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Abstract: We consider autonomous holonomic dynamical systems defined by equations of the form
q̈a = −Γa

bc(q)q̇
b q̇c −Qa(q), where Γa

bc(q) are the coefficients of a symmetric (possibly non-metrical)
connection and −Qa(q) are the generalized forces. We prove a theorem which for these systems
determines autonomous and time-dependent first integrals (FIs) of any order in a systematic way,
using the ’symmetries’ of the geometry defined by the dynamical equations. We demonstrate the
application of the theorem to compute linear, quadratic, and cubic FIs of various Riemannian and
non-Riemannian dynamical systems.

Keywords: integrability; non-Riemannian autonomous system; higher order first integral; symmetric
connection; generalized Killing tensor

1. Introduction

A first integral (FI) of a second-order set of dynamical equations with generalized
coordinates qa and generalized velocities q̇a ≡ dqa

dt is a function I(t, qa, q̇a) satisfying the
condition dI

dt = 0 along the dynamical equations. FIs are important because they can be
used in order to reduce the order of the dynamical equations, and if they are ’enough’ in
number [1], to find the solution of the system by quadrature (Liouville integrability).

The standard method to compute the FIs of Lagrangian systems is Noether’s theorem.
A different method is the direct method, which requires only the dynamical equations
and was originally introduced by Whittaker [2–7]. In the latter method, one assumes a
functional form for the FI I (e.g., a polynomial form in q̇a) and demands the condition
dI
dt = 0. Using the dynamical equations to remove the terms q̈a whenever they appear,
the FI condition leads to a system of partial differential equations (PDEs), whose solution
provides the FIs.

In this work, we apply the direct method to autonomous holonomic dynamical systems
in a space with a symmetric connection Γa

bc(q) (not necessarily Riemannian) which is
read from the dynamical equations. We computed the resulting system of PDEs and
solved it in terms of the ’symmetries’ of Γa

bc(q). The result is stated as Theorem 1 and
provides a systematic method to determine polynomial FIs in velocities of any order, time-
dependent and autonomous, for dynamical systems of this type. In the special case that the
symmetric connection Γa

bc(q) is the Riemannian connection defined by the kinetic metric
(kinetic energy) γab(q) of the system, the computed FIs are directly related by means of
the inverse Noether theorem [8,9] to gauge generalized (i.e., velocity-dependent) weak
Noether symmetries. Finally, we apply Theorem 1 in order to find new integrable and
superintegrable systems which admit linear (LFIs), quadratic (QFIs), and cubic FIs (CFIs).
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The structure of the paper is as follows. In Section 2, using the direct method, we
derived the system of PDEs that must be satisfied by the coefficients of an mth-order FI of
an autonomous (in general non-Riemannian) dynamical system. In Section 3, the ’solution’
of the system of PDEs is stated as Theorem 1 (the proof of Theorem 1 is given in the
Appendix A). In Section 4, we apply Theorem 1 for m = 1 in order to consider the LFIs. It
is shown that there are three independent types of LFIs, and we determine their explicit
formulae. In Section 5, we apply Theorem 1 for m > 1, and we found that there are three
independent types of higher order FIs. In section 6, we discuss these independent FIs and
provide a procedure by which symmetries of order smaller than the order of the FI can
be removed. Using this procedure, we removed these lesser symmetries, and we found
the complete forms of the FIs for an even order m = 2ν and an odd order m = 2ν + 1. The
results are collected in Propositions 5–7. In Section 7, we found a family of two-dimensional
(2d) non-Riemannian autonomous dynamical systems, and by applying Theorem 1, we
determined the LFIs. In Sections 8–10, we provide further applications of Theorem 1 for
QFIs and CFIs, by extending existing results in the literature. Finally, in Section 11, we
draw our conclusions.

2. The Conditions for mth-Order FIs

We consider general (i.e., Riemannian and non-Riemannian) autonomous dynamical
systems of the form

q̈a = −Γa
bc(q)q̇

b q̇c −Qa(q) (1)

where qa with a = 1, 2, . . . , D are the generalized coordinates of the configuration space
of the system, D is the dimension of the configuration space, a dot over a letter indicates
derivation with respect to (wrt) the parameter t (time) along the trajectory qa(t), Einstein’s
summation convention is applied, Γa

bc(q) are the coefficients of a general connection, and
−Qa(q) are the generalized forces. Since only the symmetric part Γa

(bc) contributes to the
dynamical equations—without loss of generality—the quantities Γa

bc(q) are assumed to
be symmetric.

We look for mth-order FIs of the general form:

I(m) =
m

∑
r=0

Mi1i2 ...ir (t, q)q̇i1 q̇i2 . . . q̇ir = M + Mi1 q̇i1 + Mi1i2 q̇i1 q̇i2 + · · ·+ Mi1i2 ...im q̇i1 q̇i2 . . . q̇im (2)

where Mi1 ...ir (t, q) with r = 0, 1, . . . , m are totally symmetric r-rank tensors, and the index
m ≥ 1 denotes the order of the FI. We note that when r = 0, the quantities Mi1 ...ir (t, q)
reduce to the scalar M(t, q). For m = 1, we have the LFIs; for m = 2, the QFIs; and for
m = 3, the CFIs.

The FI condition
dI(m)

dt
= 0 (3)

along the dynamical Equation (1) results in the following system of PDEs:

Mi1i2 ...ir ,t + M(i1i2 ...ir−1|ir) − (r + 1)Mi1i2 ...ir ir+1 Qir+1 = 0, r = 0, 1, 2, . . . , m, m + 1 (4)

which is expanded as follows:

M(i1i2 ...im |im+1) = 0 (5)

Mi1i2 ...im ,t + M(i1i2 ...im−1|im) = 0 (6)

Mi1i2 ...ir ,t + M(i1i2 ...ir−1|ir) − (r + 1)Mi1i2 ...ir ir+1 Qir+1 = 0, r = 1, 2, . . . , m− 1, m > 1 (7)

M,t −Mi1 Qi1 = 0. (8)

The symbol | denotes the covariant derivative wrt the symmetric connection Γa
bc, a comma

indicates partial derivative wrt qa or t, round/square brackets indicate symmetrization/



Symmetry 2023, 15, 222 3 of 22

antisymmetrization of the enclosed indices, and indices enclosed between wavy lines are
overlooked by symmetrization or antisymmetrization symbols.

We note that Equation (5) is derived from (4) for r = m + 1; Equation (6) from (4) for
r = m; and Equation (8) from (4) for r = 0.

Concerning the notation, we remark that:

Mi1 ...ir−k (r = 0) =

{
M, k = 0
0, k ≥ 1

, Mi1 ...ir (r > m) = 0.

Equations (5) and (6) are purely geometric equations, which are common to all systems
of the form (1) that share the same symmetric connection. In particular, Equation (5)
generalizes the concept of killing tensors (KTs) to a non-metrical geometry with a symmetric
connection Γa

bc. In this context, Mi1i2 ...im is a generalized mth-order KT for Γa
bc.

Equations (7) and (8) are of a dynamical character, because they relate the geometric
elements with the generalized forces Qa of the specific dynamical system.

Since the dynamical system (1) is autonomous, we should use the polynomial method
described in [10] in order to solve the system of PDEs (5)–(8). According to this method,
one assumes general polynomial expressions in the variable t for the tensor quantities
Mi1 ...ir (t, q) with r = 1, 2, . . . , m (see Equation (A1) in the Appendix A) and replaces these
expressions in the system of PDEs (5)–(8). Then, the scalar M(t, q) is determined exactly, and
the remaining PDEs reduce to polynomial equations in t, whose coefficients are functions
of qa. The ’solution’ of the latter system of PDEs is stated below as Theorem 1. A detailed
proof is given in the Appendix A.

