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Abstract: In this paper, a kernel-free minimax probability machine model for imbalanced classification
is proposed. In this model, a quadratic surface is adopted directly for separating the data points
into two classes. By using two symmetry constraints to define the two worst-case classification
accuracy rates, the model of maximizing both the F1 value of the minority class and the classification
accuracy rate of all the data points is proposed. The proposed model corresponds to a fractional
programming problem. Since the two worst-case classification accuracy rates are the symmetry, the
proposed model can be further simplified. After this, the alternating descent algorithm is adopted for
efficiently solving. The proposed method reduces the computational costs by both using the kernel-
free technique and adopting the efficient algorithm. Some numerical tests on benchmark datasets
are conducted to investigate the classification performance of the proposed method. The numerical
results demonstrate that the proposed method performs better when compared with the other state-
of-the-art methods, especially for classifying the imbalanced datasets. The better performance for the
imbalanced classification is also demonstrated on a Wholesale customers dataset. This method can
provide methodological support for the research in areas such as customer segmentation.

Keywords: imbalanced classification; quadratic surface; minimax probability machine

1. Introduction

Binary classification is an important branch in the field of machine learning. Minimax
probability machine (MPM), which is first proposed in [1], is a competitive machine learning
method for binary classification problems. It directly maximizes the correct classification
probability of the worst-case with a given mean and covariance matrix [1]. In other words,
MPM provides a clear lower bound on prediction accuracy without making any assumptions
on data distribution. The robustness of the MPM-based methods have been shown with
successful applications in the fields such as medical diagnosis [2], anomaly detection [3],
and customer churn prediction [4].

Since the role of two classes are often symmetry, the same kind of modeling technique can
be used. In the traditional MPM model, the lower bounds of correct classification probability
for two symmetry categories are defined to be the same [1]. It may not be effective enough
when a certain class of samples needs more attention. The minimum error minimax probability
machine (MEMPM) [5] learns the classifier by maximizing the lower bound of the weighted
correct classification probability of two categories, which provides different approaches to
different classes of samples. After setting the weight to be 1/2, a biased minimax probability
machine is proposed in [6] to deal with the problem of imbalanced learning. Although the
balanced parameter in MEMPM can deal with the different importance of two classes to some
extent, only the accuracy rate is adopted as the objective function. Luo et al. [7] developed
a new minimax probability machine for the Fβ measure (MPMF), which provided a new
perspective for the classification on imbalanced datasets. By using the lower bound of the
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correct classification probability of the two classes, the Fβ measure is defined as the objective
function. To solve the MPMF model effectively, its equivalent form, which can be solved by an
alternating descent method to learn a linear classifier, is derived. The kernel trick is employed
to derive a nonlinear MPMF model to learn a nonlinear classifier. Although MPMF provides
a good perspective for dealing with imbalanced datasets, the performance also depends on
the choice of kernel functions and kernel parameters, a process that consumes a lot of time.

Some other MPM-based models have also been studied. Nath et al. proposed a maximum
margin classifier [8] by considering the structural risk of the model. Maldonado et al. [9]
proposed the regularized MPM and regularized MEMPM models, which minimized both
the l2 norm of the weight vector and the upper bound on the classification error rate.
Drawing on the idea of twin support vector machines [10], Yang et al. [11] proposed the
twin minimax probability machine model, which attempts to construct a pair of non-parallel
decision hyperplanes such that each hyperplane separates one class of samples with a
lower bound on the classification accuracy and is far from the other classes of samples.
Although these methods show their good performance for classification, kernel functions
are all needed to deal with nonlinear classification problems. This process may run into the
efficiency issues of choosing kernel functions and their corresponding parameters.

For dealing with the issues of choosing a suitable kernel function and its optimal param-
eter, Dagher proposed a kernel-free quadratic surface support vector machine model [12]
for binary classification. Luo et. al. extended it to a soft-margin quadratic surface SVM
(SQSSVM) model [13]. Furthermore, more kernel-free SVM models are proposed in the litera-
ture. Bai et. al. proposed a new quadratic kernel-free least squares support vector machine
for a binary classification problem [14]. Yan et. al. proposed a kernel-free semi-supervised
quadratic surface support vector machine model [15]. Tian et. al. proposed a new approach
based on the kernel-free quadratic surface support vector machine model to handle a binary
classification problem with mislabeled information [16]. Luo et. al. proposed an unsuper-
vised quadratic surface support vector machine and applied it to credit risk assessment [17].
Gao et. al. proposed a kernel-free soft quartic surface SVM model by utilizing the double
well potential function for highly nonlinear binary classification [18]. Yan et. al. analyzed
the equivalent form of the soft quadratic surface support vector machine and proposed a
novel support vector machine model with feature mapping [19]. Based on the idea of a
soft quadratic surface support vector machine [13], Wang et al. [20] proposed a kernel-free
quadratic surface minimax probability machine (QSMPM), which attempts to find a quadratic
surface to separate two classes of samples. QSMPM does not require use of the nonlinear
mapping for dealing with nonlinear separable datasets, which saves a lot of time for tuning
the parameters. Nevertheless, the QSMPM model still aims to maximize the lower bound of
the correct classification probability of two classes, which is not suitable enough for dealing
with imbalanced classification.

