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Abstract: Deep learning techniques excel at capturing and understanding the symmetry inherent in 

data patterns and non-linear properties of photovoltaic (PV) power, therefore they achieve excellent 

performance on short-term PV power forecasting. In order to produce more precise and detailed 

forecasting results, this research suggests a novel Autoformer model with De-Stationary Attention 

and Multi-Scale framework (ADAMS) for short-term PV power forecasting. In this approach, the 

multi-scale framework is applied to the Autoformer model to capture the inter-dependencies and 

specificities of each scale. Furthermore, the de-stationary attention is incorporated into an auto-cor-

relation mechanism for more efficient non-stationary information extraction. Based on the opera-

tional data from a 1058.4 kW PV facility in Central Australia, the ADAMS model and the other six 

baseline models are compared with 5 min and 1 h temporal resolution PV power data predictions. 

The results show in terms of four performance measurements, the proposed method can handle the 

task of projecting short-term PV output more effectively than other methods. Taking the result of 

predicting the PV energy in the next 24 h based on the 1 h resolution data as an example, MSE is 

0.280, MAE is 0.302, RMSE is 0.529, and adjusted R-squared is 0.824. 

Keywords: photovoltaic power; deep learning; short-term forecasting; transformer model;  

nonstationarity; multi-scale analysis 

 

1. Introduction 

The growing need for clean energy around the world may be partially met by pho-

tovoltaic (PV) power, a renewable, safe, and adaptable distributed energy supply [1]. 

Over the past few decades, PV power has drawn more attention [2]; its integration has 

had substantial positive effects on the economy and the environment. Due to its erratic 

and intermittent nature, significant PV penetration, however, also poses a number of new 

difficulties for the operation of current grid systems [3]. These difficulties include inter-

mittent power generation, high installation costs, and the PV power supply’s vulnerabil-

ity to weather conditions [4]. Forecasting PV electricity is an effective way to deal with 

these difficulties. For large-scale PV penetration in the primary power grid, precise fore-

casting of PV energy generation is acknowledged as a requirement [5]. The approaches of 

forecasting PV power can be categorized into three groups depending on the forecasting 

time horizon: long-term PV power forecasting (LTPVF), middle-term PV power forecast-

ing (MTPVF), and short-term PV power forecasting (STPVF). Short-term forecasting is the 

process of predicting the amount of PV power that will be produced over the next hour, 

several hours, day, or even seven days. Forecasting for medium-term PV electricity is per-

formed over periods of time longer than a week to a month. The long-term forecasts of 

PV power generation range from one month to one year. 

Many studies have been conducted recently that go in-depth on the subject of short-

term photovoltaic power forecasting (STPVF). The traditional statistical method, e.g., the 

Autoregressive Integrated Moving Average (ARIMA) was previously employed as the 
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initial STPVF attempt. Support vector machine (SVM), Gaussian process regression (GPR) 

and extreme learning machine (ELM) are three conventional machine learning (ML) mod-

els that are used frequently in STPVF. However, in the STPVF challenge with complex 

and lengthy data, these techniques perform poorly. The dependable forecasting perfor-

mance needed for the construction of reliable PV energy systems cannot be attained by 

standard methodologies for PV energy prediction. Deep learning (DL) techniques based 

on neural networks are significantly more favored than typical statistical approaches and 

machine learning techniques for understanding the long-term patterns of PV power data. 

Recently, both STPVF situations have used a variety of deep learning neural networks, 

including recurrent neural network (RNN), gated recurrent units (GRU), long short-term 

memory (LSTM), convolutional neural network (CNN) and transformer-based models. 

Deep learning approaches have been used to make some progress, although these tech-

niques still have major drawbacks. As an illustration, consider single-step forecasting, so-

phisticated computing, and significant memory costs. 

Furthermore, it was commonly acknowledged in earlier studies to use a decomposi-

tion technique or stationarization to pre-process time series for nonstationary and nonlin-

ear signals. This can make the raw time series less complex and non-stationary, which will 

increase prediction accuracy and provide deep models a more stable data distribution. 

Decomposition and stationarization are typically used to pre-process historical data be-

fore projecting future series for forecasting activities. However, this pre-processing is con-

strained by the simple decomposition impact of historical series and ignores the series’ 

long-term hierarchical interaction with its underlying patterns. Wu et al. suggested Auto-

former as an alternative to transformers for long-term time series prediction based on the 

concept of decomposition [6]. The Autoformer model is enabled to split the information 

about long-term trends of anticipated hidden series gradually by embedding deconstruc-

tion blocks as the internal operators. The inherent non-stationarity of real-world time se-

ries, however, also serves as useful guidance for identifying temporal connections for fore-

casting. For predicting real-world burst events, the stationarized series that lacks inherent 

non-stationarity may be less useful. 

In response to the above-mentioned drawbacks, we propose a novel Autoformer 

model with de-stationary attention and multi-scale framework (ADAMS) for the research 

of STPVF. The forecast modeling of PV power data is performed for capturing and under-

standing the symmetry inherent and non-stationarity in data patterns by the ADAMS 

model and employing it in order to predict future PV power data. On the Yulara datasets, 

where the PV power data is taken from DKASC, which is located at the Desert Knowledge 

Precinct in Central Australia, the performance of the proposed model is validated. Large 

random variations and non-stationary data patterns are present in this data. Therefore, it 

is essential to be able to recover the fluctuation curves while assessing the performance of 

models. ADAMS performs satisfactorily in the experiment while forecasting fluctuation 

curves. Additionally, the suggested ADAMS has reduced compute complexity and 

memory cost to 𝑂(𝐿 𝑙𝑜𝑔𝐿), and it can perform several steps of predicting. The primary 

innovations and novelties in this paper are as follows: 

1. An improved ADAMS model is proposed for STPVF. The extra multi-scale frame-

work and de-stationary attention is added to the Autoformer model. According to 

the results, the ADAMS is contributing to extract features more deeply and handle 

complicated, non-stationary data, which lowers forecasting error. 

2. Some additional methods are used as the baselines to test the efficacy of the ADAMS 

that is proposed. Autoformer, Informer, Transformer, LSTM, GRU, and RNN are all 

used in this paper. They are utilized for short-term PV power forecast with prediction 

lengths of 4 to 24. The MSE, MAE, RMSE, and adjusted R-squared (𝑅𝑎
2) were em-

ployed as evaluation measures for accuracy. 

3. More tests with a temporal resolution of one hour were conducted to further demon-

strate the usefulness of the proposed ADAMS. According to expectations, the sug-
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gested ADAMS model achieves the best performance across all experimental fore-

casting models when compared to earlier projects, giving strong evidence that the 

suggested model works. 

The remainder of this research is organized as follows: the second section gives a 

detailed summary of previous work relevant to STPVF. The third section introduces thor-

oughly the suggested ADAMS neural network. Next, the fourth section illustrates the ex-

perimental preparation and framework. The fifth section contains the STPVF experiment 

using ADAMS and the analysis of the result. Finally, the sixth section sums up this study. 

2. Related Work 

Time series statistical analysis known as ARIMA is commonly employed in forecast-

ing. Numerous academics have assessed the model in various forecasting applications. 

While the forecasting accuracy increased as the forecasting horizon was expanded, 

ARIMA has performed poorly in long-term time series. Because the long-term data has a 

lot of high-dimension hidden features, there are not enough parameters in ARIMA, which 

prevents it from fitting these long-term data. 

Machine learning techniques have recently been suggested for forecasting PV power. 

Traditional techniques of machine learning, such as SVM, are frequently suggested for 

predicting PV power. In a study they released in 2020, Pan et al. shown that using SVM 

for the very short-term prediction is feasible and using ant colony optimization to deter-

mine the best parameters of this model [7]. For the purpose of anticipating hourly PV 

power generation, Zhou et al. used the ELM to model the input features, a genetic algo-

rithm to optimize the relevant parameters of their forecasting model [8]. They also 

adopted a customized similar day analysis based on five meteorological components. 

Despite the widespread use of ML techniques, there are still a number of significant 

drawbacks, including the following: (1) they heavily depend on the quality of the feature 

engineering used; (2) they are unable to deal with complex feature scenarios with high 

irregularity; and (3) they exhibit unstable predictive power, making them inappropriate 

as a component for the reliable decision making required for any power system. They are 

unsuitable as a part of the trustworthy decision-making required for any power system 

since they have unstable forecasting ability, strongly depend on the level of the feature 

engineering employed, and are unable to handle complicated feature situations with high 

irregularity. Consequently, to provide more accurate predictions, ML algorithms are fre-

quently integrated with other methods. 