3. Theorem for mth-Order FIs of a General Autonomous Dynamical System

Theorem 1. There are two types of mth-order FIs for the autonomous (in general non-Riemannian)
dynamical system (1). These are the following:

Integral 1.

I(m)
n =

m

∑
r=1

(
n

∑
N=0

L(N)i1 ...ir tN

)
q̇i1 . . . q̇ir + s0

tn+1

n + 1
+

n>0

∑
N=1

L(N−1)cQc tN

N
+ G(q) (9)

where m ≥ 1, n ≥ 0, L(N)i1 ...im(q) with N = 0, 1, . . . , n are mth-order generalized KTs
satisfying the condition

L(k)i1 ...im = −1
k

L(k−1)(i1 ...im−1|im), k = 1, 2, . . . , n, n > 0, m > 1, (10)

the totally symmetric tensor L(n)i1 ...im−1
(q) with m > 1 is an (m−1)th-order generalized KT; the

constant s0 is defined by the condition

L(n)aQa = s0 (11)

and the function G(q) and the totally symmetric tensors L(N)i1 ...ir (q) satisfy the conditions:

G,i1 = 2L(0)i1i2(m > 1)Qi2 − L(1)i1(n > 0) (12)(
L(k−1)cQc

)
,i1

= 2kL(k)i1i2(m > 1)Qi2 − k(k + 1)L(k+1)i1(k < n),

k = 1, 2, . . . , n, n > 0 (13)

L(k)(i1 ...ir−1|ir) = (r + 1)L(k)i1 ...ir ir+1
Qir+1 − (k + 1)L(k+1)i1 ...ir (k < n),

k = 0, 1, . . . , n, r = 2, 3, . . . , m− 1, m > 2. (14)
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Integral 2.

I(m)
e =

eλt

λ

(
λ

m

∑
r=1

Li1 ...ir q̇i1 . . . q̇ir + LcQc

)
(15)

where λ 6= 0, Li1 ...im(q) is an mth-order generalized KT satisfying the condition

Li1 ...im = − 1
λ

L(i1 ...im−1|im), m > 1 (16)

and the totally symmetric tensors Li1 ...ir (q) satisfy the conditions:

(LcQc),i1 = 2λLi1i2(m > 1)Qi2 − λ2Li1 (17)

L(i1 ...ir−1|ir) = (r + 1)Li1 ...ir ir+1 Qir+1 − λLi1 ...ir , r = 2, 3, . . . , m− 1, m > 2. (18)

Concerning the notation, the symbol I(m)
n means the mth-order FI (upper index) with

degree of time-dependence n (lower index), and I(m)
e indicates the mth-order FI with

exponential time-dependence (lower index).
Using mathematical induction, one also proves the following recursion formulae.

Proposition 1. The independent mth-order FIs I(m)
n and I(m)

e satisfy the following recursion formulae:

a. I(k)n < I(k+1)
n ; that is, each kth-order FI I(k)n is a subcase of the next (k + 1)th-order FI I(k+1)

n
with the same degree n of time-dependence for all integers k ≥ 1.
b. I(m)

` < I(m)
`+1; that is, the mth-order FI I(m)

` with time-dependence fixed by ` is a subcase of the

mth-order FI I(m)
`+1 with time-dependence `+ 1 for all integers ` ≥ 0.

c. I(k)e < I(k+1)
e ; that is, each kth-order FI I(k)e is a subcase of the next (k + 1)th-order FI I(k+1)

e for
all integers k ≥ 1.

We note that Theorem 1 is true for m = 2 (QFIs), and a Riemannian connection reduces
to Theorem 3 of [9].

In the case of a Riemannian connection, by means of the inverse Noether theorem [8,9],
the general mth-order FIs (2) are related to the generalized gauged weak Noether symmetry:(

ξ = 0, ηi1 = −∂I(m)

∂q̇i1
, φa, f = I(m) − ∂I(m)

∂q̇i1
q̇i1

)
such that φa q̇a + Fa ∂I(m)

∂q̇a = 0 (19)

where Fa(t, q, q̇) are the non-conservative generalized forces, φa(t, q, q̇) is an additional
vector generator, f (t, q, q̇) is the Noether function, X = ξ(t, q, q̇)∂t + ηa(t, q, q̇)∂qa is the Lie
generator, and the quantity

∂I(m)

∂q̇i1
= Mi1 + 2Mi1i2 q̇i2 + 3Mi1i2i3 q̇i2 q̇i3 + · · ·+ mMi1i2 ...im q̇i2 . . . q̇im

=
m−1

∑
r=0

(r + 1)Mi1i2 ...ir+1 q̇i2 . . . q̇ir+1 .

4. FIs of Order m = 1: LFIs

Applying Theorem 1 for m = 1 (LFIs), we found the following proposition for the
LFIs.

Proposition 2. There are two types of LFIs for the autonomous (in general non-Riemannian)
dynamical system (1) which are the following:
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LFI 1.

I(1)n =
n

∑
N=0

L(N)atN q̇a + s0
tn+1

n + 1
+

n>0

∑
N=1

L(N−1)aQa tN

N
+ G(q) (20)

where n ≥ 0, G(q) is an arbitrary smooth function, and L(N)a(q) with N = 0, 1, . . . , n are
generalized KVs satisfying the conditions:

L(1)a(n > 0) = −G,a. (21)(
L(k−1)bQb

)
,a

= −k(k + 1)L(k+1)a(k < n), k = 1, 2, . . . , n, n > 0, (22)

and the constant s0 is defined by the condition

L(n)aQa = s0. (23)

LFI 2.

I(1)e =
eλt

λ
(λLa q̇a + LaQa) (24)

where λ 6= 0 and La(q) is a generalized KV satisfying the condition(
LbQb

)
,a
= −λ2La. (25)

The LFI (20) consists of two independent LFIs: (a) a LFI for the even vectors L(2N)a,
and (b) another one for the odd vectors L(2N+1)a and the scalar G(q). This results directly
from the fact that condition (21) involves only the odd vector L(1)a and the scalar G(q), and
conditions (22) are separated in two sets – one set involving only the even vectors L(2N)a
(i.e., for the odd values k = 1, 3, 5, . . . ), and another one involving only the odd vectors
L(2N+1)a (i.e., for the even values k = 2, 4, 6, . . . ). We note that the above holds for either
an odd or an even time-dependence, n. In the following proposition, we give the explicit
formulae of these two independent LFIs.

Proposition 3. The LFI I(1)n given in (20) consists of the following two independent LFIs:

LFI 1.1.

I(1,1)
` =

`

∑
N=1

t2N−1L(2N−1)a q̇a + s1
t2`

2`
+

`−1≥1

∑
N=1

L(2N−1)aQa t2N

2N
+ G(q) (26)

where ` > 0, L(2N−1)a(q) with N = 1, 2, . . . , ` are generalized KVs satisfying the condition(
L(2k−1)bQb

)
,a
= −2k(2k + 1)L(2k+1)a, k = 1, 2, . . . , `− 1, ` > 1, (27)

G(q) is an arbitrary smooth function such that L(1)a = −G,a is a gradient generalized KV, and
the constant s1 is defined by the condition

s1 = L(2`−1)aQa. (28)

LFI 1.2.

I(1,2)
` =

`

∑
N=0

t2N L(2N)a q̇a + s0
t2`+1

2`+ 1
+

`−1≥0

∑
N=0

L(2N)aQa t2N+1

2N + 1
(29)

where ` ≥ 0, L(2N)a(q) with N = 0, 1, . . . , ` are generalized KVs satisfying the condition(
L(2k)bQb

)
,a
= −2(2k + 1)(k + 1)L(2k+2)a, k = 0, 1, . . . , `− 1, ` > 0, (30)
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and the constant s0 is defined by the condition

L(2`)aQa = s0. (31)

Therefore, the general autonomous dynamical system (1) admits three independent LFIs, which
are given by the formulae (24), (26), and (29).