The existing minimax probability machines only focus on kernel-free schemes or imbal-
anced classification. Meanwhile, the existing optimization goal considers only one certain
classification performance measure. For efficiently dealing with imbalanced classification
problems, a new quadratic surface minimax probability machine model with the optimiza-
tion goal that considers two measures (QSMPMFA) is proposed. The optimization goal
consists of both the F1 value of the minority class and the weight classification accuracy rate
of the two classes. In this model, QSMPMFA tries to find a quadratic surface to separate the
samples into two classes. Two symmetry constraints are used to define the lower bound
of the probability of different classes of samples being correctly classified, i.e., worst-case
classification accuracy rates. Since two worst-case classification accuracy rates are symmetry
in the constraint, the proposed model can be further simplified. The original optimization
problem of the QSMPMFA can then be transformed into an equivalent form, which can be
solved by the alternating descent method. The advantages can be summarized as follows.

First, QSMPMFA is optimized by using the combination of the F1 value and accu-
racy rate in the objective function, instead of considering only one certain classification
performance measure, causing it to be better for handling imbalanced datasets.
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Second, the proposed model can be further simplified by using the symmetry structure
in the constraint. The alternating descent algorithm is adopted for efficiently solving.

Third, the numerical tests of QSMPMFA on several benchmark datasets show that
QSMPMFA outperforms the other state-of-the-art methods in terms of both the F1 value and
accuracy rate, especially for the imbalanced datasets.

This paper is structured as follows. In Section 2, the related studies are briefly re-
viewed, including MPM, SQSSVM, and the formulation of the F1 value. Section 3 provides
the details of the proposed QSMPMFA model and the corresponding algorithm. Section 4
shows the numerical tests on different kinds of datasets and illustrates the comparison per-
formance of the proposed method with other methods. Section 5 provides some conclusions
and future work.

2. Related Work

This section provides a brief introduction to the minimax probability machine, soft
quadratic surface support vector machine, and the performance measures.

Consider the dataset of T = {(x1, y1), (x2, y2), . . . , (xl , yl)}, where xi ∈ Rd refers to the
feature vector of the i-th sample and yi ∈ {+1,−1} represents this sample’s class label for
i = 1, 2, . . . , l.

2.1. Minimax Probability Machine (MPM)

MPM attempts to separate the two classes of data points with the goal of maximizing
a lower bound on the classification accuracy rate given the mean and covariance matrix of
each class of data.

Let x ∼ (µ, Σ) be the random variable x with mean µ and covariance matrix Σ. Suppose
the positive class sample x+ ∼ (µ+, Σ+), the negative class sample x− ∼ (µ−, Σ−), µ+,
µ− ∈ Rd, and Σ+, Σ− ∈ Sd

+. Using MPM tries to find the hyperplane:

g(x) = wTx− b = 0, (1)

where w ∈ Rd, b ∈ R. The optimization problem of MPM can be formulated as following:

max
w,b,α

α

s.t. inf
x+∼(µ+ ,Σ+)

Pr{wTx+ ≥ b} ≥ α,

inf
x−∼(µ− ,Σ−)

Pr{wTx− ≤ b} ≥ α.

(2)

In Problem (2), α ∈ (0, 1) is the lower bound on the probability of the two classes of samples
being correctly classified, which can also be explained as the worst-case classification
accuracy rate. The structure of the two constraints are symmetry. By maximizing α in the
objective function, the hyperplane with the best lower bound can be chosen.

Problem (2) is an optimization problem with probability constraints, which causes
the problem to be difficult to deal with. The following two Lemmas are introduced for
transformation.

Lemma 1. Suppose x is a random vector, S is a given convex set, and x ∼ (µ, Σ), then the supremum
on the probability of x ∈ S is equivalent to:

sup
x∼(µ,Σ)

Pr{x ∈ S} = 1
1 + d2 , d2 = inf

x∈S
(x− µ)TΣ−1(x− µ). (3)

Lemma 2. Given w 6= 0, b, µ, Σ, the following condition:

inf
x∼(µ,Σ)

Pr{wTx ≤ b} ≥ α (4)
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holds if and only if:

b−wTx ≥ k(α)
√

wTΣw, (5)

where k(α) =
√

α
1−α .

It is obvious that k(α) is a monotonically increasing function of α, so the original
optimization problem of MPM can be transformed into the following formulation according
to the above two lemmas.

max
w,b,α

k(α)

s.t. − b + wTµ+ ≥ k(α)
√

wTΣ+w,

b−wTµ− ≥ k(α)
√

wTΣ−w.

