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Abstract: In this paper, we present a smoothing modulus-based iterative method for solving the
stochastic mixed complementarity problems (SMCP). The main idea is that we firstly transform the
expected value model of SMCP into an equivalent nonsmooth system of equations, then obtain an
approximation smooth system of equations by using a smoothing function, and finally solve it by the
Newton method. We give the convergence analysis, and the numerical results show the effectiveness
of the new method for solving the SMCP with symmetry coefficient matrices.

Keywords: smoothing modulus-based iterative method; stochastic mixed complementarity problems;
expected value model; Newton method

1. Introduction

Mixed complementarity problems often arise in the economic, transportation, control
and optimization, such as price equilibrium, Nash equilibrium problem, stochastic traffic
equilibrium problem and so on. On the other hand, since some elements may involve
uncertain data in many practical problems, some practical problems can be characterized
by SMCPs: for example, the stochastic traffic equilibrium problem [1].

SMCP is a class of stochastic nonlinear complementarity problems (SNCPs);
Zhang and Chen [2] applied the expected residual minimization model of SNCPs to solve
the stochastic traffic equilibrium problem. Li and Lin [3] presented a sampling average
approximation method for a class of stochastic Nash equilibrium problems. For other
sampling average methods, please see [4–7]. Recently, Ruud Egging [8] proposed a Benders
decomposition method for multi-stage SMCPs. Devine et al. [9] proposed the Rolling
Horizon approach for solving SMCPs. The expected value model of the SMCP ([10]) and
the expected residual minimization model of the SLCP ([11]) are studied, and applied the
sample average approximation (SAA) method to solve these problems. The expected value
model methods are also used to solve the SMCPs in [12–15].

Recently, Dong and Jiang proposed a modular iteration method in [16], and Bai et al. [17]
proposed the modular matrix splitting iteration methods. These methods are very effective
for solving linear complementarity problems with the symmetry positive definite coefficient
matrices or the unsymmetric matrices. Now, a lot of research results in modular iteration
methods are presented, such as unsteady extrapolation modular iteration methods, modular
matrix splitting iteration methods, etc. See [18–20] for more details. In the modular
iteration methods, since the equivalent fixed-point equation system is a non-differentiable
absolute value equation system, Foutayeni et al. [21] constructed a smoothing function to
approximate the original equations, obtaining an effective smoothing numerical algorithm.
The approximation methods are efficient; see [22–24].
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In this paper, based on the idea of the smoothing numerical algorithm in [21], we
set up a smoothing modulus-based iteration method to solve the SMCPs. The numerical
results in Section 4 show that the new method is very effective for solving the SMCP with
symmetry coefficient matrices.

The organization of the paper is as follows. In Section 2, we establish the smoothing
modulus-based iteration method for solving the SMCPs. The convergence of the new
method is presented in Section 3, and the numerical results are shown in Section 4. In
addition, some conclusions are given in Section 5.

2. The Smoothing Modulus-Based Iterative Method

The following notation will be used in the paper. For a given smoothing vector
function g : Rs → Rt,∇g ∈ Rt+s denotes its Jacobi matrix. (Ω, F, µ) denotes the probability
space, where Ω is a sample space, F is the non-empty subset of the power set of Ω and µ is
the probability. For a given matrix A, we let ‖A‖ denote its spectral norm and ‖A‖F denote
its Frobenius norm, that is

‖A‖F =

(
n

∑
i=1

n

∑
j=1
‖aij‖2

) 1
2

,

where aij is an elements in matrix A.
In this paper, we consider the following SMCP, given mappings G : Rn1 ×Rn2 ×Ω→

Rn1 and H : Rn1 ×Rn2 ×Ω → Rn2 , finding u ∈ Rn1 and v ∈ Rn2 , for almost all ω ∈ Ω
such that {

G(u, v, ω) = 0,

v ≥ 0, H(u, v, ω) ≥ 0, vT H(u, v, ω) = 0,
(1)

where ω is a random variable.
The SMCP is a natural extension of the mixed complementarity problems. For the

deterministic situation, the above problem degenerates into the mixed complementarity
problem (MCP). Given mappings G : Rn1 ×Rn2 → Rn1 and H : Rn1 ×Rn2 → Rn2 , finding
u ∈ Rn1 and v ∈ Rn2 such that{

G(u, v) = 0,

v ≥ 0, H(u, v) ≥ 0, vT H(u, v) = 0.