The notation I(1,α)
` , where α = 1, 2, indicates one of the two types of independent LFIs

of the type I(1)n with time-dependence fixed by the lower index `.
We note that condition (27) is derived from (22) for the even values k = 2, 4, 6, . . . , 2` if

we set n = 2` and rename the index k as 2k; condition (30) is derived from (22) for the odd
values k = 1, 3, 5, . . . , 2`− 1 if we set n = 2` and rename the index k as 2k + 1.

5. FIs of Order m > 1

By applying Theorem 1 for m > 1, we found the following proposition.

Proposition 4. There are two types of mth-order FIs with m > 1 for the autonomous (in general,
non-Riemannian) dynamical system (1), which are the following:

Integral 1.

I(m>1)
n =

m

∑
r=1

(
n

∑
N=0

L(N)i1 ...ir tN

)
q̇i1 . . . q̇ir + s0

tn+1

n + 1
+

n>0

∑
N=1

L(N−1)cQc tN

N
+ G(q) (32)

where m > 1, n ≥ 0, L(N)i1 ...im(q) with N = 0, 1, . . . , n are mth-order generalized KTs
satisfying the condition

L(k)i1 ...im = −1
k

L(k−1)(i1 ...im−1|im), k = 1, 2, . . . , n, n > 0, (33)

the totally symmetric tensor L(n)i1 ...im−1
(q) is an (m−1)th-order generalized KT; the constant s0

is defined by the condition
L(n)aQa = s0 (34)

and the function G(q) and the remaining totally symmetric tensors L(N)i1 ...ir (q) satisfy the condi-
tions:

G,i1 = 2L(0)i1i2 Qi2 − L(1)i1(n > 0) (35)(
L(k−1)cQc

)
,i1

= 2kL(k)i1i2 Qi2 − k(k + 1)L(k+1)i1(k < n), k = 1, 2, . . . , n, n > 0(36)

L(k)(i1 ...ir−1|ir) = (r + 1)L(k)i1 ...ir ir+1
Qir+1 − (k + 1)L(k+1)i1 ...ir (k < n),

k = 0, 1, . . . , n, r = 2, 3, . . . , m− 1, m > 2. (37)

Integral 2.

I(m>1)
e =

eλt

λ

(
λ

m

∑
r=1

Li1 ...ir q̇i1 . . . q̇ir + LcQc

)
(38)

where λ 6= 0 and Li1 ...im(q) is an mth-order generalized KT satisfying the condition

Li1 ...im = − 1
λ

L(i1 ...im−1|im) (39)
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and the remaining totally symmetric tensors Li1 ...ir (q) with r = 1, 2, . . . , m− 1 satisfy the condi-
tions:

(LcQc),i1 = 2λLi1i2 Qi2 − λ2Li1 (40)

L(i1 ...ir−1|ir) = (r + 1)Li1 ...ir ir+1 Qir+1 − λLi1 ...ir , r = 2, 3, . . . , m− 1, m > 2. (41)

From Proposition 4, we observe that the conditions (33)–(37) of the mth-order FI (32)
are divided in two classes, according to if the tensor quantities L(N)i1 ...ir (q) are of even or
odd order, and the associated index N is even or odd. Therefore, the FI (32) consists of two
independent FIs:

(a) One FI, say I(m,1)
` , which contains tensor quantities L(2N−1)i1 ...ir (q) of odd order

and L(2N)i1 ...ir (q) of even order.

(b) Another FI, say I(m,2)
` , which contains tensor quantities L(2N−1)i1 ...ir (q) of even

order and L(2N)i1 ...ir (q) of odd order.
We note that the order r of the involved totally symmetric tensors L(N)i1 ...ir (q) takes

values from 1 to m > 1, where m is the order of the considered FI (32).
The independent FIs I(m,1)

` and I(m,2)
` are given by the following explicit formulae:

a.

I(m>1,1)
` =

m

∑
r=1,odd

`>0

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +
m

∑
r=1,even

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +

+
`>0

∑
N=1

L(2N−1)cQc t2N

2N
+ G(q) (42)

where the time-dependence ` ≥ 0 and the involved quantities satisfy the conditions:

G,i1 = 2L(0)i1i2 Qi2 − L(1)i1 (` > 0) (43)(
L(2N−1)cQc

)
,i1

= 4NL(2N)i1i2 Qi2 − 2N(2N + 1)L(2N+1)i1 (N < `), N = 1, 2, . . . , `, ` > 0(44)

L(2N−1)(i1 ...ir−1 |ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir ,

N = 1, 2, . . . , `, r = 2, 4, 6, . . . , ` > 0 (45)

L(2N)(i1 ...ir−1 |ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir (N < `),

N = 0, 1, . . . , `, r = 3, 5, 7, . . . . (46)

In conditions (45) and (46), it holds that r ≤ m− 1, where m > 2.
b.

I(m>1,2)
` =

m

∑
r=1,odd

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +
m

∑
r=1,even

`>0

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +

+s0
t2`+1

2`+ 1
+

`−1≥0

∑
N=0

L(2N)cQc t2N+1

2N + 1
(47)

where the time-dependence ` ≥ 0 and the involved quantities satisfy the conditions:

L(2`)aQa = s0 (48)(
L(2N−2)cQc

)
,i1

= 2(2N − 1)L(2N−1)i1i2 Qi2 − 2N(2N − 1)L(2N)i1 , N = 1, 2, . . . , `, ` > 0(49)

L(2N)(i1 ...ir−1 |ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir (N < `),

N = 0, 1, . . . , `, r = 2, 4, 6, . . . , (50)

L(2N−1)(i1 ...ir−1 |ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir ,

N = 1, 2, . . . , `, r = 3, 5, 7, . . . , ` > 0. (51)
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In conditions (50) and (51), it holds that r ≤ m− 1 where m > 2.
For the FIs (42) and (47), we have also that L(2`)i1 ...im−1

(q) is an (m−1)th-order gen-
eralized KT, and L(N)i1 ...im(q) with N = 0, 1, . . . , 2` are mth-order generalized KTs such
that:

L(2N)i1 ...im = − 1
2N

L(2N−1)(i1 ...im−1|im), N = 1, 2, . . . , `, ` > 0 (52)

L(2N−1)i1 ...im = − 1
2N − 1

L(2N−2)(i1 ...im−1|im), N = 1, 2, . . . , `, ` > 0. (53)

We note that the sum ∑m
r=1,odd is over the odd values of r, and the sum ∑m

r=1,even is
over the even values of r.

6. How to Remove the (m − 1)th-Order Geometric Symmetries from the Two

Independent FIs I(m>1,1)
` and I(m>1,2)

` : The Complete Forms

As we have seen, the two independent FIs (42) and (47) include geometric symmetries
of order smaller from the order m > 1 of the FIs. These symmetries are described by the
(m− 1)th-order generalized KT L(2`)i1 ...im−1

(q). We observe that if m = 2ν (even) where
ν > 0, the considered (m− 1)th-order generalized KT appears in the FI (47); and in the case
that m = 2ν + 1 (odd), appears in the FI (42). Moreover, for an even order m, the condition
(52) accompanies the FI (42) and the condition (53) accompanies the FI (47); and for an odd
order m, the condition (52) accompanies the FI (47) and the condition (53) accompanies the
FI (42).