(6)

Problem (6) can be formulated as a second-order cone programming problem as the
following:

min
w

||Σ
1
2
+w||2 + ||Σ

1
2
−w||2

s.t. wT(µ+ − µ−) = 1,
(7)

which can be solved by the interior point method. With the optimal value of w∗, the optimal
value of b∗ can be obtained by:

b∗ = (w∗)Tµ− +
‖Σ

1
2
−w∗‖2

‖Σ
1
2
−w∗‖2 + ‖Σ

1
2
+w∗‖2

= (w∗)Tµ+ −
‖Σ

1
2
+w∗‖2

‖Σ
1
2
+w∗‖2 + ‖Σ

1
2
−w∗‖2

.

(8)

A new data point x ∈ Rd can be assigned to positive class or negative class by calculating:

f (x) = sign
(
(w∗)Tx + b∗

)
. (9)

For more details, please refer to [21].

2.2. Soft Quadratic Surface Support Vector Machine (SQSSVM)

The SQSSVM model intends to find the optimal parameter set (W , b, c) of a quadratic
surface:

1
2

xTWx + bTx + c = 0,

where W = W T ∈ Rd×d, b ∈ Rd, and c ∈ R, which separates the training points into two
classes by maximizing the distance from each data point to the separating surface. The
SQSSVM model is as follows:

min
W ,b,c

l

∑
i=1
‖Wxi + b‖2

2 + C
l

∑
i=1

ξi

s.t. yi(
1
2

xT
i Wxi + bTxi + c) ≥ 1− ξi, , i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

(10)

where C > 0 is the penalty parameter.
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The matrix W = (ωij) can be vectorized to

W̄ = [ω11 ω12 . . . ω1d ω22 ω23 . . . ω2d . . . ωdd]
T ∈ R

d2+d
2 . (11)

Denote z = (W̄ T , bT)T . Problem (10) can be reformulated as follows:

min
z,c,ξ

zTĜz + C
l

∑
i=1

ξi

s.t. yi(sT
i z + c) ≥ 1− ξi, i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l.

(12)

In Problem (12), Ĝ = ∑n
i=1([M

i, I])T [Mi, I] ∈ R( d2+3d
2 )×( d2+3d

2 ), where I is the m-dimensional

identity matrix. Mi ∈ Rd×( d2+d
2 ) is constructed by using the training point xi = [xi1, xi2, . . . ,

xid]
T ∈ Rd as follows. For the j-th row of Mi in R d2+d

2 , j = 1, . . . , d, check the elements of
W̄ one by one. If the p-th element of W̄ is ωjk or ωkj for some k = 1, 2, . . . , d, then assign
the p-th element of the j-th row of Mi to be xik. Otherwise, assign it to be 0. Besides,

si =[
1
2

xi1xi1, . . . , xi1xid,
1
2

xi2xi2, . . . , xi2xid, . . . ,
1
2

xi,d−1xi,d−1, xi,d−1xid, (13)

1
2

xidxid, xi1, xi2, . . . , xid] ∈ R
d2+d

2 +d. (14)

Problem (12) is a convex quadratic programming problem. With the optimal value of
z∗ and c∗, the parameter set of (W∗, b∗, c∗) can then be obtained. A new data point x ∈ Rn

can be assigned to positive class or negative class by calculating

f (x) = sign
(

1
2

xTW∗x + (b∗)Tx + c∗
)

. (15)

For more details, please refer to [13].

2.3. F1 Value

In this subsection, some performance measures are introduced. The true positive rate
(TPR) and true negative rate (TNR) can be defined as follows.

TPR = 1− FNR = P( ŷ = 1
∣∣∣∣y = 1),

TNR = 1− FPR = P( ŷ = −1
∣∣∣∣y = −1),

(16)

where y is the true value of the label of the data, ŷ is the predicted value of the label of the
data, FNR is the false negative rate, and FPR is the false positive rate. Then the precision
rate can be defined as:

Precision = P(y = 1
∣∣∣∣ŷ = 1) =

p · TPR
p · TPR + (1− p) · FPR

, (17)

where p denotes the proportion of positive class samples.
TPR is more concerned with the comprehensiveness for the recognition of positive

class samples, while Precision is more concerned with the accuracy rate of the recognition
of positive class samples. Since the TPR and Precision are two contradictory performance
measures, some combinations are proposed. The F1 value is the harmonic mean of TPR
and Precision, i.e.:

F1 =
2 · TPR · Precision
Precision + TPR

. (18)
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Since the classification of positive class samples has a great influence on the F1 value, so the
F1 value is commonly used to evaluate the classification effect of imbalanced datasets. For
more details, please refer to [7].

3. A Quadratic Surface Minimax Probability Machine with a Mixed Performance Measure

In this section, a quadratic surface minimax probability machine with a mixed per-
formance measure (QSMPMFA) is proposed. The mixed performance measure considers
both the F1 value and the weighted accuracy rate. The F1 measure is adopted for paying
more attention on the class with less points. The weighted accuracy rate is adopted for
balancing the importance between two classes. For better understanding, the proposed
QSMPMFA is first introduced. After this, the alternating descend method for solving this
problem is constructed.