For SMCP (1), due to the existence of the random variable ω, it is generally difficult to
find u and v which makes this problem true for almost all ω, so the methods for solving the
mixed complementarity problem cannot be directly used to solve problem (1). Hence, we
use the expected value model (EV model) proposed by Gurkan [25] to solve the stochastic
variational inequalities; similarly, the EV model of SMCP (1) can be obtained, which is that,
finding u ∈ Rn1 and v ∈ Rn2 such that{

E[G(u, v, ω)] = 0,

v ≥ 0,E[H(u, v, ω)] ≥ 0, vTE[H(u, v, ω)] = 0,
(2)

where G : Rn1 ×Rn2 ×Ω→ Rn1 and H : Rn1 ×Rn2 ×Ω→ Rn2 are two mappings, ω ∈ Ω
is random variable, and E[·] is the expected value. By using the expected value model,
the stochastic mixed complementarity problem is transforming into a deterministic mixed
complementarity problem; then, we construct the smoothing modulus iteration method to
solve it.

For Problem (2), let z ∈ Rn2 , v = |z| + z, E[H(u, v, ω)] = |z| − z; then, we have
|z| − z−E[H(u, v, ω)] = 0, and set

E[Q(u, z, ω)] = |z| − z−E[H(u, |z|+ z, ω)].

We can further rewrite (2) as the following equivalent equation system:
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φ(u, z) =
(

E[G(u, z, ω)]
E[Q(u, z, ω)]

)
= 0. (3)

Since |z| is not differentiable, we introduce a smooth vector function [21],

(z2 + e−c)
1
2 =

(
(z2

1 + e−c)
1
2 , (z2

2 + e−c)
1
2 , ..., (z2

n + e−c)
1
2

)T
,

where c is a large positive integer. We substitute it into Problem (3) to replace the |z| in
φ(u, z) and set

E[Qc(u, z, ω)] = (z2 + e−c)
1
2 − z−E[H(u, (z2 + e−c)

1
2 + z, ω)].

Hence, we obtain an approximate smoothing nonlinear equation system of Equation (3)

Φ(u, z) =
(

E[G(u, z, ω)]
E[Qc(u, z, ω)]

)
= 0. (4)

Subsequently, we use the sample average method based on the independently and
identically distributed sequence of random variable ω, obtain an approximate value of the
expected value, and transform the original problem into an approximate problem. As a
consequence, by solving this approximate problem, the approximate solution of Problem
(4) is obtained.

For an integrable function ϕ : Ω → R, the sampling average approximate for
E[ϕ(ω)] is obtained by taking an independently and identically distributed sequence

{ω1, ..., ωN} ⊆ Ω of random variable ω, and have that E[ϕ(ω)] ≈ 1
N

n
∑

i=1
ϕ(ωi). The strong

law of large numbers guarantees that this procedure converges with probability one (abbre-
viated by ′w.p.1′), that is

lim
N→+∞

1
N

n
∑

i=1
ϕ(ωi) = E[ϕ(ω)] =

∫
Ω ϕ(ω)dξ(ω) w.p.1. (5)

where ξ(ω) is a probability distribution function of random variable ω; see [25,26] for
more details.

Given the independent and identical distribution of the random variable {ω1, ..., ωN} ⊆ Ω,
and using the average value of the sample points to approximate the expected value, we
obtain the following approximation equations of Problem (4)

ΦN(u, z) =
(

GN(u, z)
QN

c (u, z)

)
= 0, (6)

where GN(u, z) = 1
N

N
∑

i=1
G(u, z, ωi), QN

c (u, z) = 1
N

N
∑

i=1
Qc(u, z, ωi).