Recurrent networks are effective in simulating dependencies in sequential data, as 

shown in recent DL literature. Because of its ability to extract hidden information during 

graph processing using the convolution principle, CNN has received a lot of attention in 

the field of computer vision (CV). A growing number of studies have been published on 

hybrid CNN models for PV power forecasting in order to adapt to time-series forecasting 

applications. A CNN-BiGRU hybrid technique was suggested in one study by Zhang et 

al. to anticipate PV power for a PV power facility in Korea range [9]. Zang et al. used a 

hybrid method based on CNN to precisely predict how much energy a short-term photo-

voltaic system would produce [10]. The training time series must be brief due to the con-

volution calculation’s high computing complexity, and a lack of data could result in a 

major overfitting issue. In natural language processing, RNN and its unique variant, 

LSTM, which is built with a memory cell architecture to record essential information, have 

been frequently proposed. The LSTM and RNN techniques have been suggested in prior 

studies for STPVF. For instance, Gao et al. proposed a day-ahead power output time-series 

forecasting methods based on LSTM, in which ideal weather type and non-ideal weather 

types have been separately discussed [11]. 

Thanks to its capability to manage long-term interdependence without disappearing 

gradient, LSTM has been widely used. However, location information and long-term cor-
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relations are frequently present in energy time series, therefore the LSTM is unable to ac-

quire a major amount of input properties that can have a considerable impact on predic-

tion performance. Additionally, because of the restricted computer memory, both LSTM 

and RNN approaches can only predict one timestep forward, which takes more time if the 

aim is to provide the prediction of multiple timesteps ahead. This difficulty is caused by 

the enormous memory occupation. However, error accumulation, the fatal flaw in single-

step forecasting, significantly enhanced the unreliability of forecasting multiple timesteps 

in advance. 

In 2017, the Transformer model, which is well-known for its self-attention mecha-

nism, was suggested and is currently being employed in the field of NLP [12]. The self-

attention mechanisms and the enhanced later version, which have replaced the conven-

tional memory block in LSTM and the initial attention mechanism, have produced more 

accuracy in longer language comprehension. Some academics think it might increase the 

capacity for prediction. However, it cannot be directly implemented to time series fore-

casting because of the high computation time, large memory utilization, and abrupt de-

cline in forecasting rate. Many academics have worked hard and provided numerous so-

lutions to these problems. The sparse decomposition of the attention matrix is considered 

in Ref. [13]. The logsparse Transformer is proposed in Ref. [14], which adds a convolu-

tional self-attention mechanism. Longformer, a linear expansion of the attention mecha-

nism with series length, is introduced in Ref. [15]. The complication of the entire self-at-

tention in time and space is reduced by a novel self-attention mechanism in Ref. [16]. An 

improved version of Transformer called Informer, which has been tried on four sizable 

data sets, is established in Ref. [17]. It offers an alternative answer to the time series pre-

diction issue. However, rather than concentrating on a section of the time series, all of 

these approaches with better self-attention only do so for an individual historical period. 

Due to the exceedingly small attention horizon, the single self-attention worked quite 

badly when the training data had significant variations. 

Wu et al. used an enhanced self-attention method called auto-correlation in a work 

they released in 2021 in which they took advantage of a decomposition architecture [6]. 

The NBEATS model and high accuracy on the power price dataset were achieved by 

Oreshkin and his colleagues, who also introduced the canonical decomposition architec-

ture [18]. The input dimension does, however, have a limit on the original NBEATS. With 

the use of an auto-correlation mechanism and a decomposition block, Autoformer built 

on the concept of temporal decomposition [19]. Additionally, Autoformer forecasts very 

long future data in a single computing step, which takes much less time. In light of the 

fact that the Autoformer model obtains high accuracy on numerous datasets but has not 

been used for the STPVF job, this research suggests an ADAMS model that will eventually 

produce a favorable forecasting accuracy for the STPVF. 

3. ADAMS Network Architecture 

The goal of PV power forecasting is to estimate future length 𝐿𝑝𝑟𝑒𝑑 from historical 

length 𝐿𝑠𝑒𝑞. For multi-step forecasting, a new ADAMS is suggested in this paper. The 

complexity and non-stationarity of data and the calculation efficiency are the two key dif-

ficulties in PV power forecasting, as mentioned previously. To solve these problems: 

1. In addition to replacing the conventional self-attention mechanism, the auto-correla-

tion mechanism serves to identify temporally dependent trends in large historical 

data sets. 

2. The de-stationary module is incorporated to the auto-correlation mechanism to ac-

quire hidden characteristics from the non-stationary time series data. In this way, the 

model can not only retain the important information of the original sequence, but 

also eliminate the non-stationarity of the original data. 
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3. A projected time series is refined iteratively at many scales with shared weights using 

the multi-scale framework, introducing changes to the architecture and a normaliza-

tion method that was especially created to produce considerable speed increases with 

little additional computational effort. 

3.1. Decomposition Architecture 

To break down complex time patterns into more predictable parts, a deep decompo-

sition architecture [6] with embedded sequence decomposition is introduced. 

3.1.1. Series Decomposition Block 

One of the most crucial techniques for time series forecasting is decomposition, 

which can divide the series into trend-cyclical and seasonal components, to learn about 

complicated temporal information in the context of long-term forecasting. These two sec-

tions each depict the series’ long-term development and seasonality. However, since the 

future is simply uncertain, direct decomposition is not feasible for next series. We intro-

duce a series decomposing block as an internal operation of model to address this conun-

drum. This block can gradually recover the long-term stable trend from projected inter-

mediary hidden factors. To put it more specifically, we modify the moving average to 

eliminate cyclical variations and emphasize long-term trends. The procedure is as follows 

for length 𝐿 input series 𝑋 ∈ ℝ𝐿×𝑑: 

𝑋𝑡 = AvgPool(Padding(𝑋))

𝑋𝑠 = 𝑋 − 𝑋𝑡 ,
 (1) 

where, respectively, 𝑋𝑠, 𝑋𝑡 ∈  𝑅𝐿 × 𝑑 indicate the seasonal and trend-cyclical components 

that were extracted. To maintain the same series length, we use the AvgPool(⋅) moving 

average with the padding procedure. To summarize the aforementioned equations, which 

is a model inner block, we utilize: 

𝑋𝑠, 𝑋𝑡 = SeriesDecomp(𝑋). (2) 

3.1.2. Model Inputs 

The past 𝐿𝑠𝑒𝑞 time steps 𝑋𝑒𝑛 serve as the encoder part’s inputs. The seasonal part is 

denoted as 𝑋𝑑𝑒𝑠. 𝑋𝑑𝑒𝑡 stand for the trend-cyclical part. In order to be refined, 𝑋𝑑𝑒𝑠 and 

𝑋𝑑𝑒𝑡 are both present in the input of the ADAMS model decoder. Each initialization has 

two components: a placeholder with length 𝑂 filled with scalars, and a component de-

constructed from the second half 𝑋𝑒𝑛, with length 𝐿𝑠𝑒𝑞 2⁄  to supply late information. 𝑋𝑒𝑛 

is the input of the encoder. It is expressed as follows: 

𝑋𝑒𝑛𝑠, 𝑋𝑒𝑛𝑡 = SeriesDecomp(𝑋
𝑒𝑛(

𝐿seq

2
 ∶ 𝐿seq)

)

𝑋𝑑𝑒𝑠 = Concat(𝑋𝑒𝑛𝑠, 𝑋0)

𝑋𝑑𝑒𝑡 = Concat(𝑋𝑒𝑛𝑡, 𝑋mean),

 (3) 

where 𝑋𝑒𝑛𝑠, 𝑋𝑒𝑛𝑡, respectively, represent the cyclical and seasonal elements of 𝑋𝑒𝑛, and 

𝑋0, 𝑋𝑚𝑒𝑎𝑛, respectively, stand for the blank spaces filled with 0 and the average of 𝑋𝑒𝑛. 