3.1. The Proposed Model

Suppose the positive class sample x+ ∼ (µ+, Σ+) and the negative class sample
x− ∼ (µ−, Σ−), µ+, µ− ∈ Rd, Σ+, Σ− ∈ Sd

+. Assume that the mean and covariance matrix
of the positive and negative samples are all reliable.

For obtaining a robust classifier for imbalanced datasets, the improved minimax
probability machine based on the soft quadratic surface support vector machine is proposed
first as follows.

min
W ,b,c,α1,α2

1
F1

+ C((1− p)α1 + pα2)

s.t. inf
x+∼(µ+ ,Σ+)

Pr{1
2

xT
+Wx+ + bTx+ − c ≥ 0} ≥ 1− α1,

inf
x−∼(µ− ,Σ−)

Pr{1
2

xT
−Ax− + bTx− − c ≤ 0} ≥ 1− α2,

(19)

where α1 denotes the classification error rate of the positive class, α2 denotes the classifica-
tion error rate of negative class, C is the penalty parameter, and p denotes the proportion
of positive class points. It can be seen that α1 is the false negative rate (FNR), while α2 is
the false positive rate (FPR) mentioned in Section 2.3. The first constraint in Problem (19)
guaranteed that the infimum of the probability that the positive class sample x+ is above the
separating quadratic surface was not less than 1− α1. The second constraint in Problem (19)
guaranteed that the infimum of the probability that the positive class sample x− behind the
separating quadratic surface was not less than 1− α2.

Since α1 = FNR and α2 = FPR, the first item in the objective function can be repre-
sented as follows:

1
F1

=
(1− p)α2 + p

2p(1− α1)
+

1
2

. (20)

By omitting the constant, Problem (19) can be transformed to the following problem:

min
W ,b,c,α1,α2

(1− p)α2 + p
2p(1− α1)

+ C((1− p)α1 + pα2)

s.t. inf
x+∼(µ+ ,Σ+)

Pr{1
2

xT
+Wx+ + bTx+ − c ≥ 0} ≥ 1− α1,

inf
x−∼(µ− ,Σ−)

Pr{1
2

xT
−Ax− + bTx− − c ≤ 0} ≥ 1− α2.

(21)

Use the definition of W̄ in formulation (11) and denote z = (W̄ T , bT)T . Problem (21)
can be reformulated as follows:
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min
z,c,α1,α2

(1− p)α2 + p
2p(1− α1)

+ C((1− p)α1 + pα2)

s.t. inf
s+∼(µp ,Σp)

Pr{zTs+ − c ≥ 0} ≥ 1− α1,

inf
s−∼(µn ,Σn)

Pr{zTs− − c ≤ 0} ≥ 1− α2,

(22)

where

s+ =[
1
2

x+1x+1, . . . , x+1x+d,
1
2

x+2x+2, . . . , x+2x+d, . . . ,
1
2

x+,d−1x+,d−1,

x+,d−1x+d,
1
2

x+dx+d, x+1, x+2, . . . , x+d] ∈ R
d2+d

2 +d,
(23)

and
s− =[

1
2

x−1x−1, . . . , x−1x−d,
1
2

x−2x−2, . . . , x−2x−d, . . . ,
1
2

x−,d−1x−,d−1,

x−,d−1x−d,
1
2

x−dx−d, x−1, x−2, . . . , x−d] ∈ R
d2+d

2 +d.
(24)

µp represents the mean of the dataset of s+, Σp represents the covariance matrix of the
dataset of s+, µn represents the mean of the dataset of s−, and Σn represents the covariance
matrix of the dataset of s−. The separation obtained in Problem (22) can be interpreted
as follows. Each data point x ∈ Rd in the original dataset of T is first mapped into a new

space, i.e., s ∈ R d2+d
2 +d. Next, a linear classifier is adopted for the separation.

Since the mean and covariance matrix are often unknown, µ̂ and Σ̂ are used to estimate
of the true value, i.e.:

µ̂p(n) =
1

N+(−)

N+(−)

∑
i=1

si ∈ R
d2+3d

2 ,

Σ̂p(n) =
1

N+(−)

N+(−)

∑
i=1

(si − µ̂p(n))(si − µ̂p(n))
T ∈ R

d2+3d
2 ,

(25)

where N+ represents the number of positive points in the dataset and N− represents the
number of negative points in the data set.