The basic assumptions of this article are given below [10]

(A1) For any
(

u
v

)
∈ Rn1+n2 , G(u, v, :) and H(u, v, :) are F -measurable, where F is the

σ-algebra on Ω.
(A2) For ω ∈ Ω, G(:, :, ω) and H(:, :, ω) are continuously differentiable in Rn1+n2 .
(A3) There is a non-negative integrable function κ(ω), such that for any ω ∈ Ω,

sup
(u,v)∈Rn1+n2

{‖G(u, v, ω)‖2, ‖H(u, v, ω)‖2,

‖∇(u,v)G(u, v, ω)‖2
F, ‖∇(u,v)H(u, v, ω)‖2

F} ≤ κ(ω).
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Lemma 1. [Theorem 2.1, [21]] Let z ∈ Rn2 , when c → +∞, the vector function (z2 + e−c)
1
2

uniformly converges to |z|.

Lemma 2. [Theorem 16.8, [27]] Suppose that f (ω, t) is a measurable and integrable function of ω
for each t in (a, b). Let φ(t) =

∫
f (ω, t)µ(dω).

(i) Suppose that for ω ∈ A, where A ∈ F, µ(Ω− A) = 0, f (ω, t) is continuous in t at t0.
Suppose further that | f (ω, t)| ≤ g(ω) for ω ∈ A and |t− t0| < δ, where δ is independent of ω
and g is integrable. Then, φ(t) is continuous at t0.

(ii) Suppose that for ω ∈ A, where A ∈ F, µ(Ω− A) = 0, f (ω, t) has in (a, b) a derivative
f ′(ω, t). Suppose further that | f ′(ω, t)| ≤ g(ω) for ω ∈ A and t ∈ (a, b), where g is integrable.
Then, φ(t) has a derivative

∫
f ′(ω, t)µ(dω) on (a, b).

We discuss some properties of Φ(u, z) and ΦN(u, z).

Lemma 3. Φ is a smooth mapping, and the Jacobi matrix V of Φ(u, z) is

V =

(
∇uE[G(u, z, ω)] ∇zE[G(u, z, ω)]
∇uE[Qc(u, z, ω)] ∇zE[Qc(u, z, ω)]

)
.

Proof. From the basic assumptions and Lemma 1, we know that E[G(u, z, ω)] and
E[Qc(u, z, ω) are continuously differentiable in Rn1+n2 , Φ(u, z) is smoothing. Then

∇E[G(u, z, ω)] = E[∇G(u, z, ω)],

∇E[Qc(u, z, ω)] = E[∇Qc(u, z, ω)].

The Jacobi matrix V is easy to obtain.

Lemma 4. ΦN is a smooth mapping, and the Jacobi matrix VN of ΦN(u, z) is

VN =


1
N

N
∑

i=1
∇uG(u, z, ωi)

1
N

N
∑

i=1
∇zG(u, z, ωi)

1
N

N
∑

i=1
∇uQc(u, z, ωi)

1
N

N
∑

i=1
∇zQc(u, z, ωi)

.

Proof. It is similar to the proof of Lemma 3; hence, we omit the proof here.

From Formula (5), when N is sufficiently large, ΦN(u, z) converges to Φ(u, z) with
probability one; therefore, ΦN(u, z) is a good approximation of Φ(u, z). Based on the
above analysis, we give a class of smoothing modulus-based iteration method for solving
stochastic mixed complementarity problems.

3. Convergence Theorem

In this section, we give the convergence analysis of Algorithm 1.

Algorithm 1: Smoothing Modulus-based Iterative Method

Input parameters x0 = (uT
0 , zT

0 )
T , c, ε > 0, k = 0.

(1) Computing ΦN(uk, zk) and VN
k .

(2) Computing ∆xk,
VN

k · ∆xk = −ΦN(uk, zk).