3.1.3. Encoder 

The encoder concentrates on the seasonal component modeling. Past seasonal data 

from the encoder’s output will be used as cross information to help the decoder improve 

forecast outcomes. Let us say there are 𝑁 encoder layers. The summary equations for the 

𝑙-th encoder layer are 𝑋𝑒𝑛
𝑙 = Encoder(𝑋𝑒𝑛

𝑙−1). Details are shown as follows: 

𝑆𝑒𝑛
𝑙,1, _ = SeriesDecomp(Auto-Correlation(𝑋𝑒𝑛

𝑙−1) + 𝑋𝑒𝑛
𝑙−1)

𝑆𝑒𝑛
𝑙,2, _ = SeriesDecomp(FeedForward(𝑆𝑒𝑛

𝑙,1) + 𝑆𝑒𝑛
𝑙,1),

 (4) 
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where “_” denotes the portion of the trend that was deleted. The output of the 𝑙-th en-

coder layer is indicated by 𝑋𝑒𝑛
𝑙 = 𝑆𝑒𝑛

𝑙,2, 𝑙 ∈ {1, ⋯ , 𝐿}. 𝑋𝑒𝑛
𝑙  is the embedded 𝑋𝑒𝑛 . The sea-

sonal component is represented as 𝑆𝑒𝑛
𝑙,𝑖 , 𝑖 ∈ {1, 2} after the 𝑖-th series decomposition block 

in the 𝑙-th layer, respectively. 

3.1.4. Decoder 

The accumulating architecture for trend-cyclical elements and the layered auto-cor-

relation technique for seasonal elements are both included in the decoder. The internal 

auto-correlation and encoder-decoder auto-correlation found in each decoder layer allow 

for the improvement of prediction and use of historical seasonal data, respectively. It 

should be noted that the architecture collects the prospective trend from the intermediary 

hidden variables throughout the decoder, enabling the model to gradually improve the 

trend forecasting and remove disturbance information for the discovery of addictions 

based on the period in the auto-correlation. Assume there are 𝑀 layers in the decoder. 

The equations of the 𝑙-th decoder layer can be condensed as 𝑋𝑑𝑒
𝑙 = Decoder(𝑋𝑑𝑒

𝑙−1 + 𝑋𝑒𝑛
𝑁 ) 

using the potential variable 𝑋𝑒𝑛
𝑁  from the encoder. It is possible to formalize the decoder 

as follows: 

𝑆𝑑𝑒
𝑙,1, 𝑇𝑑𝑒

𝑙,1 = SeriesDecomp(Auto-Correlation(𝑋𝑑𝑒
𝑙−1) + 𝑋𝑑𝑒

𝑙−1)

𝑆𝑑𝑒
𝑙,2, 𝑇𝑑𝑒

𝑙,2 = SeriesDecomp(Auto-Correlation(𝑆𝑑𝑒
𝑙,1, 𝑋𝑒𝑛

𝑁 ) + 𝑆𝑑𝑒
𝑙,1)

𝑆𝑑𝑒
𝑙,3, 𝑇𝑑𝑒

𝑙3 = SeriesDecomp(FeedForward(𝑆𝑑𝑒
𝑙,2) + 𝑆𝑑𝑒

𝑙,2)

𝑇𝑑𝑒
𝑙 = 𝑇𝑑𝑒

𝑙−1 + 𝑊𝑙,1 ∗ 𝑇𝑑𝑒
𝑙,1 + 𝑊𝑙,2 ∗ 𝑇𝑑𝑒

𝑙,2 + 𝑊𝑙,3 ∗ 𝑇𝑑𝑒
𝑙,3,

, (5) 

where the output of the 𝑙-th decoder layer is indicated by 𝑋𝑑𝑒
𝑙 = 𝑆𝑑𝑒

𝑙,3, 𝑙 ∈ {1, ⋯ , 𝐿}. The 𝑖-

th sequence decomposition in the 𝑙-th layer is represented by 𝑆𝑑𝑒
𝑙,𝑖 , 𝑇𝑑𝑒

𝑙,𝑖 , 𝑖 ∈ {1,2,3}, which 

stand for seasonal factors and periodic factors, respectively. The projector for the 𝑖-th ex-

tracted trend 𝑇𝑑𝑒
𝑙,𝑖 , 𝑖 ∈ {1,2,3} is represented by 𝑊𝑙,3. 

3.2. Auto-Correlation Mechanism 

For the purpose of realizing series-wise connections and making better use of the 

information in the sequence, the auto-correlation technique [6] is added to substitute the 

attention method of point-to-point connections. In this module, based on the theory of 

random process, the self-attention mechanism of point-wise connection is discarded, and 

the auto-correlation technique of series-wise connection is realized, which has complexity 

and breaks the bottleneck of information utilization. 

3.2.1. Period-Based Dependencies 

The similar phasing points across eras is seen to actually produce identical sub-pro-

cesses. For a real separate-time series {𝑋𝑡}, we can use the following equations to derive 

the autocorrelation, which can be expressed as: 

𝑅𝑋𝑋(𝜏) = 𝑙𝑖𝑚
𝐿→+∞

1

𝐿
∑ 𝑋𝑡𝑋𝑡−𝜏

𝐿

𝑡=1

. (6) 

The resemblance between {𝑋𝑡} and lag 𝜏 series {𝑋𝑡−𝜏} is reflected by 𝑅𝑋𝑋(𝜏). We 

utilize the autocorrelation 𝑅𝑋𝑋(𝜏) as the unnormalized confidence of the anticipated pe-

riod length. After the calculation process, the largest feasible range of 𝑘 period lengths 

𝜏1, ⋯ , 𝜏𝑘 are selected. The aforementioned estimated periods are used to construct the pe-

riod-based dependencies, which can then be weighted using the relevant autocorrelation. 

3.2.2. Time Delay Aggregation 

The sub-series are connected between estimated periods by the period-based de-

pendencies. In order to roll the series based on a chosen time lag of 𝜏1, ⋯ , 𝜏𝑘, we therefore 
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provide the time delay aggregation block. In contrast to the point-wise dot-product ag-

gregation in the self-attention mechanism, this process can line up same sub-series that 

are in the similar phasing point of predicted periods. The sub-series is then combined us-

ing softmax normalized confidences. 

We receive query 𝑄, key 𝐾, and value 𝑉 for the alone head scenario and series 𝑋 

with length-𝐿 after the projection process. It can thus easily take the role of self-attention. 

The process of auto-correlation is presented as below: 

𝜏1, 𝜏2, … , 𝜏𝑘 = arg Top𝐾
𝜏∈{1,2,…,𝐿}

(𝑅𝑄,𝐾(𝜏𝑘))

�̂�𝑄,𝐾(𝜏1), … , �̂�𝑄,𝐾(𝜏𝑘) = Softmax(𝑅𝑄,𝐾(𝜏1), … , 𝑅𝑄,𝐾(𝜏𝑘))

 Auto-Correlation (𝑄, 𝐾, 𝑉) = ∑ Roll(𝑉, 𝜏𝑖)�̂�𝑄,𝐾(𝜏𝑖)

𝑘

𝑖=1

,

 (7) 

where, 𝑐 is a hyper-parameter. Let 𝑘 = ⌊𝑐 × log 𝐿⌋, and arg 𝑇𝑜𝑝𝐾(⋅) is to obtain the argu-

ments of the 𝑇𝑜𝑝𝐾 autocorrelations. The series 𝑄 and 𝐾 have an autocorrelation called 

𝑅𝑄,𝐾. The process to 𝑋 with time lag is represented by 𝑅𝑜𝑙𝑙(𝑋, τ). It causes components 

that have been moved past the first position to be reintroduced at the last position. 𝐾, 𝑉 

are from the encoder 𝑋𝑒𝑛
𝑁  and will be scaled to length-𝑂, and 𝑄 is from the previous block 

of the decoder for the encoder-decoder auto-correlation. 

For the multi-head version adopted in this paper, with 𝑑𝑚𝑜𝑑𝑒𝑙 channels, ℎ heads, 

and the 𝑖-th head’s query, key, and value denoted as 𝑄𝑖 ,  𝐾𝑖 ,  𝑉𝑖 individually. The multi-

head auto-correlation are calculated as: 

Multi -Head(𝑄, 𝐾, 𝑉) = 𝑊output. ∗ Concat(head1, ⋯ , headℎ)

where head𝑖 = Auto-Correlation(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖).
 (8) 

3.2.3. Efficient Computation 

Period-based dependencies are intrinsically sparse and point to sub-processes that 

are in the similia phasing place as the parent period. In this case, we choose the longest 

delays in order to avoid choosing the opposite phases. Equations (7) and (8) have an 

𝑂(𝐿 𝑙𝑜𝑔𝐿) complexity due to the fact that we aggregate series with length 𝐿. Based on the 

Wiener-Khinchin theorem, when the time series {𝑋𝑡} are given, 𝑅𝑋𝑋(𝜏) can be deter-

mined using Fast Fourier-Transforms for the autocorrelation computation (Equation (6)). 

