power forecasting results of the suggested model and six baseline models
are summarized and analyzed in this section. In this study, forecasting is conducted in
four different prediction lengths (4, 8, 12 and 24) using data with a 5 min precision as well
as data with an hourly resolution. Since the epoch periods of the seven models used in
the experiments of this work differ significantly, additional convergence parameters, for
instance the speed of loss converge of the seven models trained under the datasets, are not
compared. In this research, each forecasting approach is implemented using Python 3.8,
which runs on a computer with 12th Intel(R) Xeon(R) Platinum 8255C CPU 2.5 GHz 43 GB
and NVIDIA GeForce RTX 3080 GPU 12 GB.

5.1. Experiment I: 5-min PV Power Forecasting Experiment

On the 5 min resolution dataset, we contrast and examine the suggested model with
the other six models. In the experiment, obviously, the suggested model has performed
uniformly the best of all the models. Table 2 lists the thorough analyses of the predicted
outcomes. Figure 4 displays the visual bar chart. Figure A1 shows the visual scatter plot.
According to Table 2, ADAMS achieved the best MSE of 0.061 in the forecasting of length-4,
whereas Autoformer, Informer, Transformer, LSTM, GRU, and RNN achieved MSEs of 0.116,
0.076, 0.063, 0.304, 0.190, and 0.146, respectively. As can be observed from Figure 4, when
the forecasting interval is extended to length-24, the prediction errors for most competing
approaches worsen. The suggested model exhibits better predicting performance for all
four forecasting lengths within 120 min for data with a 5 min resolution. The prediction
precision of all models exhibits a general tendency of declining with increasing length.

Table 2. PV power forecasting accuracy evaluation of 5 min.

Metrics ADAMS Autoformer Informer Transformer LSTM GRU RNN

4

MSE 0.061 0.116 0.076 0.063 0.234 0.190 0.146
MAE 0.146 0.166 0.178 0.120 0.284 0.296 0.234
RMSE 0.248 0.341 0.276 0.252 0.484 0.436 0.382

R2
a 0.940 0.886 0.925 0.938 0.835 0.822 0.863

8

MSE 0.074 0.205 0.129 0.083 0.290 0.184 0.216
MAE 0.134 0.247 0.226 0.188 0.315 0.323 0.301
RMSE 0.273 0.453 0.359 0.289 0.538 0.429 0.464

R2
a 0.927 0.799 0.874 0.918 0.795 0.828 0.797

12

MSE 0.099 0.143 0.130 0.122 0.262 0.324 0.140
MAE 0.164 0.226 0.229 0.222 0.303 0.409 0.248
RMSE 0.315 0.378 0.355 0.349 0.512 0.569 0.374

R2
a 0.903 0.860 0.876 0.880 0.815 0.697 0.869

24

MSE 0.173 0.215 0.255 0.214 0.297 0.389 0.324
MAE 0.227 0.288 0.322 0.301 0.332 0.469 0.400
RMSE 0.416 0.464 0.505 0.462 0.545 0.624 0.569

R2
a 0.831 0.788 0.750 0.790 0.789 0.636 0.776
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Figure 5 shows the forecasting curves of all models for the length-24 forecasting re-
sults. The forecasting curves of each model are shown in Figure A3. We can observe that 
ADAMS is also proved to be the most successful model in reconstructing the fluctuation 
details. One-step prediction models, e.g., LSTM, GRU, and RNN are frequently used; 
multi-step prediction procedures will cause significant error accumulation issues. In par-
ticular, the prediction mistake from the earlier forecasting would accrue in the upcoming 
forecast, adding significant forecasting bias and leading to much higher MSE. Addition-
ally, the PV power data patterns are very intricate. Their ability to learn historical details 
will be severely hampered by the limited computer memory. They cannot effectively learn 
global patterns in their memory cell without a heuristic selection process. Instead, they 
are only able to recall patterns in extremely small ranges, which could interfere with fore-
casting. The four transformer-based prediction models perform well in terms of accuracy. 