(3) xk+1 = xk + ∆xk.
(4) If |∆xk| ≤ ε, stop. Else, k := k + 1, return to (1).
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Lemma 5. [28] Let S be a nonempty compact subset of R and suppose that:
(i) For almost every ξ ∈ ω the function f (:, ξ) is continuous on S;
(ii) f (x, ξ), x ∈ S, is dominated by an integrable function;
(iii) The sample is iid (independent identically distributed),
Then, the expected value function f (x) is finite valued and continuous on S, and

fN(x) = 1
N

N
∑

i=1
f (x, ξi) converges to f (x) with probability one uniformly on S.

Lemma 6. [27] Let the random variables ω1, ω2 in (a, b), −∞ < a < b < +∞, and
E[ω2

1 ] < +∞, E[ω2
2 ] < +∞; then, we have

E[ω1ω2]
2 ≤ E[ω2

1 ]E[ω2
2 ].

Theorem 1. Assume that xN =

(
uN

zN

)
∈ Rn1+n2 is the solution of Problem (6) for each N and

x∗ =
(

u∗

z∗

)
∈ Rn1+n2 is an accumulation point of the sequence {xN}; then, x∗ is a solution of

Problem (4) with a probability of one.

Proof. Without loss of generality, we assume that the sequence {xN} converges to x∗ as
N → +∞. Let I ⊂ Rn1+n2 be a compact set that contains the whole sequence {xN}. Let

Φ̃(u, z, ω) =

(
G(u, z, ω)
Qc(u, z, ω)

)
,

Φ(u, z) = E[Φ̃(x, ω)],

ΦN(u, z) =


1
N

N
∑

i=1
G(u, z, ωi)

1
N

N
∑

i=1
Qc(u, z, ωi)

,

it follows from Assumption (A3) that

‖Φ̃(u, z, ω)‖2 ≤ ‖G(u, z, ω)‖2 + ‖Qc(u, z, ω)‖2 ≤ 2κ(ω).

This indicates that the function Φ̃(u, z, ω) is dominated uniformly by the non-negative
integrable function

√
2κ(ω) on I. By Assumption (A2) and Lemma 6, for almost every

ω, the function Φ̃(:, :, ω) is continuously differentiable on I, from Lemma 2, Φ(u, z) is
continuous on I, and by Lemma 5, the function ΦN(u, z) converges to Φ(u, z) uniformly
on I with a probability of one.

Note that each xN solves (6), that is

ΦN(uN , zN) = 0.

Taking a limit, we can obtain Φ(u∗, z∗) = 0 with a probability of one. That is, x∗ is a
solution of Problem (4) with a probability of one. This completes the proof.

Lemma 7. [Theorem 3.2, [29]] Suppose that F : D ⊂ Rn → Rn is continuously differentiable
on the open neighborhood S0 ⊂ D of x∗, ∇F(x∗) is nonsingular, and x∗ is the solution of the
equation F(x∗) = 0. Then, the image G(x) = x − [∇F(x)]−1F(x) is well-defined on a closed
ball S = S(x∗, δ) ⊂ S0, and the sequence {xk} generated by Newton iteration xk+1 = xk −
[F′(xk)]

−1F(xk)] superlinearly converges to x∗. Assume that ∀x ∈ S,

‖∇F(x)−∇F(x∗)‖ ≤ α‖x− x∗‖

holds, the iteration sequence {xk} converges at least second order.
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Theorem 2. Let x∗ =
(

u∗

z∗

)
∈ Rn1+n2 be the solution of ΦN(u, z), and ∇(u,z)ΦN(u∗, z∗) be

nonsingular; then, the sequence {xk} generated by Algorithm 1 converges to x∗.

Proof. It is easy to know from the basic assumptions that ΦN(u, z) is continuously differ-
entiable, and ∇(u,z)ΦN(u∗, z∗) is non-singular. According to Lemma 7, the sequence {xk}
generated by Algorithm 1 converges to x∗. This completes the proof.

4. Numerical Results

In this section, we use two examples to examine the numerical effectiveness of smooth-
ing modulus-based iterative methods from aspects of the number of iteration steps (denoted
by ‘IT’), elapsed CPU time in seconds (denoted by ‘CPU’), and norm of absolute residual
vectors (denoted by ‘RES’). Here, ‘RES’ is defined as ‖∆x‖2. In addition, all experiments
are carried out using MATLAB (version R2018b) on a personal computer with a 1.80 GHz
central processing unit (Intel(R) Core(TM) i5-8250U CPU), 8.00GB memory.