𝑆𝑋𝑋(𝑓) = ℱ(𝑋𝑡)ℱ̃(𝑋𝑡) = ∫ 𝑋𝑡𝑒−𝑗∗2𝜋𝑡𝑓𝑑𝑡
+∞

−∞

∫ 𝑋𝑡𝑒−𝑗2𝜋𝑡𝑓𝑑𝑡
+∞

?∞

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑅𝑋𝑋(𝜏) = ℱ−1(𝑆𝑋𝑋(𝑓)) = ∫ 𝑆𝑋𝑋(𝑓)𝑒𝑖2𝜋𝑓𝜏𝑑𝑓
+∞

−∞

,
 (9) 

where ℱ−1 is the FFT’s inverse and 𝜏 ∈ {1, ⋯ , 𝐿}, ℱ stands for the FFT. 𝑆𝑋𝑋(𝑓) is in the 

frequency domain, and “∗” denotes the conjugate operation. It should be noted that the 

FFT may calculate the series autocorrelation of all lags in {1, ⋯ , 𝐿} at once. Auto-correla-

tion achieves 𝑂(𝐿 𝑙𝑜𝑔𝐿) complexity as a result. 

3.3. Multi-Scale Framework 

For accurate time series prediction, it is necessary to introduce structural prior con-

sidering multi-scale information. Autoformer introduced some emphasis on scale-aware-

ness by mandating separate computational routes for the trend and seasonal components 

of the input time series. However, this structural prior only concentrated on two scales: 

low-frequency and high-frequency components. A multi-scale framework [20] with a 

cross-scale normalizing mechanism was created in order to detect the timing dependent 

patterns in long history data and to substitute for the conventional self-attention method 
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in light of their significance to forecasting. We present an original iterative scale-refine-

ment paradigm that is easily adaptable to various transformer-based time series forecast-

ing architectures. At the same time, we apply cross-scale normalization to the trans-

former’s outputs to reduce distribution shifts between scales and windows. 

We repeatedly apply the same neural module at various temporal scales given an 

input time-series 𝐗(𝐿). The initial look-back window 𝐗(𝐿) is fed into the encoder at 𝑖-th 

step (0 ≤ 𝑖 ≤ 𝑚) after being scaled down by a factor of 𝑠𝑖 ≡ 𝑠𝑚−𝑖 using an average pool-

ing operation. On the other hand, a linear interpolation is used to upsample the input to 

the decoder 𝐗𝑖−1
out  by a factor of 𝑠. The array of 0𝑠 is used to initialize the variable 𝐗𝑖

dec. 

The model carries out the following tasks: 

𝐱𝑡,𝑖 =
1

𝑠𝑖
∑ 𝑥𝜏, 𝜏 = 𝑡 × 𝑠𝑖

𝜏+𝑠𝑖

𝜏+1

𝐗𝑖
(𝐿)

= { 𝑥𝑡,𝑖 ∣∣
∣ 𝑡0

𝑠𝑖
≤ 𝑡 ≤

𝑡0 + 𝑙𝐿

𝑠𝑖
}

𝐗𝑖
(𝐻)

= { 𝑥𝑡,𝑖 ∣∣
∣ 𝑡0 + 𝑙𝐿 + 1

𝑠𝑖
≤ 𝑡 ≤

𝑡0 + 𝑙𝐿 + 𝑙𝐻

𝑠𝑖
} ,

 (10) 

where 𝐗𝑖
(𝐿)

and 𝐗𝑖
(𝐻)

are the look-back and horizon windows at the 𝑖-th step at time 𝑡, re-

spectively. We may define 𝐗𝑖
enc and 𝐗𝑖

dec as the inputs to the normalization if we assume 

that 𝐱′
𝑡,𝑖−1 is the output of the forecasting module at step 𝑖 − 1 and time 𝑡: 

𝐗𝑖
enc = 𝐗𝑖

(𝐿)

𝐱″
𝑡,𝑖 = 𝐱′

⌊𝑡/𝑠⌋,𝑖−1 + (𝐱′
⌈𝑡/𝑠⌉,𝑖−1 − 𝐱′

⌊𝑡/𝑠⌋,𝑖−1) ×
𝑡 − ⌊𝑡/𝑠⌋

𝑠

𝐗𝑖
dec = {𝐱″

𝑡,𝑖|
𝑡0 + ℓ𝐿 + 1

𝑠𝑖

≤ 𝑡 ≤
𝑡0 + ℓ𝐿 + ℓ𝐻

𝑠𝑖

}.

 (11) 

Finally, we calculate the error between 𝐗𝑖
(𝐻)

and 𝐗𝑖
outas the loss function to train the 

model. 

We normalize each input series based on the temporal average of 𝐗𝑖
encand 𝐗𝑖

dec for a 

set of input series (𝐗𝑖
enc, 𝐗𝑖

dec) with dimensions ℓ𝐿𝑖
× 𝑑𝑥  and ℓ𝐻𝑖

× 𝑑𝑥 , respectively, for 

the encoder and the decoder of the transformer in step 𝑖-th. 

𝜇
𝐗𝑖

=
1

ℓ𝐿,𝑖 + ℓ𝐻,𝑖
( ∑ 𝐱enc

𝐱enc∈𝐗𝑖
enc

+ ∑ 𝐱dec

𝐱dec∈𝐗𝑖
dec

)

𝐗
^

𝑖
dec = 𝐗𝑖

dec − 𝜇
𝐗𝑖

,   𝐗𝑖
enc = 𝐗𝑖

enc − 𝜇
𝐗𝑖

,

 (12) 

where 𝜇
𝐗𝑖

∈ ℝ𝑑𝑥 is the average over the temporal dimension of the concatenation of both 

look-back window and the horizon. 

In keeping with earlier research, we embed our input so that it has the same quantity 

of features as the hidden dimension of model. There are three components to the embed-

ding: (1) value embedding, which employs a linear layer to translate each step’s input 

observations 𝐱𝑡 to the model’s dimensionality. To further indicate whether an observa-

tion is originating from the look-back window, zero initialization, or the prediction of the 

prior stages, we concatenate a further value of 0, 0.5, or 1, respectively. (2) Temporal em-

bedding, which once more embeds the time stamp associated with each observation into 

the model’s hidden dimension via a linear layer. Before transferring the network to the 

linear layer, we concatenate an additional value of 1/𝑠𝑖 − 0.5 as the current scale for the 

network. (3) In addition, we employ a fixed positional embedding that is customized for 

each scale 𝑠𝑖 as follows: 
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𝑃𝐸(pos, 2𝑘, 𝑠𝑖) = sin (
pos × 𝑠𝑖

10,000
2𝑘

𝑑model

)

𝑃𝐸(pos, 2𝑘 + 1, 𝑠𝑖) = cos (
pos × 𝑠𝑖

10,000
2𝑘

𝑑model

) .

 (13) 

3.4. De-Stationary Attention 

Simply weakening non-stationarity may lead to excessive stationarity, and this paper 

examines photovoltaic power generation power prediction from the perspective of sta-

tionarity. We introduce an attention module [21] with de-stationarity to smooth out the 

time series and update internal mechanisms to re-incorporate non-stationary information. 

In this way, the model can not only learn on the normalized sequence, but also allow the 

model to find specific time dependencies based on the complete sequence information 

before the stationary. The module consists of two parts: time series non-stationarity is re-

duced through series stationarization, and non-stationary data from raw series is reincor-

porated with de-stationary attention. These designs enable forecasting model to concur-

rently enhance data predictability and maintain model capacity. 

In order to reduce the non-stationarity of each input sequence, a simple and effective 

stabilization method is adopted for the original input sequence. For each input sequence, 

the mean and variance of the input sequence are used to transform it into a Gaussian dis-

tribution with 𝜇 = 0 and 𝜎 = 1, so as to eliminate the difference of time series statistics 

in different time windows: 

𝜇𝐗 =
1

𝑆
∑ 𝑥𝑖

𝑆

𝑖=1

, 𝜎𝐗
2 =

1

𝑆
∑(𝑥𝑖 − 𝜇𝑿)2

𝑆

𝑖=1

, 𝑥𝑖
′ =

1

𝜎𝐗
⊙ (𝑥𝑖 − 𝜇𝐗), (14) 

where the element-wise division is denoted by 𝜇x, 𝜎𝐱 ∈ ℝ𝐶×1, and the element-wise prod-

uct is denoted by ⊙. The distribution of the model’s input becomes more stable as a result 

of the normalization module’s reduction of the distributional difference among each input 

time series. 