Figure 4. PV power forecasting accuracy evaluation of 5 min.

Figure 5 shows the forecasting curves of all models for the length-24 forecasting results.
The forecasting curves of each model are shown in Figure A3. We can observe that ADAMS
is also proved to be the most successful model in reconstructing the fluctuation details.
One-step prediction models, e.g., LSTM, GRU, and RNN are frequently used; multi-step
prediction procedures will cause significant error accumulation issues. In particular, the
prediction mistake from the earlier forecasting would accrue in the upcoming forecast,
adding significant forecasting bias and leading to much higher MSE. Additionally, the
PV power data patterns are very intricate. Their ability to learn historical details will be
severely hampered by the limited computer memory. They cannot effectively learn global
patterns in their memory cell without a heuristic selection process. Instead, they are only
able to recall patterns in extremely small ranges, which could interfere with forecasting.
The four transformer-based prediction models perform well in terms of accuracy. Too many
variations have been predicted by models such as LSTM and RNN, which is referred to
as the overfitting phenomena. The approximate fluctuation curves have been effectively
reconstructed by Autoformer, Informer, and Transformer, however certain crucial elements
have not been precisely predicted. In contrast, ADAMS accurately restores a number of
significant information, including minor variations and turning points, which constitute
the better understanding of the time series.
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Therefore, even if the datasets exhibit extremely fluctuating patterns, the suggested
ADAMS is adept at projecting PV power time series over the very short-term (5 min
resolution) and recovering the precise fluctuation tendencies. Additionally, the suggested
ADAMS has generated an excellent result that can serve as a fresh baseline in future research
on STPVF. Although ADAMS outperforms competing approaches in our comparative
trials, we did not compare ADAMS to competing approaches because, according to earlier
research, ADAMS outperforms rival approaches in forecasting.

5.2. Experiment II: Hourly PV Power Forecasting Experiment

The forecasting precision of each experimental model is examined using hourly PV
power data to supply more conclusive evidence of the efficacy of our suggested ADAMS.
In Table 3, Figures 6 and A2, an error evaluation, a visual bar chart and a visual scatter plot
are shown, respectively. Among all the models available, the ADAMS is still the model
that performs the best, according to Table 3. For all of the lengths in advance, ADAMS
has the maximum number of the four evaluation indexes best values, as shown in Table 3,
while Autoformer and GRU each account for one. Additionally, ADAMS displays the
best values across all evaluation indexes for all future lengths. It is important to note that
LSTM predicts the curve poorly, with MSE values of 0.304, 0.457, 0.431, and 0.560 being
the highest. For hourly resolution of data, the ADAMS model exhibits better predicting
performance for all four pre-lengths throughout a day, as shown in Figure 6 which displays
the forecasting outcomes of all models. The prediction accuracy of all models has a general
declining trend with increasing length, similarly to the Exp. I.

Table 3. PV power forecasting accuracy evaluation of 1 h.

Metrics ADAMS Autoformer Informer Transformer LSTM GRU RNN

4

MSE 0.197 0.201 0.289 0.255 0.304 0.244 0.237
MAE 0.265 0.268 0.322 0.311 0.373 0.284 0.276
RMSE 0.455 0.448 0.537 0.505 0.551 0.494 0.487

R2
a 0.873 0.870 0.816 0.840 0.716 0.827 0.832

8

MSE 0.219 0.227 0.292 0.279 0.457 0.254 0.257
MAE 0.265 0.282 0.325 0.320 0.490 0.299 0.291
RMSE 0.468 0.476 0.540 0.528 0.676 0.504 0.507

R2
a 0.856 0.857 0.816 0.825 0.573 0.820 0.818

12

MSE 0.251 0.294 0.325 0.297 0.431 0.280 0.389
MAE 0.283 0.343 0.344 0.329 0.485 0.318 0.396
RMSE 0.501 0.542 0.570 0.545 0.657 0.540 0.624