In our computations, we utilize the random number generator rand in MATLAB to
generate an independent and identically distributed sequence {ω1, ..., ωN} ⊆ Ω of the
random variable ω from [0, 1], and in the semi-smooth Newton method [10], we set the
parameters by ε = 10−9, c = 30, ρ = 10−9, κ = 2.1, σ = 10−4, β = 0.5. In the tables, Let
Algorithm 2 denote the Ssemi-smooth Newton Method presented by [10].

Example 1. [3] Consider the stochastic Nash equilibrium problem (SNEP) in the natural gas market;
by using the Karush–Kuhn–Tucker (KKT) condition, we transform it into SMCP. Suppose that there
are three suppliers (q1, q2, q3); the inverse demand function is given by p(q, ω) = 10ω− q + 50,
where ω is a random variable with uniform distribution on [0, 1]. The cost functions are given by

C1(q1) = 25q1, C2(q2) = 21q2, C3(q3) = 28q3.

The strategy sets are given by

Q1 = {q1|G(q1) = E[3ω + q1 − 12] ≤ 0},
Q2 = {q2|G(q2) = E[ω + q2 − 15] ≤ 0},
Q3 = {q3|G(q3) = E[4ω + q3 − 9] ≤ 0}.

We choose as initial vectors x0 = (0, 0, 0, 0, 0, 0), and the number of samples
N = 50, 103, 104, 105. The numerical results of Algorithms 1 and 2 are listed in Table 1.

Table 1. Numerical results by Algorithms 1 and 2.

N Algorithm IT CPU RES (q1, q2, q3)

50 1 3 0.0012 5.3709 × 10−15 (7.3953, 11.3953, 4.3953)

50 2 40 0.0098 7.8978× 10−11 (7.3957, 11.3957, 4.3957)

1000 1 3 0.0021 4.7568× 10−15 (7.2806, 11.2806, 4.2806)

1000 2 40 0.0072 7.6246× 10−11 (7.2808, 11.2808, 4.2808)

10,000 1 3 0.0018 4.6871× 10−15 (7.2544, 11.2544, 4.2544)

10,000 2 40 0.0080 7.5603× 10−11 (7.2547, 11.2547, 4.2547)

100,000 1 3 0.0024 5.1394× 10−15 (7.2497, 11.2497, 4.2497)

100,000 2 40 0.0084 7.5491× 10−11 (7.2498, 11.2498, 4.2498)
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Then, we suppose that there are eight suppliers (q1, q2, ..., q8), and the inverse demand
function is given by p(q, ω) = 10ω− q + 120, where ω is a random variable with uniform
distribution on [0, 1]. The cost functions are given by

C1(q1) = 32q1, C2(q2) = 27q2,

C3(q3) = 24q3, C4(q4) = 26q4,

C5(q5) = 33q5, C6(q6) = 36q6,

C7(q7) = 35q7, C8(q8) = 30q8.

The strategy sets are given by

Q1 = {q1|G(q1) = E[3ω + q1 − 18] ≤ 0},
Q2 = {q2|G(q2) = E[ω + q2 − 15] ≤ 0},
Q3 = {q3|G(q3) = E[4ω + q3 − 20] ≤ 0},
Q4 = {q4|G(q4) = E[2ω + q3 − 16] ≤ 0},
Q5 = {q5|G(q5) = E[3ω + q5 − 12] ≤ 0},
Q6 = {q6|G(q6) = E[ω + q6 − 10] ≤ 0},
Q7 = {q7|G(q7) = E[5ω + q7 − 9] ≤ 0},
Q8 = {q8|G(q8) = E[3ω + q8 − 14] ≤ 0}.

We choose the initial vectors as the zero vector and the number of samples
N = 50, 103, 104, 105, and the numerical results by Algorithm 1 are listed in Table 2.

Table 2. Numerical results by Algorithm 1.