After using the basic model to predict the future value, the output results of the 

model are reversely processed by adopting the mean and variance to obtain the final pre-

diction result �̂� = [�̂�1, �̂�2, … , �̂�𝑂]⊤. The denormalization module can be expressed as fol-

lows: 

𝐲′ = ℋ(𝐱′), �̂�𝑖 = 𝜎𝐱 ⊙ (𝑦𝑖
′ + 𝜇𝐱), (15) 

where ℋ  denotes the base mode predicting the future value with length-𝑂and 𝐲′ =
[𝑦1

′ , 𝑦2
′ , … , 𝑦𝑂

′ ]⊤ ∈ ℝ𝑂×𝐶 is its output. 

Through the transformation of the above two stages, the input of stabilized data can 

be obtained from the basic model, which follows a stable distribution and is easier to gen-

eralize. This approach also renders the model equivariant to time series translational and 

scaling perturbations, which is advantageous for predicting the photovoltaic power se-

quence. 

The non-stationarity of the original series cannot be fully recovered merely by de-

normalization, even while the statistics of each time series are expressly returned to the 

appropriate prediction. The model is more likely to provide outputs that are overly sta-

tionary and erratic, which is inconsistent with the original series’ inherent non-station-

arity. We present a unique de-stationary attention technique that may approximate the 

attention that is received without stationarization and identify the specific temporal cor-

relations from original non-stationary data in order to address the over-stationarization 

issue produced by series stationarization. 
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In order to learn de-stationary factors from the statistics of each unstationarized 𝐱 

independently, we use a multi-layer perceptron as the projector. The following formula is 

used to calculate de-stationary attention: 

log𝜏 = MLP(𝜎𝐱, 𝐱), 𝚫 = MLP(𝜇𝐱, 𝐱)

Attn(𝐐′, 𝐊′, 𝐕′, 𝜏, 𝚫) = Softmax (
𝜏 𝐐′𝐊′⊤ + 𝟏𝚫⊤

√𝑑𝑘

) 𝐕′,
 (16) 

where 𝜏, 𝚫 denote de-stationary factors, the input of MLP is the time series before the 

original smoothing. Therefore, the de-stationary attention technique learns time depend-

ence from stationary and non-stationary sequences. While retaining the innate temporal 

dependency of the original sequences, it can profit from the predictability of stationary 

sequences. 

3.5. Adaptive Loss Function 

Time-series forecasting models become more susceptible to outliers when they are 

trained using the typical MSE aim. Using targets that are more resistant to outliers, e.g., 

the Huber loss [22], is one potential option. However, such targets typically perform 

poorly when there are no significant outliers. Because the data are diverse, we instead use 

the adaptive loss [23]: 

𝑓(𝜉, 𝛼, 𝑐) =
|𝛼 − 2|

𝛼
((

(𝜉/𝑐)2

|𝛼 − 2|
+ 1)

𝛼
2

− 1), (17) 

4. Experimental Preparation and Framework 

In this section, we describe how we set up our evaluation framework: the data used, 

the choices of baseline model to be compared and their parameter settings, data prepro-

cessing, and the error metrics applied. 

4.1. Experimental Input Data 

The Desert Knowledge Australia Solar Center (DKASC) in Alice Springs, Australia, 

provided the historic PV energy data used in this study. This information can be freely 

accessed at [24] and is part of a public dataset. The Alice Springs, Yulara, and NT solar 

power plants are part of the DKASC center. A solar power facility made up of five sites 

plus a weather station is called the Yulara Solar System. Therefore, the data is selected 

from No.1 (1058.4 kW, poly-Si, Fixed, 2016, Desert Gardens) at Yulara Solar System in this 

study. Its location is shown in Figure 1. 

 

Figure 1. Location information of the system and related attributes of the site 1. 

The total installed capacity of the PV system is 1058.4 kW, and both the historical 

power data and the weather data have a 5 min time precision. The historical data set in-

cludes Active Power (P), Wind Speed (WS), Wind Direction (WD), Weather Temperature 
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Celsius (T), Weather Daily Rainfall (DR), Global Horizontal Radiation (GHR), Max Wind 

Speed (MWS), Air Pressure (AP), Hail Accumulation (HA), Pyranometer 1(PY1), Temper-

ature Probe 1 and 2 (TP1&TP2). 

We use two datasets for the proposed models to learn, including the 4 months power 

data with a resolution of 5 min, from 1 September 2020 to 31 December 2020, a total of 

34,080 samples, and the 4 years PV power data with a resolution of 1 h, from 2017 to 2020, 

a total of 33,740 samples. Figure 2 displays the historic PV time series of two datasets, 

where the label of the vertical axis is the abbreviation of all variable names in the data set, 

and the horizontal axis represents the length of the time step of the data set. 

 

(a) 

 

(b) 

Figure 2. The variation in the experimental data: (a) 5 min resolution; (b) hourly resolution. 

4.2. Experimental Framework 

ADAMS and six other experimental competitive models are suggested in this work. 

Autoformer, Informer, Transformer, LSTM, GRU, and RNN are the baseline models. Data 

collection, data preparation, data dividing, model training, model evaluation, and results 

analysis are all included in the fundamental building blocks of STPVF. Figure 3 depicts 

the entire experimental flow diagram, and Table 1 includes a list of the parameter settings 

for models like the ADAMS. 
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Figure 3. The experimental framework. 

Table 1. The parameters for each model. 

Model Parameters 

ADAMS 
𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑖𝑡𝑟 = 1, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05 
𝑙𝑎𝑏𝑒𝑙_𝑙𝑒𝑛 = 12, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒, 

Autoformer 
𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑖𝑡𝑟 = 1, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 
𝑙𝑎𝑏𝑒𝑙_𝑙𝑒𝑛 = 12, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

Informer 
𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑖𝑡𝑟 = 1, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 
𝑙𝑎𝑏𝑒𝑙_𝑙𝑒𝑛 = 12, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

Transformer 
𝑑𝑚𝑜𝑑𝑒𝑙 = 512, 𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑖𝑡𝑟 = 1, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 5, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05 
𝑙𝑎𝑏𝑒𝑙_𝑙𝑒𝑛 = 12, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

LSTM 
𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 
𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

GRU 
𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 
𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

RNN 
𝑠𝑒𝑞_𝑙𝑒𝑛 = 24, 𝑝𝑟𝑒_𝑙𝑒𝑛 = (4,8,12,24), 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 64, 
𝑇𝑟𝑎𝑖𝑛_𝑒𝑝𝑜𝑐ℎ𝑠 = 100, 𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 = 0.0001, 
𝑑𝑟𝑜𝑝𝑜𝑢𝑡 = 0.05, 𝑙𝑜𝑠𝑠_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑠𝑒 

4.3. Data Pre-Processing 

The initial step of study involves the collection and pre-processing of data. The data 

needs to be preprocessed to ensure the performance of our model. Due to maintenance 

issues or device failure, there are occasional cases where data is missing. The chosen da-

tasets are then processed by deleting any negative numbers for electricity generation and 

interpolating any existing missing values. For a variety of reasons, the dataset was divided 

into three sections. The training set, validation set, and test set each make up 70%, 20%, 

and 10% of the datasets, respectively. 
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4.4. Evaluation Metrics 

Four different evaluation indices, including Mean Square Error (MSE), Mean Abso-

lute Error (MAE), Root Mean Square Error (RMSE), and adjusted R-squared (𝑅𝑎
2), were 

utilized to assess the performance of the models in this study. These are their expressions: 

MSE =
1

𝑁
∑  

𝑁

𝑡=1

(𝑝𝑡 − �̂�𝑡)2 (18) 

MAE =
1

𝑁
∑  

𝑁

𝑡=1

|𝑝𝑡 − �̂�𝑡| (19) 

RMSE = √
1

𝑁
∑  

𝑁

𝑡=1

(𝑝𝑡 − �̂�𝑡)2 (20) 

𝑅2 = 1 −
∑  𝑡 (𝑝𝑡 − �̂�𝑡)2

∑  𝑡 (𝑝𝑡 − �̅�t )
2

 , (21) 

𝑅𝑎
2 = 1 −

𝑛 − 1

𝑛 − 𝑘 − 1
(1 − 𝑅2) (22) 

where 𝑁 is the amount of PV energy sample points utilized to calculate the prediction 

error, 𝑝𝑡 is the actual PV power values, �̅�t  is the mean of the prediction period taken into 

consideration, and �̂�𝑡 is the predicted values. MSE is a frequently employed metric to 

assess the efficacy of time series forecasting. In this paper, all baseline models used the 

MSE as a loss function. The real circumstance of the error between the forecasting value 

and the actual value can be better reflected by MAE because it is less sensitive to outliers. 