By using Lemma 2, the probability inequalities in Problem (22) can be equivalently
replaced by two inequalities. Then Problem (22) can be formulated as follows:

min
z,c,α1,α2

(1− p)α2 + p
2p(1− α1)

+ C((1− p)α1 + pα2)

s.t. zTµp − c ≥ π(α1)
√

zTΣpz,

c− zTµn ≥ π(α2)
√

zTΣnz,

(26)

where π(α1) =
√

1−α1
α1

, π(α2) =
√

1−α2
α2

.
Since the objective function is an increasing function with respect to α1 or α2, Prob-

lem (26) can be further formulated as the following problem:

min
z,c,α1,α2

(1− p)α2 + p
2p(1− α1)

+ C((1− p)α1 + pα2)

s.t. zTµp − c = π(α1)
√

zTΣpz,

c−wTµn = π(α2)
√

zTΣnz.

(27)

The equivalence of Problem (26) and Problem (27) can be derived similarly to Lemma 4
in [7]. By summarizing the two constraints, the variable c can be omitted, i.e.:
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min
z,α1,α2

(1− p)α2 + p
2p(1− α1)

+ C((1− p)α1 + pα2)

s.t. π(α1)
√

zTΣpz + π(α2)
√

zTΣnz = zT(µp − µn).
(28)

Furthermore, as shown in (28), α1 and α2 play the symmetry role in the equality
constraint. Then, α2 can be represented by α1 and z as follows.

α2 =

√
zTΣnz√

zTΣnz + (zT(µp − µn)− π(α1)zTΣpz)2
. (29)

Finally, by using this formulation, Problem (28) can be transformed to the following problem
with respect to z and α1.

min
z,α1

M(z, α1) =
( 1−p

2p(1−α1)
+ Cp)

√
zTΣnz√

zTΣnz + (zT(µp − µn)− π(α1)zTΣpz)2

+
1

2(1− α1)
+ C(1− p)α1

s.t. zT(µp − µn)− π(α1)zTΣpz ≥ 0,

‖z‖ = 1.

(30)

The constraint ‖z‖ = 1 is added to ensure the uniqueness of the solution. Problem (30) is a
nonconvex optimization problem with a fractional objective function.

3.2. Algorithm for QSMPMFA

For efficiently solving this problem, an alternating descent algorithm [7] is adopted.
The details of the algorithm are described as follows.

In the t-th iteration, suppose that the value of zt satisfies the constraint of ‖zt‖ = 1,
then αt

1 can be updated by solving the following problem:

αt
1 = argmin

α1

( 1−p
2p(1−α1)

+ Cp)
√

zTΣnz√
zTΣnz + (zT(µp − µn)− π(α1)zTΣpz)2

+
1

2(1− α1)

+ C(1− p)α1

s.t. α1 ≥ zT
t Σpzt/(zT

t Σpzt + (µp − µn)
2).

(31)

Since this problem is a univariate optimization problem, it can be solved by the line
search method.

Now, z is updated by solving Problem (30) with α1 = αt
1,, i.e.:

max
z

λt(z) =
zT(µp − µn)− π(αt

1)
√

zTΣpz√
zTΣnz

s.t. ‖z‖ = 1.

(32)

To find a zt+1 that satisfies λt(zt+1) > λt(zt), define the following function:

ft(z) = zT(µp − µn)− π(αt
1)
√

zTΣpz− λt(zt)
√

zTΣnz. (33)

The ft(zt) = 0. A zt+1 that satisfies ft(zt+1) > 0 should be found. The following nonlinear
programming problem can be solved for obtaining the inexact solution of Problem (32).

max
z

ft(z)

s.t. ‖z‖ = 1.
(34)
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The gradient ascent method is used to solve Problem (34). Let v1 = zt, step γk = 1/k, k =
1, 2, . . ., and, at the k-th step, vk is updated according to the following equation:

uk = vk + γk((µp − µn)−
π(αt

1)Σpvk√
vT

k Σpvk

− λt(zt)Σnvk√
vT

k Σnvk

), vk+1 =
uk
‖uk‖

. (35)

Set the stopping condition of the above iterative process as:

ft(vk+1) ≥ 0, ft(vk) ≥ 0,
ft(vk+1)− ft(vk)

ft(vk+1)
≤ ε. (36)

The ε in the above equation is the stopping error. The v∗ that satisfied conditions (36) can
be set to the updated zt+1.

After t0 rounds of the alternating descent algorithm, the value of zt0 and bt0 can be
obtained. Correspondingly, c∗ in the quadratic surface parameters are represented as:

c∗ = zT
t0

µp − π(αT
1 )
√

zT
t0

Σpzt0 . (37)

Furthermore, the parameters W∗ and b∗ can be determined. For a new sample x, the label
can be further determined according to the following decision function:

f (x) = sign(
1
2

xTW∗x + (b∗)Tx + c∗), (38)

where sign(·) is a sign function.
The algorithm has been summarized in Algorithm 1. The convergence of this algorithm

can be illustrated by using the analyze in [7].

Algorithm 1: Training process of QSMPMFA
Input: Training set T = {(x1, y1), (x2, y2), . . . , (xm1+m2 , ym1+m2)}, C, t = 0.
Output: W∗, b∗, c∗.
1. Transform the training set T to T̃ = {(s1, y1), (s2, y2), . . . , (sm++m− , ym++m−)}

by using the formulations (23) and (24).
2. Calculate the mean and covariance matrices (µ̂p, Σ̂p), (µ̂n, Σ̂n) according to
formula (25).