N CPU RES (q1, q2, q3, q4, q5, q6, q7, q8)

50 3 7.7989× 10−13 (8.8890, 13.8890, 16.8890, 14.8890, 7.8890, 4.8890, 5.8890, 10.8890)

1000 3 6.8438× 10−13 (8.8886, 13.8886, 16.8886, 14.8886, 7.8886, 4.8886, 5.8886, 10.8886)

10,000 3 6.8038× 10−13 (8.8881, 13.8881, 16.8881, 14.8881, 7.8881, 4.8881, 5.8881, 10.8881)

100,000 3 6.7784× 10−13 (8.8875, 13.8875, 16.8875, 14.8875, 7.8875, 4.8875, 5.8875, 10.8875)

Example 2. [10] Consider the stochastic traffic equilibrium problems (STEP), utilize the EV model,
and convert STEP into{

E[ΓT F− D(ω)] = 0,

F ≥ 0,E[C(F, ω)− Γu] ≥ 0, FTE[C(F, ω)− Γu] = 0,

where ω is a random variable.

In Step (9), u and F, respectively, indicate the shortest travel cost vector and the route
flow vector, Γ = [1 1 1 1 1 1]T is the origin-destination (OD) pair-route incidence matrix
and K is the link-route incidence matrix. C(F, ω) is the travel cost function for route

C(F, ω) = KT(H(ω) · K · F + k(ω)),

where k(ω) is the free travel cost,

k(ω) = [50, 30, 40, 40 + 60ω, 30, 50, 20, 60, 40 + 40ω, 70]T .
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H(ω) is expressed as

H(ω) =



22 0 2 2 4 1 2 0 4 5
0 15 0 0 1 2 0 3 5 3
2 0 14 0 2 0 1 3 2 3
2 0 0 16 + 50ω 0 2 3 1 2 4
4 1 2 0 12 0 2 2 0 0
1 2 0 2 0 10 0 0 1 2
2 0 1 3 2 0 11 0 0 0
0 3 3 1 2 0 0 14 0 1
4 5 2 2 0 1 0 0 16 + 50ω 0
5 3 3 4 0 2 0 1 0 20


.

Hence, we have

ΦN(u, z) =

ΓT((z2 + e−c)
1
2 + z)− DN = 0,

(MN − I)(z2 + e−c)
1
2 + (MN + I)z + KT · k(ω)− Γu = 0.

Here, MN = KT · H(ω) · K, DN = 1
N

N
∑

i=1
D(ωi). In addition, Jacobi matrix

VN =

[
0 ΓT · B + ΓT

−Γ (MN − I) · B + (MN + I)

]
,

where B = diag( z1√
z2

1+e−c
, z2√

z2
2+e−c

, ..., z6√
z2

6+e−c
). We can easily verify that VN = ∇(u,z)

ΦN(u, z) is nonsingular.
In Example 2, we choose as initial vectors the zero vector and the number of sam-

ples N = 50, 100, 200, 500; then, we solve the numerical results in the two cases of
D(ω) = 200− 200ω and D(ω) = 200.

According to the numerical results in Tables 3–6, it can be seen that our algorithm is
better than the semi-smooth Newton method based on the FB function in IT, CPU and RES.

Table 3. Numerical results by Algorithm 1 and Algorithm 2 (D(ω) = 200− 200ω).

N Algorithm IT CPU RES (FN , uN)

50 1 4 0.0030 1.3877× 10−11 (13.5099, 11.9378, 2.1923, 5.5175, 0.0000, 70.0828, 4.5086× 103)

50 2 51 0.0181 4.7262× 10−11 (13.6261, 11.9834, 2.1906, 5.5743, 0.0000, 70.3681, 4.5281× 103)

100 1 4 0.0041 1.4361× 10−11 (13.5270, 11.9359, 2.1864, 5.5251, 0.0000, 70.0764, 4.5085× 103)

100 2 50 0.0086 3.7474× 10−11 (13.4430, 11.9049, 2.1892, 5.4842, 0.0000, 69.8821, 4.4951× 103)