The (m− 1)th-order generalized KT L(2`)i1 ...im−1
(q) can be removed from expressions

(42) and (47) by applying the following procedure:

(1) For an even order m = 2ν, where ν > 0.
In this case, the (2ν− 1)th-order generalized KT L(2`)i1 ...i2ν−1

(q) appears in the inde-
pendent FI (47). We can remove this (2ν− 1)th-order symmetry by introducing a sequence
of an even rank totally symmetric tensors of a higher time-dependence; that is, we add in
the FI (47) terms of the form

t2`+1L(2`+1)i1 ...ir q̇i1 . . . q̇ir , r = 2, 4, . . . , 2ν, ν > 0 (54)

such that L(2`+1)i1 ...i2ν
is a (2ν)th-order generalized KT given by the relation

L(2`+1)i1 ...i2ν
= − 1

2`+ 1
L(2`)(i1 ...i2ν−1|i2ν)

. (55)

Then, the condition (48) must be generalized as(
L(2`)cQc

)
,i1

= 2(2`+ 1)L(2`+1)i1i2 Qi2 ; (56)

from the condition (50), the restriction N < ` must be removed because now quantities of
the form L(2N+1)i1 ...ir do exist for N = `; and we must add the condition

L(2`+1)(i1 ...ir−1|ir) = (r + 1)L(2`+1)i1 ...ir ir+1
Qir+1 , r = 3, 5, 7, . . . , 2ν− 1 ν > 1. (57)

Observe that the condition (55) removes the original (2ν− 1)th-order symmetry by
allowing the (2ν − 1)th-order generalized KT L(2`)i1 ...i2ν−1

(q) to be a totally symmetric
tensor of the same rank, which is not necessarily a KT. Then, the case of the generalized KT
is derived as a subcase. This shows that symmetries of an order lesser than the order of the
FI can always be absorbed in a higher-order term.

(2) For an odd order m = 2ν + 1, where ν > 0.
In this case, the (2ν)th-order generalized KT L(2`)i1 ...i2ν

(q) appears in the independent
FI (42). We can remove this (2ν)th-order symmetry by introducing a sequence of an odd
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rank totally symmetric tensors of a higher time-dependence; that is, we add in the FI (42)
the sum

2ν+1

∑
r=1,odd

t2`+1L(2`+1)i1 ...ir q̇i1 . . . q̇ir + s1
t2`+2

2`+ 2
(58)

such that L(2`+1)i1 ...i2ν+1
is a (2ν + 1)th-order generalized KT given by the relation

L(2`+1)i1 ...i2ν+1
= − 1

2`+ 1
L(2`)(i1 ...i2ν |i2ν+1)

(59)

and the constant s1 is defined by the relation

L(2`+1)cQc = s1. (60)

Then, from conditions (44) and (46), the restriction N < ` must be removed because
now quantities of the form L(2N+1)i1 ...ir do exist for N = `; and we must add the condition

L(2`+1)(i1 ...ir−1|ir) = (r + 1)L(2`+1)i1 ...ir ir+1
Qir+1 , r = 2, 4, 6, . . . , 2ν. (61)

Observe that the condition (59) removes the original (2ν)th-order symmetry defined
by allowing the (2ν)th-order generalized KT L(2`)i1 ...i2ν

(q) to be a totally symmetric tensor
of the same rank, which is not necessarily a KT. Then, the case of the generalized KT is
derived as a subcase. This shows that symmetries of an order lesser than the order of the FI
can always be absorbed into a higher-order term.

We collected the above results in the following propositions.

Proposition 5. For an even order m = 2ν, where ν > 0, the complete forms (i.e., expressions
without geometric symmetries of order less than m) of the independent FIs (42) and (47) are the
following:

Integral 1.1.

J(2ν,1)
` =

2ν

∑
r=1,odd

`>0

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +
2ν

∑
r=1,even

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +

+
`>0

∑
N=1

L(2N−1)cQc t2N

2N
+ G(q) (62)

where ` ≥ 0, L(2N)i1 ...i2ν
(q) with N = 0, 1, . . . , ` are (2ν)th-order generalized KTs given by the

relation
L(2N)i1 ...i2ν

= − 1
2N

L(2N−1)(i1 ...i2ν−1|i2ν)
, N = 1, 2, . . . , `, ` > 0 (63)

and the involved quantities satisfy the conditions:

G,i1 = 2L(0)i1i2 Qi2 − L(1)i1 (` > 0) (64)(
L(2N−1)cQc

)
,i1

= 4NL(2N)i1i2 Qi2 − 2N(2N + 1)L(2N+1)i1 (N < `), N = 1, 2, . . . , `, ` > 0(65)

L(2N−1)(i1 ...ir−1 |ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir ,

N = 1, 2, . . . , `, r = 2, 4, 6, . . . , 2ν− 2, ` > 0, ν > 1 (66)

L(2N)(i1 ...ir−1 |ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir (N < `),

N = 0, 1, . . . , `, r = 3, 5, 7, . . . , 2ν− 1, ν > 1. (67)
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Integral 1.2.

J(2ν,2)
` =

2ν

∑
r=1,odd

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +
2ν

∑
r=1,even

`+1

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +

+s0
t2`+1

2`+ 1
+

`−1≥0

∑
N=0

L(2N)cQc t2N+1

2N + 1
(68)

where ` ≥ 0, L(2N−1)i1 ...i2ν
(q) with N = 1, 2, . . . , `+ 1 are (2ν)th-order generalized KTs given

by the relation

L(2N−1)i1 ...i2ν
= − 1

2N − 1
L(2N−2)(i1 ...i2ν−1|i2ν)

, N = 1, 2, . . . , `+ 1 (69)

and the involved quantities satisfy the conditions:(
L(2N−2)cQc

)
,i1

= 2(2N − 1)L(2N−1)i1i2 Qi2 − 2N(2N − 1)L(2N)i1(N < `+ 1),

N = 1, 2, . . . , `+ 1 (70)

L(2N)(i1 ...ir−1|ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir ,

N = 0, 1, . . . , `, r = 2, 4, 6, . . . , 2ν− 2, ν > 1 (71)

L(2N−1)(i1 ...ir−1|ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir (N < `+ 1),

N = 1, 2, . . . , `+ 1, r = 3, 5, 7, . . . , 2ν− 1, ν > 1. (72)

Proposition 6. For an odd order m = 2ν + 1, where ν > 0, the complete forms (i.e., expressions
without geometric symmetries of order less than m) of the independent FIs (42) and (47) are
the following:

Integral 1.1.

J(2ν+1,1)
` =

2ν+1

∑
r=1,odd

`+1

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +
2ν+1

∑
r=1,even

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +

+s1
t2`+2

2`+ 2
+

`>0

∑
N=1

L(2N−1)cQc t2N

2N
+ G(q) (73)

where ` ≥ 0, L(2N−1)i1 ...i2ν+1
(q) with N = 1, . . . , `+ 1 are (2ν + 1)th-order generalized KTs

given by the relation

L(2N−1)i1 ...i2ν+1
= − 1

2N − 1
L(2N−2)(i1 ...i2ν |i2ν+1)

, N = 1, 2, . . . , `+ 1 (74)

and s1 is a constant defined by the relation

L(2`+1)aQa = s1, (75)

and the involved quantities satisfy the conditions:

G,i1 = 2L(0)i1i2 Qi2 − L(1)i1 (` > 0) (76)(
L(2N−1)cQc

)
,i1

= 4NL(2N)i1i2 Qi2 − 2N(2N + 1)L(2N+1)i1 , N = 1, 2, . . . , `, ` > 0 (77)

L(2N−1)(i1 ...ir−1 |ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir (N < `+ 1),

N = 1, 2, . . . , `+ 1, r = 2, 4, 6, . . . , 2ν (78)

L(2N)(i1 ...ir−1 |ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir ,

N = 0, 1, . . . , `, r = 3, 5, 7, . . . , 2ν− 1, ν > 1. (79)



Symmetry 2023, 15, 222 11 of 22

Integral 1.2.