3. Denote zt = (µ̂p − µ̂n)/‖µ̂p − µ̂n‖.
4. for t =1, 2, · · · do
5. Calculate αt

1 by solving Problem (31).
6. Calculate the objective function of Problem (30), i.e., M(zt, αt

1).
7. Let vk = zt, k = 1.
8. While the condition (36) is not met
9. update vk+1 by using formula (35).
10. End
11. Let zt+1 = vk+1, calculate the objective function of Problem (30), i.e.,

M(zt+1, αt
1).

12. If (M(zt, αt
1)−M(zt+1, αt

1))/M(zt, αt
1) ≤ ε

13. terminate
14. End
15. End
16. Calculate W∗, b∗, c∗ according to Equations (11) and (37).

4. Numerical Tests

In this section, the classification performance of the QSMPMFA model is investigated.
For comparison, a minimax probability machine with a linear kernel (MPM-l), polynomial
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kernel (MPM-p), and Gaussian kernel (MPM-g) [1]; a minimax probability machine for
F measure with a linear kernel (MPMF-l), polynomial kernel (MPMF-p), and Gaussian
kernel (MPMF-g) [7]; and a quadratic surface minimax probability machine (QSMPM) [22]
are tested.

All the experiments are implemented in MATLAB R2018a on a PC with 2.1 GHz CPU
and 16 GB RAM. Both the F1 value of the minority class samples and accuracy rate are
considered for measuring the classification performance. The F1 value is defined in Section 2.3.
The accuracy rate is defined as the ratio of correctly classified numbers to the total number.
The penalty parameter C is chosen in the range of {2−10, 2−5, 20, 25}. The kernel function
parameter of the kernel-based methods is chosen in the range of {2−5, 2−6, . . . , 28}. They are
all trained by using a 5-fold cross-validation [23]. All the methods are tested ten times by
randomly selecting points in two classes to form training sets. For each dataset, a random
selection of 70% of the samples in the dataset is used for training and the remaining 30% are
used for testing.

In order to illustrate the classification performance of the proposed QSMPMFA, com-
parative experiments on 12 benchmark datasets extracted from the UCI Machine Learning
Repository [24] are conducted. The information of all the datasets is shown in Table 1. In
this table, the number of positive samples, negative samples, total samples, and features are
listed. The last column in Table 1 records the imbalanced ratio, which is calculated by the
ratio of the negative data numbers and positive data numbers. The larger the imbalanced
ratio, the higher the imbalanced degree.

Table 1. Information of the benchmark datasets.

Data Set Positive # Negative # Total # Feature # Imbalanced Ratio

Iris 50 50 100 4 1
Seeds 70 70 140 7 1
Glass 51 163 214 9 3.20

Wholesale customers 142 298 440 7 2.10
WDBC 212 357 569 30 1.68
Balance 288 288 576 4 1

Breast cancer 241 458 699 9 1.90
Banknote 610 762 1372 4 1.25
Segment 330 1980 2310 19 6

Rice 1630 2180 3810 7 1.34
Dry Bean 1322 12289 13,611 16 9.30

Skin 50,859 194,198 245,057 3 3.82

Table 2 shows the F1 value of each method on all the datasets. The bold ones are the
best results among all the methods. “-” indicates that the memory exceeds the limit in the
training process. From Table 2, it can be seen that QSMPMFA outperforms the comparison
methods for classifying most datasets, especially on datasets with higher imbalance ratios
such as Segment, Dry Bean, Skin, and so on. For the other datasets that QSMPMFA performs
not optimally on, it can be seen that the best results often occur in the methods with Gaussian
kernel functions. The reason may be that the Gaussian kernel is more proper for dealing
with these datasets. For showing the results more intuitively, the boxplot of the F1 value of
the positive class of each method for classifying all the datasets is illustrated in Figure 1.

For comparison, the classification accuracy rate of each method is also listed in Table 3.
Except for the WDBC and Segment datasets, the performance of QSMPMFA is similar to
that in Table 2. For the WDBC dataset, QSMPMFA performs almost the same as the best
method. The reasons for explaining these results may be that the F1 value is adopted in the
cross-validation of choosing parameters. It can be seen that the accuracy rates are often
larger than the F1 value on most of the datasets. The boxplot of the accuracy rates of all the
methods on each dataset are illustrated in Figure 2.
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Table 2. F1 value for each method on each data set.