200 1 4 0.0024 1.3955× 10−11 (12.4513, 11.4676, 2.1734, 4.9954, 0.0000, 67.1802, 4.3118× 103)

200 2 50 0.0106 4.7450× 10−11 (12.4352, 11.4581, 2.1715, 4.9872, 0.0000, 67.1225, 4.3079× 103)

500 1 4 0.00289 1.4174× 10−11 (12.3707, 11.4307, 2.1713, 4.9555, 0.0000, 66.9530, 4.2964× 103)

500 2 50 0.0144 5.3082× 10−11 (12.3306, 11.4116, 2.1697, 4.9356, 0.0000, 66.8356, 4.2885× 103)
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Table 4. Numerical results by Algorithm 1 and Algorithm 2 (D(ω) = 200).

N Algorithm IT CPU RES (FN , uN)

50 1 5 0.0032 3.032× 10−11 (25.8763, 22.0867, 6.3194, 11.7501, 0.0000, 1.339× 102, 8.612× 103)
50 2 50 0.0375 6.812× 10−11 (25.6015, 22.1066, 6.4554, 11.6114, 0.0000, 1.342× 102, 8.622× 103)
100 1 5 0.0015 2.536× 10−11 (25.5377, 22.1211, 6.4793, 11.5848, 0.0000, 1.342× 102, 8.624× 103)
100 2 50 0.0108 6.955× 10−11 (25.5332, 22.1223, 6.4808, 11.5830, 0.0000, 1.342× 102, 8.629× 103)
200 1 5 0.0023 1.395× 10−11 (26.0126, 22.0732, 6.2548, 11.8168, 0.0000, 1.338× 102, 8.615× 103)
200 2 50 0.0237 7.986× 10−11 (26.0081, 22.0744, 6.2563, 11.8150, 0.0000, 1.338× 102, 8.623× 103)
500 1 5 0.0023 3.053× 10−11 (26.1042, 22.0639, 6.2116, 11.8614, 0.0000, 1.3378× 102, 8.616× 103)
500 2 50 0.0245 8.300× 10−11 (26.1209, 22.0624, 6.2036, 11.8697, 0.0000, 1.337× 102, 8.624× 103)

Table 5. Numerical results by Algorithm 1 (D(ω) = 200− 200ω).

N Flow of each link (a, b, c, d, e, f, g, h, i, j)

50 (27.6145, 75.5348, 14.1171, 13.4974, 5.5109, 17.4387, 70.0238, 2.1894, 30.9361, 72.2131)
100 (27.6493, 75.6015, 14.1223, 13.5270, 5.5251, 17.4610, 70.0764, 2.1864, 30.9880, 72.2628)
200 (26.0923, 72.1756, 13.6410, 12.4513, 4.9954, 16.4630, 67.1802, 2.1734, 28.9143, 69.3536)
500 (26.4158, 72.9016, 13.7488, 12.6670, 5.1021, 16.6704, 67.7995, 2.1805, 29.3374, 69.9812)

Table 6. Numerical results by Algorithm 1 (D(ω) = 200).

N Flow of each link (a, b, c, d, e, f, g, h, i, j)

50 (54.1288, 145.8741, 28.6129, 25.5159, 11.5741, 33.6971, 134.3231, 6.4898, 59.2137, 140.7898)
100 (54.1381, 145.8648, 28.6004, 25.5377, 11.5848, 33.7059, 134.2854, 6.4793, 59.2436, 140.7593)
200 (54.1349, 145.8612, 28.6053, 25.5296, 11.5812, 33.7038, 134.2894, 6.4827, 59.2334, 140.7627)
500 (54.1442, 145.8519, 28.5936, 25.5514, 11.5919, 33.7128, 134.2647, 6.4721, 59.2638, 140.7321)

5. Conclusions

In this paper, we propose a class of smoothing modulus-based iterative methods for
solving the stochastic mixed complementarity problems, and we analyze the convergence of
the algorithm. We document the performance of the method on two benchmark examples
and empirically confirm our theoretical claims about convergence.
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