J(2ν+1,2)
` =

2ν+1

∑
r=1,odd

`

∑
N=0

t2N L(2N)i1 ...ir q̇i1 . . . q̇ir +
2ν+1

∑
r=1,even

`>0

∑
N=1

t2N−1L(2N−1)i1 ...ir q̇i1 . . . q̇ir +

+s0
t2`+1

2`+ 1
+

`−1≥0

∑
N=0

L(2N)cQc t2N+1

2N + 1
(80)

where ` ≥ 0, L(2N)i1 ...i2ν+1
(q) with N = 0, 1, . . . , ` are (2ν + 1)th-order generalized KTs given

by the relation

L(2N)i1 ...i2ν+1
= − 1

2N
L(2N−1)(i1 ...i2ν |i2ν+1)

, N = 1, 2, . . . , `, ` > 0 (81)

and the involved quantities satisfy the conditions:

L(2`)aQa = s0 (82)(
L(2N−2)cQc

)
,i1

= 2(2N − 1)L(2N−1)i1i2 Qi2 − 2N(2N − 1)L(2N)i1 , N = 1, 2, . . . , `, ` > 0 (83)

L(2N)(i1 ...ir−1 |ir) = (r + 1)L(2N)i1 ...ir ir+1
Qir+1 − (2N + 1)L(2N+1)i1 ...ir (N < `),

N = 0, 1, . . . , `, r = 2, 4, 6, . . . , 2ν (84)

L(2N−1)(i1 ...ir−1 |ir) = (r + 1)L(2N−1)i1 ...ir ir+1
Qir+1 − 2NL(2N)i1 ...ir ,

N = 1, 2, . . . , `, r = 3, 5, 7, . . . , 2ν− 1, ` > 0, ν > 1. (85)

Therefore, concerning the higher-order FIs of a general autonomous dynamical system,
we have the following general result.

Proposition 7. The autonomous (non-Riemannian in general) dynamical system (1) admits three
independent mth-order FIs—autonomous or time-dependent—with m > 0, which are given by the
following formulae:

i. For m = 1, we have the LFIs (24), (26) and (29).
ii. For m = 2ν with ν > 0, we have the FIs (38), (62) and (68).
iii. For m = 2ν + 1 with ν > 0, we have the FIs (38), (73) and (80).

In the following sections, we give applications of the above general results.

7. Application 1: A Family of 2d Non-Riemannian Autonomous Dynamical Systems

We consider two-dimensional (2d) autonomous dynamical systems of the form:

ẍ = −Q1(x, y)− Γ1
11(x, y)ẋ2 (86)

ÿ = −Q2(x, y)− Γ2
22(x, y)ẏ2 (87)

where qa = (x, y) are the generalized coordinates, Q1, Q2 are the components of the
generalized forces, and Γ1

11, Γ2
22 are the non-zero symmetric connection coefficients of the

system (all the other connection coefficients vanish).
We will find conditions for which the dynamical system (86)–(87) is non-Riemannian.

In that case, a kinetic metric (i.e., a regular Lagrangian or a kinetic energy) cannot be
defined, and standard methods (e.g., Noether’s theorem) for the determination of FIs
cannot be applied. Therefore, Theorem 1 is the only systematic method we have in order to
determine the FIs of the system (86)–(87).

7.1. Conditions for a Non-Riemannian Connection

It is well-known that the symmetric connection coefficients Γa
bc define a Riemannian

connection iff there exists a (kinetic) metric γab with zero metricity; that is, γab|c = 0. Then,
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Γa
bc =

1
2

γad(γbd,c + γcd,b − γbc,d).

Question: In which cases are the dynamical system (86)–(87) defined over a Rieman-
nian configuration space, or equivalently, when is the associated symmetric connection
Riemannian?

In order to answer this question, we assume that there exists a kinetic metric γab(x, y)
such that

γab|c = 0 =⇒ γab,c − γdbΓd
ac − γadΓd

bc = 0. (88)

Setting Γ1
11 ≡ f1(x, y) and Γ2

22 ≡ f2(x, y), condition (88) gives the following system of PDEs:{
γ11,x = 2γ11 f1, γ12,x = γ12 f1, γ22,x = 0 =⇒ γ22 = γ22(y)
γ22,y = 2γ22 f2, γ12,y = γ12 f2, γ11,y = 0 =⇒ γ11 = γ11(x)

=⇒

dγ11

dx
= 2γ11(x) f1 (89)

dγ22

dy
= 2γ22(y) f2 (90)

γ12,x = γ12(x, y) f1 (91)

γ12,y = γ12(x, y) f2. (92)

In order to have a well-defined metric γab (i.e., the inverse γab exists), it must also
hold that

det[γab] 6= 0 =⇒ γ11γ22 − γ2
12 6= 0. (93)

We consider the following cases:
(1) Case γ12 6= 0.
1.1. Subcase γ11 = γ22 = 0.
Conditions (89), (90), and (93) are satisfied identically.
The remaining conditions (91) and (92) give the Riemannian connection coefficients:

f1 =
F,x

F
, f2 =

F,y

F

where γ12 ≡ F(x, y).

The associated kinetic metric is γab = F(x, y)
(

0 1
1 0

)
. The constrained geodesics of

this metric has been discussed for various cases of the function F(x, y) in [11], and more
recently, in [12].

1.2. Subcase γ11 ≡ f (x) 6= 0 and γ22 = 0.
Conditions (90) and (93) are satisfied identically.
Condition (89) implies that f1 = f,x

2 f . By replacing f1 in (91), we find that

γ12 = h(y)
√

f (x), which when substituted into the remaining condition (92) gives f2 =
h,y
h .

The associated kinetic metric is γab =

(
f (x) h(y)

√
f

h(y)
√

f 0

)
.

1.3. Subcase γ22 ≡ h(y) 6= 0 and γ11 = 0.
Conditions (89) and (93) are satisfied identically.
Condition (90) implies that f2 =

h,y
2h . By replacing f2 in (92), we find that

γ12 = f (x)
√

h(y), which when replaced with the remaining condition (91) gives f1 = f,x
f .

The associated kinetic metric is γab =

(
0 f (x)

√
h

f (x)
√

h h(y)

)
.

1.4. Subcase γ11 ≡ f (x), γ22 ≡ h(y), and f (x)h(y) 6= 0.
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Conditions (89) and (90) imply that f1 = f,x
2 f and f2 =

h,y
2h , respectively. By replacing

f1, f2 in the remaining conditions (91) and (92), we found that γ12 = c0
√

f (x)h(y), where
c0 is an arbitrary non-zero constant.

The associated kinetic metric is γab =

(
f (x) c0

√
f h

c0
√

f h h(y)

)
.

From the condition (93), we found that c0 6= ±1.
(2) Case γ12 = 0.
Condition (93) implies that γ11γ22 6= 0.
We set γ11 ≡ f (x) and γ22 ≡ h(y).
Conditions (91) and (92) are satisfied identically.
The remaining conditions (89) and (90) give f1 = f,x

2 f and f2 =
h,y
2h , respectively.

The associated kinetic metric is γab =

(
f (x) 0

0 h(y)

)
.

We collected the above results in the following Proposition.

Proposition 8. Autonomous dynamical systems of the form (86)–(87) admit a Riemannian geome-
try (i.e., the quantities Γa

bc are Riemannian connection coefficients defined by a kinetic metric γab)
in the following cases:

(1) For Γ1
11 = F,x

F and Γ2
22 =

F,y
F , where F(x, y) is a non-zero arbitrary smooth function. The

associated kinetic metric is γab = F(x, y)
(

0 1
1 0

)
.

(2) For Γ1
11 = f,x

2 f and Γ2
22 =

hy
h , where f (x) and h(y) are non-zero arbitrary smooth functions.

Then, γab =

(
f (x) h(y)

√
f

h(y)
√

f 0

)
.

(3) For Γ1
11 = fx

f and Γ2
22 =

h,y
2h . Then, γab =

(
0 f (x)

√
h

f (x)
√

h h(y)

)
.

(4) For Γ1
11 = f,x

2 f and Γ2
22 =

h,y
2h . Then, γab =

(
f (x) c0

√
f h

c0
√

f h h(y)

)
where the (possibly zero)

constant c0 6= ±1.