R2
a 0.842 0.815 0.794 0.813 0.597 0.807 0.725

24

MSE 0.280 0.319 0.330 0.323 0.560 0.284 0.428
MAE 0.302 0.369 0.340 0.342 0.518 0.301 0.444
RMSE 0.529 0.564 0.574 0.569 0.748 0.532 0.654

R2
a 0.824 0.799 0.793 0.796 0.476 0.800 0.697
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Figure 7 shows the forecasting curves of all models for the length-24 forecasting re-
sults. The forecasting curves of each model are shown in Figure A4. It can be seen that the 
hourly PV statistics are more consistent and less randomly erratic than the 5 min PV data. 
However, the predicting curves of all models reveal that 5 min resolution data are more 
favorable to good forecasting performance. This depends on the temporal properties of 
the PV power time series themselves, and as resolution rises, so does the number of his-
torical values that can be used for forecasting. 

 

Figure 6. PV power forecasting accuracy evaluation of 1 h.

Figure 7 shows the forecasting curves of all models for the length-24 forecasting results.
The forecasting curves of each model are shown in Figure A4. It can be seen that the hourly
PV statistics are more consistent and less randomly erratic than the 5 min PV data. However,
the predicting curves of all models reveal that 5 min resolution data are more favorable to
good forecasting performance. This depends on the temporal properties of the PV power
time series themselves, and as resolution rises, so does the number of historical values that
can be used for forecasting.
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When comparing Exp. I and Exp. II, we can find that the ranges of R2
a for the hourly

resolution data and the 5 min resolution data for all lengths of seven models are 0.476 to
0.873 and 0.636 to 0.940, respectively. The forecasting of length-4 shows the highest R2

a for
both resolutions, while the length-12 and length-24 show the lowest R2

a. As observed from
the aforementioned, the quality of fit of the model decreases with increasing pre-length on
the two resolution datasets. The quality of fit of the model is better in the higher resolution
(5 min resolution) data set. The complete range of the predicted PV power can be explained
by the suggested model in 0.824 to 0.938. As seen from the aforementioned, on both
resolution data sets, the quality of fit of the model increases with increasing resolution,
with the 5 min resolution data set having the best fit. On both resolution data sets, the
goodness of fit of the model decreases with increasing predicted length.
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5.3. Diebold-Mariano Test

In order to evaluate the null hypothesis on the difference in accuracy between two
forecasting models, Diebold and Mariano proposed explicit tests [25,26]. Model prediction
errors can be non-Gaussian, non-zero-mean, serially correlated, and contemporaneously
correlated, and the loss function is not required to be quadratic or symmetric [25]. The
strength of ADAMS is not overwhelming to Autoformer and Transformer, as shown in
Tables 2 and 3. The Diebold-Mariano test are run as a result to perform more research.

Let H0 be the null hypothesis, which states that there is no difference in prediction
accuracy between the two models. H1 be the alternative hypothesis, which states that the
prediction accuracy between the two models is obviously different. MSE is the loss function
used in this hypothesis test. If the p-value is higher than 0.05, there is no difference. H1 will
be allowed if p-value is less than 0.05.

Tables A1 and A2 display the outcomes of the Diebold-Mariano test. As a result, it can
be shown that p-value is never greater than 0.05, proving that the PV power calculated by
the ADAMS is substantially more accurate than that of the other models under comparison.

5.4. Ablation Study

We used Exp.1 (length-24) to conduct ablation research to confirm the effects of
various improvement measures in the ADAMS model. The multi-scale framework, the de-
stationary attention module, and the adaptive loss function (replaced by MSE), respectively,
are removed from ADAMS via the Mscale, Matttention, and Mloss functions.