Data Set MPM-l MPM-g MPM-p MPMF-l MPMF-g PMPF-p QSMPM QSMPMFA

Iris 1.0000± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9968 ± 0.0102 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
Seeds 0.9530 ± 0.0309 0.9907 ± 0.0120 0.9887 ± 0.0130 0.9839 ± 0.0188 0.9643 ± 0.0454 0.9497 ± 0.0291 0.9699 ± 0.295 0.9862 ± 0.0160
Glass 0.7728 ± 0.0702 0.8456 ± 0.0472 0.8722 ± 0.0558 0.8158 ± 0.0452 0.8795 ± 0.0478 0.8604 ± 0.0504 0.8259 ± 0.0463 0.8534 ± 0.0564

Wholesale customers 0.8158 ± 0.0413 0.8452 ± 0.0421 0.8425 ± 0.0164 0.8017 ± 0.1277 0.8451 ± 0.0430 0.7256 ± 0.1361 0.8608 ± 0.0327 0.8660 ± 0.0379
WDBC 0.9357 ± 0.0172 0.9495 ± 0.0192 0.9524 ± 0.0171 0.9495 ± 0.0195 0.9548 ± 0.0194 0.9519 ± 0.0108 0.9598 ± 0.0162 0.9603 ± 0.0116
Balance 0.9448 ± 0.0147 0.9901 ± 0.0087 0.9849 ± 0.0126 0.9605 ± 0.0105 0.9885 ± 0.0066 0.9596 ± 0.0099 0.9878 ± 0.0080 0.9818 ± 0.0105

Breast cancer 0.9427 ± 0.0158 0.9558 ± 0.0156 0.9503 ± 0.0210 0.9500 ± 0.0200 0.9556 ± 0.0142 0.9471 ± 0.0294 0.9527 ± 0.0158 0.9567 ± 0.0117
Banknote 0.8619 ± 0.0253 0.9895 ± 0.0042 0.9820 ± 0.0050 0.9850 ± 0.0060 0.9908 ± 0.0071 0.9823 ± 0.0069 0.9773 ± 0.0070 0.9957 ± 0.0057
Segment 0.5791 ± 0.0164 0.6265 ± 0.0714 0.7106 ± 0.0521 0.9660 ± 0.0120 0.9771 ± 0.0312 0.9110 ± 0.0359 0.9302 ± 0.0209 0.9814 ± 0.0153

Rice 0.9047 ± 0.0094 0.9142 ± 0.0237 0.9073 ± 0.0313 0.9098 ± 0.0074 0.9063 ± 0.0117 0.9131 ± 0.0078 0.9135 ± 0.0074 0.9142 ± 0.0080
Dry Bean 0.5263 ± 0.0121 0.8361 ± 0.0436 0.8117 ± 0.0393 0.8790 ± 0.0109 0.8639 ± 0.0078 0.8617 ± 0.0082 0.8353 ± 0.0135 0.8867 ± 0.0097

Skin 0.8098 ± 0.0017 - - 0.8793 ± 0.0013 - - 0.8562 ± 0.0012 0.8824 ± 0.0178

Average rank 7.08 3.83 4.79 4.79 3.96 5.46 4.08 2.00

Table 3. Accuracy rate for each method on each dataset.

Data Set MPM-l MPM-g MPM-p MPMF-l MPMF-g PMPF-p QSMPM QSMPMFA

Iris 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9967 ± 0.0105 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000
Seeds 0.9524 ± 0.0317 0.9905 ± 0.0123 0.9893 ± 0.0144 0.9833 ± 0.0196 0.9619 ± 0.0504 0.9476 ± 0.0310 0.9690 ± 0.0298 0.9857 ± 0.0166
Glass 0.8938 ± 0.0328 0.9281 ± 0.0223 0.9406 ± 0.0280 0.9125 ± 0.0235 0.9406 ± 0.0242 0.9375 ± 0.0156 0.9141 ± 0.0247 0.9328 ± 0.0256

Wholesale customers 0.8864 ± 0.0250 0.8992 ± 0.0305 0.8909 ± 0.0148 0.8341 ± 0.1572 0.8962 ± 0.0297 0.7561 ± 0.1686 0.9076 ± 0.0220 0.9099 ± 0.0221
WDBC 0.9520 ± 0.0132 0.9626 ± 0.0144 0.9709 ± 0.0137 0.9632 ± 0.0138 0.9661 ± 0.0148 0.9637 ± 0.0087 0.9696 ± 0.0126 0.9708 ± 0.0087
Balance 0.9453 ± 0.0143 0.9901 ± 0.0087 0.9849 ± 0.0127 0.9593 ± 0.0110 0.9884 ± 0.0067 0.9581 ± 0.0104 0.9878 ± 0.0080 0.9814 ± 0.0109

Breast cancer 0.9603 ± 0.0108 0.9689 ± 0.0111 0.9656 ± 0.0141 0.9646 ± 0.0138 0.9689 ± 0.0099 0.9636 ± 0.0199 0.9670 ± 0.0109 0.9694 ± 0.0082
Banknote 0.8789 ± 0.0214 0.9914 ± 0.0021 0.9872 ± 0.0042 0.9864 ± 0.0055 0.9917 ± 0.0064 0.9840 ± 0.0063 0.9794 ± 0.0065 0.9961 ± 0.0051
Segment 0.7924 ± 0.0144 0.8658 ± 0.0347 0.8831 ± 0.0305 0.9902 ± 0.0036 0.9953 ± 0.0095 0.9729 ± 0.0116 0.9788 ± 0.0066 0.9947 ± 0.0044