From Proposition 8, we found the following proposition.

Proposition 9. The dynamical system (86)–(87) is non-Riemannian if the non-zero symmetric
connection coefficients Γ1

11(x, y) and Γ2
22(x, y) satisfy the condition

Γ1
11,y 6= Γ2

22,x. (94)

Proof. - Case (1) of Proposition 8 implies that Γ1
11 = (ln F),x and Γ2

22 = (ln F),y. Taking
the integrability condition (ln F),xy = (ln F),yx, we found Γ1

11,y = Γ2
22,x. Therefore, for a

non-Riemannian connection, the condition (94) is required.
- For the remaining cases (2)–(4) of Proposition 8, we observe that Γ1

11(x) and Γ2
22(y). This

implies that Γ1
11,y = Γ2

22,x = 0, which is a subcase of the condition Γ1
11,y = Γ2

22,x. Therefore,
for a non-Riemannian connection, we find again the condition (94).

7.2. LFIs for the Non-Riemannian Dynamical System (86)–(87)

We assume that the connection of the autonomous dynamical system (86)–(87) is
non-Riemannian; therefore, the condition (94) applies.

By applying Theorem 1 for m = 1 (LFIs) and n = 0 (zero degree of time-dependence),
we found for the considered dynamical system the autonomous LFI

I = L1(x, y)ẋ + L2(x, y)ẏ + s0t (95)
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where La(x, y) is a generalized KV of the connection Γa
bc(x, y) defined by the dynamical

Equations (86) and (87) and s0 is a constant defined by the condition

L1Q1 + L2Q2 = s0. (96)

The generalized KV condition L(a|b) = 0 implies the following system of PDEs:

L1,x − L1Γ1
11 = 0 (97)

L2,y − L2Γ2
22 = 0 (98)

L1,y + L2,x = 0. (99)

We have an overdetermined system of four PDEs (96)–(99), which has six unknown
functions, La(x, y), Qa(x, y), Γ1

11(x, y), Γ2
22(x, y), and one free parameter s0. Therefore, in

order to solve it, we should fix either the dynamics of the system (i.e., the generalized forces
Qa) or the non-Riemannian geometry of the system (i.e., the non-Riemannian connection
coefficients; it holds that Γ1

11,y 6= Γ2
22,x).

Two Linearly Coupled Harmonic Oscillators with a Non-Riemannian Quadratic
Damping Term

As a first application, we fixed the generalized forces Qa. We assume that

Qa =

(
kx− py
ky + px

)
(100)

where k, p are arbitrary non-zero constants.
For the choice (100), the dynamical system of (86) and (87) becomes:

ẍ = −kx + py− Γ1
11(x, y)ẋ2 (101)

ÿ = −ky− px− Γ2
22(x, y)ẏ2 (102)

which describes two linearly coupled harmonic oscillators with a non-Riemannian (i.e.,
Γ1

11,y 6= Γ2
22,x) quadratic damping term.

Replacing Qa from (100), Equation (96) gives

L1 = − ky + px
kx− py

L2 +
s0

kx− py
=

1
py− kx

[(ky + px)L2 − s0] (103)

which when substituted into (99) implies that

L2 = (py− kx)F1

(
p(y2 − x2)− 2kxy

)
− s0x

p(y2 − x2)− 2kxy
(104)

where F1
(

p(y2 − x2)− 2kxy
)

is an arbitrary smooth function of its argument.
By replacing (104) in (103), we find

L1 = (ky + px)F1

(
p(y2 − x2)− 2kxy

)
+

s0x(ky + px)
(kx− py)[p(y2 − x2)− 2kxy]

+
s0

kx− py
. (105)

Using (104) and (105), the remaining PDEs (97) and (98) determine the connection
coefficients as follows:

Γ1
11 =

L1,x

L1
, Γ2

22 =
L2,y

L2
. (106)

In order to have a non-Riemannian connection, the condition (94) must be satisfied. Therefore,

Γ1
11,y 6= Γ2

22,x =⇒ (ln |L1|),xy 6= (ln |L2|),yx =⇒
(

ln
∣∣∣∣ L1

L2

∣∣∣∣)
,xy
6= 0 (107)
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which leads to restrictions among the parameters k, p, s0 and the function F1.
We note that the vector La whose components are given by the relations (104) and

(105) is a generalized KV of the connection (106).
Finally, by replacing (106) in the dynamical Equations (101) and (102), we find the

family of dynamical systems:

ẍ = −kx + py− L1,x

L1
ẋ2 (108)

ÿ = −ky− px−
L2,y

L2
ẏ2 (109)

parameterized by the constant s0 and the function F1, which admits the time-dependent
LFI (95)

In order to get a specific example, we fix the parameters s0 and F1 as follows:
- Case s0 = 0 and F1 = 1.
Then, Equations (104) and (105) give the generalized KV

La =

(
ky + px
py− kx

)
(110)

which when substituted into the relations (106) determines the connection coefficients:

Γ1
11 =

p
ky + px

, Γ2
22 =

p
py− kx

. (111)

In order to have a non-Riemannian connection, the quantities (111) must satisfy the condi-
tion (107). We compute:

Γ1
11,y = − kp

(ky + px)2 6= Γ2
22,x =

kp
(py− kx)2 =⇒

(py− kx)2 + (ky + px)2 6= 0 =⇒ (k2 + p2)(x2 + y2) 6= 0 =⇒ k 6= ±ip.

Therefore, the connection (111) is non-Riemannian only when k 6= ±ip.
Using (110), the dynamical system of (108) and (109) becomes:

ẍ = −kx + py− p
ky + px

ẋ2 (112)

ÿ = −ky− px− p
py− kx

ẏ2 (113)

and the associated autonomous LFI (95) is

I1 = (ky + px)ẋ + (py− kx)ẏ. (114)

Remark: In the case that k = ±ip, the connection coefficients (111) reduce to the
Riemannian connection:

Γ1
11± =

1
x± iy

, Γ2
22± =

1
y∓ ix

which, according to Proposition 8, is associated with a metric of the form (1). Indeed, for an
arbitrary function F(x, y), we have:{

(ln F±),x = 1
x±iy

(ln F±),y = 1
y∓ix

=⇒ F+ =
x2 + y2

y + ix
, F− = y + ix
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and the corresponding metric is γab = F±

(
0 1
1 0

)
.

8. Application 2: The QFIs of a Non-Riemannian Dynamical System

Consider the dynamical system:

ü = −8β

u3

(
uu̇ẇ− wu̇2

)
− 1

u2 (115)

ẅ = −4β

u3

(
uẇ2 − 4wu̇ẇ

)
+

2w
u3 (116)

where β is an arbitrary real constant. This system is autonomous holonomic of the form (1)
with variables

qa =

(
u
w

)
, Qa =

1
u2

(
1
− 2w

u

)
.

The symmetric connection coefficients are read from the dynamical equations and are:

Γ1
22 = Γ2

11 = 0, Γ1
11 = Γ2

12 = −8β
w
u3 , Γ1

12 = Γ2
22 =

4β

u2 . (117)

The non-zero components of the curvature tensor Ra
bcd = Γa

bd,c − Γa
bc,d + Γa

scΓs
bd −

Γa
sdΓs

bc are:

R1
112 = R2

221 = −R2
212 = −R1

121 = −32b2w
u5 , R2

112 = −R2
121 =

24bw
u4 .