According to Figure 8, the MSE increases to 1.72 times when the Matttention is utilized,
showing that the de-stationary attention significantly improves the objectivity and depend-
ability of the outcome prediction. The removal of the multi-scale module shortens training
time but increases MSE by 4.598%. When the adaptive loss function was applied in place of
the MSE, the MSE increased by 14.943% while the training time increased a little. Three
other evaluation indicators also show a similar situation. The statistical results demon-
strate that the proposed ADAMS model, which incorporates all performance enhancement
techniques, performs best, and that the most effective performance enhancement technique
for ADAMS accuracy is de-stationary attention, followed by multi-scale framework and
adaptive loss function.
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5.5. Further Study

It makes sense that the longer the training time series, the more knowledge the models
can pick up, resulting in a better forecasting outcome. The longer training datasets, it
turns out, may not necessarily result in a forecast that is more correct. On the other hand,
longer series datasets underperformed, with greater MSE, MAE, RMSE, and lower R2

a.
Further studies are conducted as a result, in which we built up 12 experimental groups
with PV power data of the 5 min resolution data provided by Yulara Solar System, ranging
in duration from 1 month to 12 months. Additionally, six experimental groups are set
up collecting data with hourly resolution ranging from one year to six years. In these
experiments, their forecasting tasks are fixed at length-24 in advance. Figures 9a and 10a
display the four evaluation indicators from various experimental groups of 5 min and
hourly resolution data, respectively. As seen in Figure 9a, the total MSE has witnessed
a rising trend as dataset lengths have increased to a given value, with the lowest points
occurring at lengths of 4 months. As shown in Figure 10a, the lowest point of MSE appears
at the length of 4 years. Therefore, the 4 months datasets (5 min resolution) and 4 years
datasets (hourly resolution) are those we used for this study.
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It is interesting to note that some experimental groups with longer datasets even
exhibit overfitting during testing, defying the conventional wisdom that more data will
help to reduce overfitting in deep learning. In Figure 9b–d, the forecasting outcomes of the
2 months, 9 months, and 11 months datasets are depicted. Evidently, for the two-month
datasets, the insufficient PV power data makes it quite natural for models to overfit the
training data. When there is insufficient data, as shown in Figure 9, the predicted curve
shows obvious error compared with the real curve. The predicting curves of 9 months
and 11 months, when the time series data are considerably longer than 2 months, however,
shows greater fluctuation, and even has several serious errors. This makes them much more
inconsistent with the ground truth patterns. As for the hourly resolution data, additional
data is required to fully understand this phenomenon, however the Yulara Solar system
currently only has six years’ worth of data.

It is quite difficult to provide sufficient proof in a very short amount of time due to the
inadequate data. This work presented two ideas for our future research in STPVF based on
this peculiar phenomenon:

1. Due to the global use of self-attention and auto-correlation while training, if the
time series is too lengthy, they will likely be dispersed to some historical data from
the distant past that is unrelated to the current trends. The current PV power in
STPVF only roughly correlates to the prior trend over a narrow range. Therefore, the
historical PV power from a long time ago could seriously impair auto-correlation or
self-attention.
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2. Because the long-ago historical data disturbs the auto-correlation if the previous
historic patterns resemble strikingly the current ones, the parallel historic patterns
may lead the model to incorrectly predict the current trend based on the parallel
historic patterns. That is to say, the forecasting errors have increased because the
model has overfitted the past time series.

6. Conclusions

A novel neural network model is suggested in this paper to address the STPVF.
This research suggested the ADAMS, in which the additional de-stationary attention is
introduced in both the encoder and decoder modules, to find specific time dependencies
based on the complete sequence information before the stationary, to resolve the extreme
fluctuations and irregular trends of STPVF data. In order to find the time dependent
patterns in long history data, Autoformer also utilized a multi-scale framework with a
cross-scale normalization method. ADAMS and other competitive models are used to
perform STPVF, using the Yulara Solar System in Central Australia as the case study. The
experiment exhibits the suggested ADAMS’s capacity to foresee frequent variations as
well as to extract deeper information from extremely erratic data patterns. It is important
to note that, in contrast to earlier studies, the suggested ADAMS produced an excellent
result in STPVF. This work also performed an experiment of the STPVF based on the
hourly resolution PV power dataset to further demonstrate the superiority of the proposed
ADAMS. The additional case study also offers compelling proof that ADAMS excels at deep
knowledge learning and restores crucial information even from slicker data. Additionally,
the proposed ADAMS was versatile, and besides the exogenous variables used in this
paper for PV energy prediction, other exogenous variables can be used. Moreover, it is able
to adapt to time series with different characteristics, and it can be used for forecasting tasks
in other fields in future research.