RMSE is prone to high values and accentuates the distance between significant mistakes. 

Better performance is indicated by these indicators’ lower levels. 𝑅2denotes R-squared 

and it represents the percentage of variance that the model accounts for and displays the 

correlation between forecasted and actual values. By considering the effects of additional 

independent factors that have a propensity to distort the outcomes of 𝑅2 measurements, 

𝑅𝑎
2, a modified form of 𝑅2, increases accuracy and reliability. Its value ranges from 0 to 1. 

The lager value of this indicator means better performance. 

5. Experiment and Analysis 

The PV power forecasting results of the suggested model and six baseline models are 

summarized and analyzed in this section. In this study, forecasting is conducted in four 

different prediction lengths (4, 8, 12 and 24) using data with a 5 min precision as well as 

data with an hourly resolution. Since the epoch periods of the seven models used in the 

experiments of this work differ significantly, additional convergence parameters, for in-

stance the speed of loss converge of the seven models trained under the datasets, are not 

compared. In this research, each forecasting approach is implemented using Python 3.8, 

which runs on a computer with 12th Intel(R) Xeon(R) Platinum 8255C CPU 2.5 GHz 43 

GB and NVIDIA GeForce RTX 3080 GPU 12 GB. 

5.1. Experiment I: 5-min PV Power Forecasting Experiment 

On the 5 min resolution dataset, we contrast and examine the suggested model with 

the other six models. In the experiment, obviously, the suggested model has performed 

uniformly the best of all the models. Table 2 lists the thorough analyses of the predicted 

outcomes. Figure 4 displays the visual bar chart. Figure A1 shows the visual scatter plot. 

According to Table 2, ADAMS achieved the best MSE of 0.061 in the forecasting of length-

4, whereas Autoformer, Informer, Transformer, LSTM, GRU, and RNN achieved MSEs of 
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0.116, 0.076, 0.063, 0.304, 0.190, and 0.146, respectively. As can be observed from Figure 4, 

when the forecasting interval is extended to length-24, the prediction errors for most com-

peting approaches worsen. The suggested model exhibits better predicting performance 

for all four forecasting lengths within 120 min for data with a 5 min resolution. The pre-

diction precision of all models exhibits a general tendency of declining with increasing 

length. 

Table 2. PV power forecasting accuracy evaluation of 5 min. 

 Metrics ADAMS Autoformer Informer Transformer LSTM GRU RNN 

4 

MSE 0.061 0.116 0.076 0.063 0.234 0.190 0.146 

MAE 0.146 0.166 0.178 0.120 0.284 0.296 0.234 

RMSE 0.248 0.341 0.276 0.252 0.484 0.436 0.382 

𝑅𝑎
2 0.940 0.886 0.925 0.938 0.835 0.822 0.863 

8 

MSE 0.074 0.205 0.129 0.083 0.290 0.184 0.216 

MAE 0.134 0.247 0.226 0.188 0.315 0.323 0.301 

RMSE 0.273 0.453 0.359 0.289 0.538 0.429 0.464 

𝑅𝑎
2 0.927 0.799 0.874 0.918 0.795 0.828 0.797 

12 

MSE 0.099 0.143 0.130 0.122 0.262 0.324 0.140 

MAE 0.164 0.226 0.229 0.222 0.303 0.409 0.248 

RMSE 0.315 0.378 0.355 0.349 0.512 0.569 0.374 

𝑅𝑎
2 0.903 0.860 0.876 0.880 0.815 0.697 0.869 

24 

MSE 0.173 0.215 0.255 0.214 0.297 0.389 0.324 

MAE 0.227 0.288 0.322 0.301 0.332 0.469 0.400 

RMSE 0.416 0.464 0.505 0.462 0.545 0.624 0.569 

𝑅𝑎
2 0.831 0.788 0.750 0.790 0.789 0.636 0.776 

 

Figure 4. PV power forecasting accuracy evaluation of 5 min. 

Figure 5 shows the forecasting curves of all models for the length-24 forecasting re-

sults. The forecasting curves of each model are shown in Figure A3. We can observe that 

ADAMS is also proved to be the most successful model in reconstructing the fluctuation 

details. One-step prediction models, e.g., LSTM, GRU, and RNN are frequently used; 

multi-step prediction procedures will cause significant error accumulation issues. In par-

ticular, the prediction mistake from the earlier forecasting would accrue in the upcoming 

forecast, adding significant forecasting bias and leading to much higher MSE. Addition-

ally, the PV power data patterns are very intricate. Their ability to learn historical details 

will be severely hampered by the limited computer memory. They cannot effectively learn 

global patterns in their memory cell without a heuristic selection process. Instead, they 

are only able to recall patterns in extremely small ranges, which could interfere with fore-

casting. The four transformer-based prediction models perform well in terms of accuracy. 
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Too many variations have been predicted by models such as LSTM and RNN, which is 

referred to as the overfitting phenomena. The approximate fluctuation curves have been 

effectively reconstructed by Autoformer, Informer, and Transformer, however certain 

crucial elements have not been precisely predicted. In contrast, ADAMS accurately re-

stores a number of significant information, including minor variations and turning points, 

which constitute the better understanding of the time series. 

 

Figure 5. Five min PV power forecasting curves of all models. 

Therefore, even if the datasets exhibit extremely fluctuating patterns, the suggested 

ADAMS is adept at projecting PV power time series over the very short-term (5 min res-

olution) and recovering the precise fluctuation tendencies. Additionally, the suggested 

ADAMS has generated an excellent result that can serve as a fresh baseline in future re-

search on STPVF. Although ADAMS outperforms competing approaches in our compar-

ative trials, we did not compare ADAMS to competing approaches because, according to 

earlier research, ADAMS outperforms rival approaches in forecasting. 

5.2. Experiment II: Hourly PV Power Forecasting Experiment 

The forecasting precision of each experimental model is examined using hourly PV 

power data to supply more conclusive evidence of the efficacy of our suggested ADAMS. 

In Table 3, Figures 6 and A2, an error evaluation, a visual bar chart and a visual scatter 

plot are shown, respectively. Among all the models available, the ADAMS is still the 

model that performs the best, according to Table 3. For all of the lengths in advance, AD-

AMS has the maximum number of the four evaluation indexes best values, as shown in 

Table 3, while Autoformer and GRU each account for one. Additionally, ADAMS displays 

the best values across all evaluation indexes for all future lengths. It is important to note 

that LSTM predicts the curve poorly, with MSE values of 0.304, 0.457, 0.431, and 0.560 

being the highest. For hourly resolution of data, the ADAMS model exhibits better pre-

dicting performance for all four pre-lengths throughout a day, as shown in Figure 6 which 

displays the forecasting outcomes of all models. The prediction accuracy of all models has 

a general declining trend with increasing length, similarly to the Exp. I. 

Table 3. PV power forecasting accuracy evaluation of 1 h. 

 Metrics ADAMS Autoformer Informer Transformer LSTM GRU RNN 

4 

MSE 0.197 0.201 0.289 0.255 0.304 0.244 0.237 

MAE 0.265 0.268 0.322 0.311 0.373 0.284 0.276 

RMSE 0.455 0.448 0.537 0.505 0.551 0.494 0.487 
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𝑅𝑎
2 0.873 0.870 0.816 0.840 0.716 0.827 0.832 

8 

MSE 0.219 0.227 0.292 0.279 0.457 0.254 0.257 

MAE 0.265 0.282 0.325 0.320 0.490 0.299 0.291 

RMSE 0.468 0.476 0.540 0.528 0.676 0.504 0.507 

𝑅𝑎
2 0.856 0.857 0.816 0.825 0.573 0.820 0.818 

12 

MSE 0.251 0.294 0.325 0.297 0.431 0.280 0.389 

MAE 0.283 0.343 0.344 0.329 0.485 0.318 0.396 

RMSE 0.501 0.542 0.570 0.545 0.657 0.540 0.624 

𝑅𝑎
2 0.842 0.815 0.794 0.813 0.597 0.807 0.725 

24 

MSE 0.280 0.319 0.330 0.323 0.560 0.284 0.428 

MAE 0.302 0.369 0.340 0.342 0.518 0.301 0.444 

RMSE 0.529 0.564 0.574 0.569 0.748 0.532 0.654 

𝑅𝑎
2 0.824 0.799 0.793 0.796 0.476 0.800 0.697 

 

Figure 6. PV power forecasting accuracy evaluation of 1 h. 