Solving the generalized KT condition C(ab|c) = 0, we found that the connection (117)
admits only the second order generalized KT

Cab = ke
12βw

u2

(
0 1
1 0

)
(118)

where k is an arbitrary constant.
Solving the generalized killing vector (KV) condition L(a|b) = 0, we found La = 0;

therefore, generalized KVs do not exist.
Moreover, it can be shown that non-zero vectors Ba, which generate reducible general-

ized KTs of the form B(a|b), do not exist as well.
By applying Theorem 1 for m = 2, we find that the system admits only one QFI which

is the

I = e
12βw

u2

(
u̇ẇ +

1
12β

)
. (119)

To prove that the given system is integrable, one needs one more independent autonomous
FI of higher order in involution.

9. Application 3: A New Superintegrable Potential Which Admits
Time-Dependent QFIs

In [13], using the separability of the corresponding Hamilton–Jacobi equation in more
than two coordinate systems, all minimally and maximally superintegrable potentials in
the Euclidean space E3 that admit autonomous QFIs are determined. We extend this result
to the case where time-dependent FIs are considered.

Applying Theorem 1 for m = 2 (QFIs), qa = (x, y, z), Γa
bc = 0, and Qa = Va,, where

V(x, y, z) denotes the potential, we found the new maximally superintegrable potential in E3

V(x, y, z) = −λ2

2
R2 +

kx
y2R

+
c1

y2 −
λ2

8
z2 +

c2

z2 (120)
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where λ 6= 0, k, c1, c2 are arbitrary constants, and R =
√

x2 + y2.
The potential (120) admits the following independent (autonomous and time-dependent)

QFIs:

I1 =
1
2

(
ẋ2 + ẏ2 + ż2

)
− λ2

2
R2 +

kx
y2R

+
c1

y2 −
λ2

8
z2 +

c2

z2 (121)

I2 =
1
2

M2
3 +

(kR + c1x)x
y2 (122)

I3 =
1
2

ż2 − λ2

8
z2 +

c2

z2 (123)

I4 = eλt
[

M3(ẏ− λy) +
2c1x
y2 +

k(y2 + 2x2)

y2R

]
(124)

I5 = eλt

[(
ż− λ

2
z
)2

+
2c2

z2

]
. (125)

The QFI I1 is the Hamiltonian of the system and the vector Mi = (yż− zẏ, zẋ− xż, xẏ− yẋ)
with i = 1, 2, 3 is the angular momentum.

10. Application 4: A New Superintegrable Separable Potential Which Admits an
Autonomous CFI

It is well-known that separable Newtonian potentials of the form V(x, y) = F1(x) +
F2(y) admit the QFIs J1 = 1

2 ẋ2 + F1(x) and J2 = 1
2 ẏ2 + F2(y), where F1 and F2 are arbitrary

smooth functions of their arguments. The question is if there are functions F1 and F2 for
which the corresponding potential V(x, y) is superintegrable.

A partial answer to this problem has been given in [14] by considering autonomous
CFIs as the third FI. One of the third order superintegrable potentials found in [14] is the

V(x, y) = c1y2 + F(x) (126)

where c1 is an arbitrary non-zero constant and F(x) is an arbitrary smooth function satisfy-
ing the condition

k2x2 + 4k2
1 +

(
9F− c1x2

)(
F− c1x2

)3
− 4k1

(
F− c1x2

)(
3F + c1x2

)
= 0 (127)

where k1 and k2 are arbitrary constants.
Using Theorem 1, we generalize the above result and determine a class of superinte-

grable potentials, which contains the potential (126) as a special case.
We applied Theorem 1 for m = 3 (CFIs), qa = (x, y), Γa

bc = 0 and Qa = V,a, where
V(x, y) denotes potentials of the form V = F1(x) + F2(y). We found that the potential (126)
is superintegrable due to the three independent autonomous FIs:

I1 =
1
2

ẋ2 + F(x) (128)

I2 =
1
2

ẏ2 + c1y2 (129)

I3 = Lẋ2 −
(

3yF− c1x2y + k3y
)

ẋ +
F′

2c1

(
3F− c1x2 + k3

)
ẏ (130)

where L ≡ xẏ− yẋ is the angular momentum, F′ ≡ dF
dx , and the function F(x) satisfies the

condition

0 = k2x2 + 4k2
1 +

(
9F− c1x2

)(
F− c1x2

)3
− 4k1

(
F− c1x2

)(
3F + c1x2

)
+

+4k3

(
3F− c1x2

)(
F− c1x2

)2
+ 4k2

3

(
F− c1x2

)2
− 8k1k3

3

(
3F− c1x2

)
(131)
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where k1, k2, k3 are arbitrary constants. We note that for k3 = 0 condition (131) reduces to
condition (127). Therefore, the superintegrable potential (C.6) of [14] is a subcase of (126).

11. Conclusions

We draw the following conclusions:

(a) We have developed a direct systematic method to compute the mth-order FIs of
the autonomous (in general non-Riemannian) dynamical systems (1) in terms of
the ’symmetries’ of the geometric objects (symmetric connection or kinetic metric,
depending on the case) defined by the dynamical equations.

(b) This method applies to non-Riemanian geometries with a symmetric connection. It
has been shown that the mth-order FIs require the generalized KTs and KVs defined
by the symmetric connection Γa

bc(q). The case of a Riemannian connection is a special
case, where the mth-order FIs can be related to a gauged weak generalized Noether
symmetry by means of the inverse Noether theorem.

(c) The system of PDEs (5)–(8) resulting from the condition dI(m)

dt = 0 along the dynamical
equations consists of two parts: a geometric part (Equations (5) and (6)) common to
all systems which share the same connection, and a dynamical part (Equations (7) and
(8)) which includes the generalized forces Qa of the specific system.

(d) We determined the condition which the connection coefficients must satisfy in order
the 2d dynamical systems (86) and (87) to be non-Riemannian.

Obviously, Theorem 1 provides a new systematic way to determine the higher or-
der FIs, autonomous and time-dependent, of autonomous (in general non-Riemannian)
dynamical systems of the form (1).
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Appendix A

We assume that the totally symmetric tensor quantities

Mi1 ...ir (t, q) =
nr

∑
Nr=0

L(Nr)i1 ...ir (q)t
Nr , r = 1, 2, . . . , m, m ≥ 1 (A1)

where L(Nr)i1 ...ir (q) and Nr = 0, 1, . . . , nr, are arbitrary r-rank totally symmetric tensors and
nr ≥ 0 is the degree of the polynomial associated with the r-rank tensor Mi1 ...ir (t, q). We
note that the degrees nr of the above polynomial expressions of t may be infinite.

We consider the following cases.

I. Case with n finite.
By substituting (A1) in the system of PDEs (5)–(8), we obtain the following system of

polynomial equations in t:
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0 =
n

∑
N=0

L(N)(i1 ...im |im+1)
tN (A2)

0 = M,t −
n

∑
N=0

L(N)i1 Qi1 tN (A3)

0 = M,i1 +
n>0

∑
N=1

[
NL(N)i1 − 2L(N−1)i1i2 Qi2

]
tN−1 − 2L(n)i1i2 Qi2 tn, m > 1 (A4)

0 =
n−1≥0

∑
N=0

[
(N + 1)L(N+1)i1 ...ir + L(N)(i1 ...ir−1|ir) − (r + 1)L(N)i1 ...ir ir+1

Qir+1
]
tN +

+
[

L(n)(i1 ...ir−1|ir) − (r + 1)L(n)i1 ...ir ir+1
Qir+1

]
tn, r = 2, 3, . . . , m− 1, m > 2 (A5)

0 = M,i1 +
n>0

∑
N=1

NL(N)i1 tN−1, m = 1 (A6)

0 =
n−1≥0

∑
N=0

[
(N + 1)L(N+1)i1 ...im + L(N)(i1 ...im−1|im)

]
tN + L(n)(i1 ...im−1|im)t

n, m > 1(A7)

where—without loss of generality—the polynomial expressions (A1) of t are assumed to
be of the same degree; that is, n = nr for all values of r. All the results with n 6= nr are
derived as subcases from the case n = nr. We note also that: Equation (A2) is derived from
(5), (A3) from (8), (A4) from (7) for r = 1, (A5) from (7) for r = 2, 3, . . . , m− 1, (A6) from (6)
for m = 1, and (A7) from (6) for m > 1.