Although most studies have shown that adding more data helps to solve the overfitting
issue, in the area of STPVF, a larger time series dataset for learning may not be able to better
predict future PV power. Two possibilities are put out in response to this counterintuitive
phenomenon. On the one hand, larger datasets could disperse the auto-correlation to
ancient historical time series from a long time ago. On the other hand, the model may be led
astray to overfit the historical data by the dispersed auto-correlation. Future research will
focus on providing a strict demonstration of the proposed assumptions and determining
the ideal duration of the training datasets for STPVF.
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Appendix C

Table A1. The outcomes of the Diebold-Mariano test (5 min resolution data).

Models ADAMS Autoformer Informer Transformer LSTM GRU RNN

4

ADAMS 0.00 × 10+00 4.89 × 10−02 1.37 × 10−02 1.30 × 10−12 1.39 × 10−133 1.13 × 10−235 1.00 × 10−292

Autoformer 4.89 × 10−02 0.00 × 10+00 9.01 × 10−07 8.26 × 10−24 5.84 × 10−135 1.74 × 10−232 1.07 × 10−280

Informer 1.37 × 10−02 9.01 × 10−07 0.00 × 10+00 3.38 × 10−28 3.61 × 10−156 2.08 × 10−289 0.00 × 10+00

Transformer 1.30 × 10−12 8.26 × 10−24 3.38 × 10−28 0.00 × 10+00 6.14 × 10−156 3.70 × 10−289 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.98 × 10−93 1.01 × 10−171

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.98 × 10−93 0.00 × 10+00 1.70 × 10−61

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.01 × 10−171 1.70 × 10−61 0.00 × 10+00
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Table A1. Cont.

Models ADAMS Autoformer Informer Transformer LSTM GRU RNN

8

ADAMS 0.00 × 10+00 9.78 × 10−75 3.27 × 10−58 6.80 × 10−03 2.61 × 10−42 0.00 × 10+00 0.00 × 10+00

Autoformer 9.78 × 10−75 0.00 × 10+00 5.81 × 10−25 1.12 × 10−74 6.05 × 10−01 0.00 × 10+00 0.00 × 10+00

Informer 3.27 × 10−58 5.81 × 10−25 0.00 × 10+00 0.00 × 10+00 1.37 × 10−45 0.00 × 10+00 0.00 × 10+00

Transformer 6.80 × 10−03 1.12 × 10−74 0.00 × 10+00 0.00 × 10+00 3.46 × 10−48 0.00 × 10+00 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

GRU 0.00 × 10+00 2.91 × 10−123 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 3.21 × 10−35

RNN 0.00 × 10+00 1.58 × 10−274 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 3.21 × 10−35 0.00 × 10+00

12

ADAMS 0.00 × 10+00 3.00 × 10−109 5.20 × 10−02 7.14 × 10−01 1.32 × 10−191 1.48 × 10−10 3.42 × 10−253

Autoformer 3.00 × 10−109 0.00 × 10+00 6.72 × 10−131 2.07 × 10−114 2.60 × 10−139 5.26 × 10−21 2.84 × 10−248

Informer 5.20 × 10−02 6.72 × 10−131 0.00 × 10+00 3.50 × 10−07 0.00 × 10+00 6.73 × 10−09 1.35 × 10−223