Figure 7 shows the forecasting curves of all models for the length-24 forecasting re-

sults. The forecasting curves of each model are shown in Figure A4. It can be seen that the 

hourly PV statistics are more consistent and less randomly erratic than the 5 min PV data. 

However, the predicting curves of all models reveal that 5 min resolution data are more 

favorable to good forecasting performance. This depends on the temporal properties of 

the PV power time series themselves, and as resolution rises, so does the number of his-

torical values that can be used for forecasting. 

 



Symmetry 2023, 15, 238 17 of 30 
 

 

Figure 7. Hourly PV power forecasting curves of all models. 

When comparing Exp. I and Exp. II, we can find that the ranges of 𝑅𝑎
2 for the hourly 

resolution data and the 5 min resolution data for all lengths of seven models are 0.476 to 

0.873 and 0.636 to 0.940, respectively. The forecasting of length-4 shows the highest 𝑅𝑎
2 

for both resolutions, while the length-12 and length-24 show the lowest 𝑅𝑎
2. As observed 

from the aforementioned, the quality of fit of the model decreases with increasing pre-

length on the two resolution datasets. The quality of fit of the model is better in the higher 

resolution (5 min resolution) data set. The complete range of the predicted PV power can 

be explained by the suggested model in 0.824 to 0.938. As seen from the aforementioned, 

on both resolution data sets, the quality of fit of the model increases with increasing reso-

lution, with the 5 min resolution data set having the best fit. On both resolution data sets, 

the goodness of fit of the model decreases with increasing predicted length. 

5.3. Diebold-Mariano Test 

In order to evaluate the null hypothesis on the difference in accuracy between two 

forecasting models, Diebold and Mariano proposed explicit tests [25,25]. Model prediction 

errors can be non-Gaussian, non-zero-mean, serially correlated, and contemporaneously 

correlated, and the loss function is not required to be quadratic or symmetric [25]. The 

strength of ADAMS is not overwhelming to Autoformer and Transformer, as shown in 

Tables 2 and 3. The Diebold-Mariano test are run as a result to perform more research. 

Let 𝐻0 be the null hypothesis, which states that there is no difference in prediction 

accuracy between the two models. 𝐻1 be the alternative hypothesis, which states that the 

prediction accuracy between the two models is obviously different. MSE is the loss func-

tion used in this hypothesis test. If the p-value is higher than 0.05, there is no difference. 

𝐻1 will be allowed if p-value is less than 0.05. 

Tables A1 and A2 display the outcomes of the Diebold-Mariano test. As a result, it 

can be shown that p-value is never greater than 0.05, proving that the PV power calculated 

by the ADAMS is substantially more accurate than that of the other models under com-

parison. 

5.4. Ablation Study 

We used Exp.1 (length-24) to conduct ablation research to confirm the effects of var-

ious improvement measures in the ADAMS model. The multi-scale framework, the de-

stationary attention module, and the adaptive loss function (replaced by MSE), respec-

tively, are removed from ADAMS via the 𝑀𝑠𝑐𝑎𝑙𝑒, 𝑀𝑎𝑡𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, and 𝑀𝑙𝑜𝑠𝑠  functions. 

According to Figure 8, the MSE increases to 1.72 times when the 𝑀𝑎𝑡𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 is uti-

lized, showing that the de-stationary attention significantly improves the objectivity and 

dependability of the outcome prediction. The removal of the multi-scale module shortens 

training time but increases MSE by 4.598%. When the adaptive loss function was applied 

in place of the MSE, the MSE increased by 14.943% while the training time increased a 

little. Three other evaluation indicators also show a similar situation. The statistical results 

demonstrate that the proposed ADAMS model, which incorporates all performance en-

hancement techniques, performs best, and that the most effective performance enhance-

ment technique for ADAMS accuracy is de-stationary attention, followed by multi-scale 

framework and adaptive loss function. 
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(a) (b) 

Figure 8. Comparison of indexes for different models: (a) evaluation indicators; (b) running time. 

5.5. Further Study 

It makes sense that the longer the training time series, the more knowledge the mod-

els can pick up, resulting in a better forecasting outcome. The longer training datasets, it 

turns out, may not necessarily result in a forecast that is more correct. On the other hand, 

longer series datasets underperformed, with greater MSE, MAE, RMSE, and lower 𝑅𝑎
2. 

Further studies are conducted as a result, in which we built up 12 experimental groups 

with PV power data of the 5 min resolution data provided by Yulara Solar System, ranging 

in duration from 1 month to 12 months. Additionally, six experimental groups are set up 

collecting data with hourly resolution ranging from one year to six years. In these experi-

ments, their forecasting tasks are fixed at length-24 in advance. Figures 9a and 10a display 

the four evaluation indicators from various experimental groups of 5 min and hourly res-

olution data, respectively. As seen in Figure 9a, the total MSE has witnessed a rising trend 

as dataset lengths have increased to a given value, with the lowest points occurring at 

lengths of 4 months. As shown in Figure 10a, the lowest point of MSE appears at the length 

of 4 years. Therefore, the 4 months datasets (5 min resolution) and 4 years datasets (hourly 

resolution) are those we used for this study. 

  

(a) (b) 
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(c) (d) 

Figure 9. Forecasting results of different experiment groups (5 min resolution): (a) evaluation indi-

cators; (b) 2 months; (c) 9 months; (d) 11 months. 

 
 

(a) (b) 

  

(c) (d) 

Figure 10. Forecasting results of different experiment groups (hourly resolution): (a) evaluation in-

dicators; (b) 2 years; (c) 5 years; (d) 6 years. 

It is interesting to note that some experimental groups with longer datasets even ex-

hibit overfitting during testing, defying the conventional wisdom that more data will help 

to reduce overfitting in deep learning. In Figure 9b–d, the forecasting outcomes of the 2 

months, 9 months, and 11 months datasets are depicted. Evidently, for the two-month 

datasets, the insufficient PV power data makes it quite natural for models to overfit the 

training data. When there is insufficient data, as shown in Figure 9, the predicted curve 

shows obvious error compared with the real curve. The predicting curves of 9 months and 

11 months, when the time series data are considerably longer than 2 months, however, 

shows greater fluctuation, and even has several serious errors. This makes them much 
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more inconsistent with the ground truth patterns. As for the hourly resolution data, addi-

tional data is required to fully understand this phenomenon, however the Yulara Solar 

system currently only has six years’ worth of data. 

It is quite difficult to provide sufficient proof in a very short amount of time due to 

the inadequate data. This work presented two ideas for our future research in STPVF 

based on this peculiar phenomenon: 

1. Due to the global use of self-attention and auto-correlation while training, if the time 

series is too lengthy, they will likely be dispersed to some historical data from the 

distant past that is unrelated to the current trends. The current PV power in STPVF 

only roughly correlates to the prior trend over a narrow range. Therefore, the histor-

ical PV power from a long time ago could seriously impair auto-correlation or self-

attention. 

2. Because the long-ago historical data disturbs the auto-correlation if the previous his-

toric patterns resemble strikingly the current ones, the parallel historic patterns may 

lead the model to incorrectly predict the current trend based on the parallel historic 

patterns. That is to say, the forecasting errors have increased because the model has 

overfitted the past time series. 

6. Conclusions 

A novel neural network model is suggested in this paper to address the STPVF. This 

research suggested the ADAMS, in which the additional de-stationary attention is intro-

duced in both the encoder and decoder modules, to find specific time dependencies based 

on the complete sequence information before the stationary, to resolve the extreme fluc-

tuations and irregular trends of STPVF data. In order to find the time dependent patterns 

in long history data, Autoformer also utilized a multi-scale framework with a cross-scale 

normalization method. ADAMS and other competitive models are used to perform 

STPVF, using the Yulara Solar System in Central Australia as the case study. The experi-

ment exhibits the suggested ADAMS’s capacity to foresee frequent variations as well as 

to extract deeper information from extremely erratic data patterns. It is important to note 

that, in contrast to earlier studies, the suggested ADAMS produced an excellent result in 

STPVF. This work also performed an experiment of the STPVF based on the hourly reso-

lution PV power dataset to further demonstrate the superiority of the proposed ADAMS. 

The additional case study also offers compelling proof that ADAMS excels at deep 

knowledge learning and restores crucial information even from slicker data. Additionally, 

the proposed ADAMS was versatile, and besides the exogenous variables used in this 

paper for PV energy prediction, other exogenous variables can be used. Moreover, it is 

able to adapt to time series with different characteristics, and it can be used for forecasting 

tasks in other fields in future research. 