Rice 0.9182 ± 0.0082 0.9248 ± 0.0127 0.9094 ± 0.0216 0.9190 ± 0.0068 0.9158 ± 0.0113 0.9227 ± 0.0068 0.9241 ± 0.0067 0.9253 ± 0.0071
Dry Bean 0.8412 ± 0.0065 0.9490 ± 0.0208 0.9571 ± 0.0202 0.9761 ± 0.0022 0.9771 ± 0.0032 0.9705 ± 0.0047 0.9634 ± 0.0034 0.9775 ± 0.0022

Skin 0.9096 ± 0.0008 - - 0.9430 ± 0.0007 - - 0.9342 ± 0.0006 0.9448 ± 0.0089

Average rank 6.92 4.08 4.46 4.83 3.83 5.63 4.08 2.17
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Figure 1. Box plot of the F1 value of each method on all the datasets.
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Figure 2. Box plot of the accuracy rate of each method on all the datasets.

From Tables 2 and 3, it can be seen that QSMPMFA performs better than QSMPM for
classifying each dataset except for the Balance dataset. QSMPM only aims to maximize the
lower bound of the correct classification probability of two classes. Since both QSMPM
and QSMPMFA are kernel-free methods, the better performance of the proposed method
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demonstrates the effectiveness of setting both the F1 value and accuracy rate as objective
functions. MPMF with different kernel functions adopts Fβ as the optimization goal, which
focuses on the classification of imbalanced datasets. When compared with MPMF, the
better performance also illustrates the effectiveness of using two measures and the kernel-
free setting.

For illustrating the performance of the proposed method on imbalanced datasets, more
tests on the wholesale customers dataset are conducted. The wholesale customer dataset
refers to the information of clients of a wholesale distributor. It includes the annual spending
in monetary units on diverse product categories. Some positive samples are chosen with a
different ratio of 1, 0.9, 0.6, and 0.2 randomly. Next, the chosen samples with different ratios
and all the negative samples are combined to construct four datasets. A similar training
process is utilized for testing these datasets.

The comparison results of MPM-l, MPM-g, MPM-p, MPMF-l, MPMF-g, MPM-p,
QSMPM, and QSMPMFA on the four datasets are illustrated in Figures 3 and 4. It can be
seen that the proposed QSMPMFA performs the best for classifying all the datasets. As
shown in Figure 3, the F1 values of each method on each dataset show a decreasing trend
overall when the ratio of positive points decreases (i.e., the imbalance degree increases). The
variation of the F1 values of the proposed QSMPMFA is relatively stable. The other methods,
especially MPM-g, MPM-p, and QSMPM, decrease more significantly when the ratio is
small. From Figure 4, it can be seen that the accuracy rate of each method on each dataset
increase overall when the ratio of positive points decreases (i.e., the imbalance degree
increases). The performance of QSMPMFA is also relatively stable. Although the accuracy
rate is not a proper measure for analyzing the imbalanced dataset, it still demonstrates the
better performance of the proposed method. When compared with QSMPM, the relatively
large growth rate shows the better performance of the proposed method, which further
demonstrates the superior performance for classifying imbalanced datasets.
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Figure 3. Imbalanced tests for the wholesale customers dataset (F1 value).
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Figure 4. Imbalanced tests for the wholesale customers dataset (accuracy rate).

5. Conclusions

In this paper, a new quadratic surface minimax probability machine model consider-
ing both the F1 value and accuracy rate as the optimization goal is proposed. On the one
hand, the proposed QSMPMFA combines the kernel-free technique with the MPM model,
which causes it to be more efficient to deal with large-scale datasets. On the other hand,
by adopting two performance measures in the objective function of the proposed model,
QSMPMFA is more flexible for dealing with the imbalanced dataset. Some public bench-
mark datasets are adopted for validating the effectiveness of the proposed method. From
the numerical tests, it can be seen that QSMPMFA performs the best when compared with
other state-of-the-art MPM methods. It can also be concluded that the proposed QSMPMFA
enjoys the superiority on dealing with imbalanced datasets.

In the proposed model, both the F1 value of the minority class and the weighted
classification accuracy rate of the two classes are considered as the optimization goal. In our
settings, the parameter for balancing the importance between the two items in the objective
function is tuned by using cross-validation. The parameter in the weighted classification
accuracy rate is fixed by using the ratio of the minority class. Actually, the choice of these
parameters affects the classification performance and efficiency of the proposed model. In
the future, more research on how to choose proper parameters should be performed. More
applications of this method can be explored in other areas [25]. Besides, methods with prior
information will be considered.
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