Transformer 7.14 × 10−01 2.07 × 10−114 3.50 × 10−07 0.00 × 10+00 0.00 × 10+00 4.59 × 10−04 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

RNN 0.00 × 10+00 2.92 × 10−193 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

24

ADAMS 0.00 × 10+00 1.67 × 10−03 7.54 × 10−185 1.26 × 10−07 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Autoformer 1.67 × 10−03 0.00 × 10+00 2.19 × 10−163 2.25 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Informer 7.54 × 10−185 2.19 × 10−163 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.88 × 10−293

Transformer 1.26 × 10−07 2.25 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.50 × 10−02 0.00 × 10+00

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.50 × 10−02 0.00 × 10+00 0.00 × 10+00

RNN 0.00 × 10+00 0.00 × 10+00 4.88 × 10−293 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Table A2. The outcomes of the Diebold-Mariano test (hourly resolution data).

Models ADAMS Autoformer Informer Transformer LSTM GRU RNN

4

ADAMS 0.00 × 10+00 6.89 × 10−03 1.41 × 10−109 1.48 × 10−56 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Autoformer 6.89 × 10−03 0.00 × 10+00 2.55 × 10−135 1.44 × 10−80 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Informer 1.41 × 10−109 2.55 × 10−135 0.00 × 10+00 9.37 × 10−81 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Transformer 1.48 × 10−56 1.44 × 10−80 9.37 × 10−81 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 9.18 × 10−01 5.54 × 10−02

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 9.18 × 10−01 0.00 × 10+00 1.19 × 10−01

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 5.54 × 10−02 1.19 × 10−01 0.00 × 10+00

8

ADAMS 0.00 × 10+00 2.02 × 10−12 2.60 × 10−222 1.38 × 10−214 3.19 × 10−141 8.17 × 10−62 5.39 × 10−133

Autoformer 2.02 × 10−12 0.00 × 10+00 1.18 × 10−290 7.43 × 10−288 1.19 × 10−194 6.69 × 10−123 1.98 × 10−179

Informer 2.60 × 10−222 1.18 × 10−290 0.00 × 10+00 3.87 × 10−06 1.94 × 10−21 2.07 × 10−97 9.84 × 10−02

Transformer 1.38 × 10−214 7.43 × 10−288 3.87 × 10−06 0.00 × 10+00 2.99 × 10−13 1.11 × 10−77 8.22 × 10−01

LSTM 3.19 × 10−141 1.19 × 10−194 1.94 × 10−21 2.99 × 10−13 0.00 × 10+00 7.97 × 10−44 4.68 × 10−07

GRU 8.17 × 10−62 6.69 × 10−123 2.07 × 10−97 1.11 × 10−77 7.97 × 10−44 0.00 × 10+00 5.75 × 10−34

RNN 5.39 × 10−133 1.98 × 10−179 9.84 × 10−02 8.22 × 10−01 4.68 × 10−07 5.75 × 10−34 0.00 × 10+00

12

ADAMS 0.00 × 10+00 2.20 × 10−221 0.00 × 10+00 1.46 × 10−121 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Autoformer 2.20 × 10−221 0.00 × 10+00 8.02 × 10−96 6.72 × 10−09 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Informer 0.00 × 10+00 8.02 × 10−96 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Transformer 1.46 × 10−121 6.72 × 10−09 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.14 × 10−150 4.54 × 10−185

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.14 × 10−150 0.00 × 10+00 0.00 × 10+00

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.54 × 10−185 0.00 × 10+00 0.00 × 10+00

24

ADAMS 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.18 × 10−172 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Autoformer 0.00 × 10+00 0.00 × 10+00 9.87 × 10−08 3.20 × 10−95 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Informer 0.00 × 10+00 9.87 × 10−08 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

Transformer 2.18 × 10−172 3.20 × 10−95 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 6.16 × 10−03 0.00 × 10+00

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 6.16 × 10−03 0.00 × 10+00 0.00 × 10+00

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00
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