Although most studies have shown that adding more data helps to solve the overfit-

ting issue, in the area of STPVF, a larger time series dataset for learning may not be able 

to better predict future PV power. Two possibilities are put out in response to this coun-

terintuitive phenomenon. On the one hand, larger datasets could disperse the auto-corre-

lation to ancient historical time series from a long time ago. On the other hand, the model 

may be led astray to overfit the historical data by the dispersed auto-correlation. Future 

research will focus on providing a strict demonstration of the proposed assumptions and 

determining the ideal duration of the training datasets for STPVF. 
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(d) 

Figure A1. The visual scatter plot of four error evaluations (5 min resolution data): (a) MSE; (b) 

MAE; (c) RMSE; (d) 𝑅𝑎
2. The abscissa M1 to M7 represent ADAMS, Autoformer, Informer, Trans-

former, LSTM, GRU, and RNN, respectively. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure A2. The visual scatter plot of four error evaluations (hourly resolution data): (a) MSE; (b) 

MAE; (c) RMSE; (d) 𝑅𝑎
2. The abscissa M1 to M7 represent ADAMS, Autoformer, Informer, Trans-

former, LSTM, GRU, and RNN, respectively. 

Appendix B 
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(f) 

 

(g) 

Figure A3. The forecasting curves of each model for the length-24 forecasting results (5 min resolu-

tion data): (a) ADAMS; (b) Autoformer; (c) Informer; (d) Transformer; (e) LSTM; (f) GRU; (g) RNN. 

 

(a) 
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(e) 

 

(f) 

 

(g) 

Figure A4. The forecasting curves of each model for the length-24 forecasting results (hourly reso-

lution data): (a) ADAMS; (b) Autoformer; (c) Informer; (d) Transformer; (e) LSTM; (f) GRU; (g) 

RNN. 
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Appendix C 

Table A1. The outcomes of the Diebold-Mariano test (5 min resolution data). 

 Models ADAMS Autoformer Informer Transformer LSTM GRU RNN 

4 

ADAMS 0.00 × 10+00 4.89 × 10−02 1.37 × 10−02 1.30 × 10−12 1.39 × 10−133 1.13 × 10−235 1.00 × 10−292 

Autoformer 4.89 × 10−02 0.00 × 10+00 9.01 × 10−07 8.26 × 10−24 5.84 × 10−135 1.74 × 10−232 1.07 × 10−280 

Informer 1.37 × 10−02 9.01 × 10−07 0.00 × 10+00 3.38 × 10−28 3.61 × 10−156 2.08 × 10−289 0.00 × 10+00 

Transformer 1.30 × 10−12 8.26 × 10−24 3.38 × 10−28 0.00 × 10+00 6.14 × 10−156 3.70 × 10−289 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.98 × 10−93 1.01 × 10−171 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.98 × 10−93 0.00 × 10+00 1.70 × 10−61 

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.01 × 10−171 1.70 × 10−61 0.00 × 10+00 

8 

ADAMS 0.00 × 10+00 9.78 × 10−75 3.27 × 10−58 6.80 × 10−03 2.61 × 10−42 0.00 × 10+00 0.00 × 10+00 

Autoformer 9.78 × 10−75 0.00 × 10+00 5.81 × 10−25 1.12 × 10−74 6.05 × 10−01 0.00 × 10+00 0.00 × 10+00 

Informer 3.27 × 10−58 5.81 × 10−25 0.00 × 10+00 0.00 × 10+00 1.37 × 10−45 0.00 × 10+00 0.00 × 10+00 

Transformer 6.80 × 10−03 1.12 × 10−74 0.00 × 10+00 0.00 × 10+00 3.46 × 10−48 0.00 × 10+00 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

GRU 0.00 × 10+00 2.91 × 10−123 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 3.21 × 10−35 

RNN 0.00 × 10+00 1.58 × 10−274 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 3.21 × 10−35 0.00 × 10+00 

12 

ADAMS 0.00 × 10+00 3.00 × 10−109 5.20 × 10−02 7.14 × 10−01 1.32 × 10−191 1.48 × 10−10 3.42 × 10−253 

Autoformer 3.00 × 10−109 0.00 × 10+00 6.72 × 10−131 2.07 × 10−114 2.60 × 10−139 5.26 × 10−21 2.84 × 10−248 

Informer 5.20 × 10−02 6.72 × 10−131 0.00 × 10+00 3.50 × 10−07 0.00 × 10+00 6.73 × 10−09 1.35 × 10−223 

Transformer 7.14 × 10−01 2.07 × 10−114 3.50 × 10−07 0.00 × 10+00 0.00 × 10+00 4.59 × 10−04 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

RNN 0.00 × 10+00 2.92 × 10−193 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

24 

ADAMS 0.00 × 10+00 1.67 × 10−03 7.54 × 10−185 1.26 × 10−07 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Autoformer 1.67 × 10−03 0.00 × 10+00 2.19 × 10−163 2.25 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Informer 7.54 × 10−185 2.19 × 10−163 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.88 × 10−293 

Transformer 1.26 × 10−07 2.25 × 10−02 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.50 × 10−02 0.00 × 10+00 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.50 × 10−02 0.00 × 10+00 0.00 × 10+00 

RNN 0.00 × 10+00 0.00 × 10+00 4.88 × 10−293 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Table A2. The outcomes of the Diebold-Mariano test (hourly resolution data). 

 Models ADAMS Autoformer Informer Transformer LSTM GRU RNN 

4 

ADAMS 0.00 × 10+00 6.89 × 10−03 1.41 × 10−109 1.48 × 10−56 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Autoformer 6.89 × 10−03 0.00 × 10+00 2.55 × 10−135 1.44 × 10−80 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Informer 1.41 × 10−109 2.55 × 10−135 0.00 × 10+00 9.37 × 10−81 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Transformer 1.48 × 10−56 1.44 × 10−80 9.37 × 10−81 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 9.18 × 10−01 5.54 × 10−02 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 9.18 × 10−01 0.00 × 10+00 1.19 × 10−01 

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 5.54 × 10−02 1.19 × 10−01 0.00 × 10+00 

8 

ADAMS 0.00 × 10+00 2.02 × 10−12 2.60 × 10−222 1.38 × 10−214 3.19 × 10−141 8.17 × 10−62 5.39 × 10−133 

Autoformer 2.02 × 10−12 0.00 × 10+00 1.18 × 10−290 7.43 × 10−288 1.19 × 10−194 6.69 × 10−123 1.98 × 10−179 

Informer 2.60 × 10−222 1.18 × 10−290 0.00 × 10+00 3.87 × 10−06 1.94 × 10−21 2.07 × 10−97 9.84 × 10−02 

Transformer 1.38 × 10−214 7.43 × 10−288 3.87 × 10−06 0.00 × 10+00 2.99 × 10−13 1.11 × 10−77 8.22 × 10−01 

LSTM 3.19 × 10−141 1.19 × 10−194 1.94 × 10−21 2.99 × 10−13 0.00 × 10+00 7.97 × 10−44 4.68 × 10−07 

GRU 8.17 × 10−62 6.69 × 10−123 2.07 × 10−97 1.11 × 10−77 7.97 × 10−44 0.00 × 10+00 5.75 × 10−34 

RNN 5.39 × 10−133 1.98 × 10−179 9.84 × 10−02 8.22 × 10−01 4.68 × 10−07 5.75 × 10−34 0.00 × 10+00 

12 ADAMS 0.00 × 10+00 2.20 × 10−221 0.00 × 10+00 1.46 × 10−121 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 
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Autoformer 2.20 × 10−221 0.00 × 10+00 8.02 × 10−96 6.72 × 10−09 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Informer 0.00 × 10+00 8.02 × 10−96 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Transformer 1.46 × 10−121 6.72 × 10−09 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.14 × 10−150 4.54 × 10−185 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 1.14 × 10−150 0.00 × 10+00 0.00 × 10+00 

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 4.54 × 10−185 0.00 × 10+00 0.00 × 10+00 

24 

ADAMS 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 2.18 × 10−172 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Autoformer 0.00 × 10+00 0.00 × 10+00 9.87 × 10−08 3.20 × 10−95 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Informer 0.00 × 10+00 9.87 × 10−08 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

Transformer 2.18 × 10−172 3.20 × 10−95 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 

LSTM 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 6.16 × 10−03 0.00 × 10+00 

GRU 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 6.16 × 10−03 0.00 × 10+00 0.00 × 10+00 

RNN 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 0.00 × 10+00 
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