Equation (A2) implies that the quantities L(N)i1 ...im with N = 0, 1, . . . , n are mth-order
generalized KTs. For m = 1, L(N)i1 are generalized KVs.

By integrating Equation (A3), we find that

M =
n

∑
N=0

L(N)i1 Qi1 tN+1

N + 1
+ G(q) (A8)

where G(q) is an arbitrary smooth function. We note that the integrability conditions of the
scalar M(t, q) have been replaced by the integrability conditions G,[ab] = 0 of the function
G(q).

By replacing M from (A8), Equation (A4) gives:

0 =G,i1 + L(1)i1(n > 0)− 2L(0)i1i2 Qi2+

+
n−1≥1

∑
N=1

1
N

[(
L(N−1)cQc

)
,i1
+ N(N + 1)L(N+1)i1 − 2NL(N)i1i2 Qi2

]
tN+

+
1
n

[(
L(n−1)cQc

)
,i1
− 2nL(n)i1i2 Qi2

]
︸ ︷︷ ︸

n>0

tn +
(

L(n)cQc
)

,i1

tn+1

n + 1
, m > 1 =⇒

G,i1 = 2L(0)i1i2 Qi2 − L(1)i1 (n > 0), m > 1 (A9)(
L(k−1)cQc

)
,i1

= 2kL(k)i1i2 Qi2 − k(k + 1)L(k+1)i1 , k = 1, 2, . . . , n− 1, n > 1, m > 1 (A10)(
L(n−1)cQc

)
,i1

= 2nL(n)i1i2 Qi2 , n > 0, m > 1 (A11)

L(n)i1 Qi1 = s0, m > 1 (A12)



Symmetry 2023, 15, 222 20 of 22

where s0 is an arbitrary constant. The notation L(1)i1(n > 0) indicates that the vector L(1)i1
exists only when the degree of the polynomial n > 0—that is, when n = 0, the vector L(1)i1
vanishes.

By replacing (A8) in (A6), we find the following conditions:

G,i1 = −L(1)i1(n > 0), m = 1 (A13)(
L(k−1)cQc

)
,i1

= −k(k + 1)L(k+1)i1 , k = 1, 2, . . . , n− 1, n > 1, m = 1 (A14)

L(n−1)i1 Qi1 = s1, n > 0, m = 1 (A15)

L(n)i1 Qi1 = s0, m = 1 (A16)

where s1 is an arbitrary constant.
We observe that conditions (A13)–(A16) are emerged from conditions (A9)–(A12) if

we rewrite the latter in the following compact form:

G,i1 = 2L(0)i1i2 (m > 1)Qi2 − L(1)i1 (n > 0) (A17)(
L(k−1)cQc

)
,i1

= 2kL(k)i1i2 (m > 1)Qi2 − k(k + 1)L(k+1)i1 , k = 1, 2, . . . , n− 1, n > 1 (A18)(
L(n−1)cQc

)
,i1

= 2nL(n)i1i2 (m > 1)Qi2 , n > 0 (A19)

L(n)i1 Qi1 = s0. (A20)

The notation L(0)i1i2(m > 1) indicates that the quantities L(0)i1i2 exist only when the degree
of the FI m > 1; that is, when m = 1, the quantities L(0)i1i2 vanish.

Conditions (A18) and (A19) are written compactly as follows:(
L(k−1)cQc

)
,i1

= 2kL(k)i1i2(m > 1)Qi2 − k(k + 1)L(k+1)i1(k < n),

k = 1, 2, . . . , n, n > 0. (A21)

The notation L(k+1)i1(k < n) indicates that the vector L(k+1)i1 exists only when k < n; that
is, if k ≥ n, the vector L(k+1)i1 vanishes.

Equation (A5) implies that:

L(k)(i1 ...ir−1|ir) = (r + 1)L(k)i1 ...ir ir+1
Qir+1 − (k + 1)L(k+1)i1 ...ir ,

k = 0, 1, . . . , n− 1, r = 2, 3, . . . , m− 1, n > 0, m > 2 (A22)

L(n)(i1 ...ir−1|ir) = (r + 1)L(n)i1 ...ir ir+1
Qir+1 , r = 2, 3, . . . , m− 1, m > 2. (A23)

Conditions (A22) and (A23) are written compactly as follows:

L(k)(i1 ...ir−1|ir) = (r + 1)L(k)i1 ...ir ir+1
Qir+1 − (k + 1)L(k+1)i1 ...ir (k < n),

k = 0, 1, . . . , n, r = 2, 3, . . . , m− 1, m > 2. (A24)

The notation L(k+1)i1 ...ir (k < n) indicates that the quantities L(k+1)i1 ...ir exist only when
k < n; that is, if k ≥ n, the quantities L(k+1)i1 ...ir vanish.

Equation (A7) implies that the quantities L(n)i1 ...im−1
with m > 1 are the components

of an (m− 1)th-order generalized KT and the mth-order generalized KTs:

L(k)i1 ...im = −1
k

L(k−1)(i1 ...im−1|im), k = 1, 2, . . . , n, n > 0, m > 1. (A25)

The mth-order FI (2) is

I(m)
n =

m

∑
r=1

(
n

∑
N=0

L(N)i1 ...ir tN

)
q̇i1 . . . q̇ir + s0

tn+1

n + 1
+

n>0

∑
N=1

L(N−1)cQc tN

N
+ G(q) (A26)
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where m ≥ 1, n ≥ 0, L(N)i1 ...im(q) with N = 0, 1, . . . , n are mth-order generalized KTs
satisfying the condition (A25); L(n)i1 ...im−1

(q) with m > 1 is an (m− 1)th-order generalized
KT; and the constant s0 is given by (A20). The function G(q) and the totally symmetric
tensors L(N)i1 ...ir (q) satisfy the conditions (A17), (A21), and (A24).

The notation I(m)
n means the mth-order FI (upper index) with time-dependence n

(lower index). For example, the I(2)n is a QFI whose coefficients are expressed as polynomials
of t of degree fixed by n.

II. Case with n infinite.
The polynomial expressions (A1) as nr = n→ ∞ turns into the infinite sum (series):

Mi1 ...ir (t, q) =
∞

∑
N=0

L(N)i1 ...ir (q)t
N , r = 1, 2, . . . , m, m ≥ 1. (A27)

It is found that new results—different from those found with n finite—are derived in the
case that

L(N)i1 ...ir (q) =
λN

r
N!

Li1 ...ir (q) (A28)

where λr are arbitrary non-zero constants and Li1 ...ir (q) are r-rank totally symmetric tensors.
Replacing (A28) in (A27), we found

Mi1 ...ir (t, q) = Li1 ...ir (q)
∞

∑
N=0

(λrt)N

N!
= eλrtLi1 ...ir (q). (A29)

By substituting (A29) into the system of PDEs (5)–(8), we obtain the following system
of equations:

0 = L(i1 ...im |im+1)
(A30)

0 = M,t − eλtLcQc (A31)

0 = M,i1 + eλt
(

λLi1 − 2Li1i2 Qi2
)

, m > 1 (A32)

0 = L(i1 ...ir−1|ir) + λLi1 ...ir − (r + 1)Li1 ...ir ir+1 Qir+1 , r = 2, 3, . . . , m− 1, m > 2(A33)

0 = M,i1 + λeλtLi1 , m = 1 (A34)

0 = λLi1 ...im + L(i1 ...im−1|im), m > 1 (A35)

where—without loss of generality—all the non-zero constants λr are fixed to the same
non-zero constant λ. The mth-order FI produced from this assumption contains as subcases
all the FIs associated with constants λr which are not all the same.

Equation (A30) implies that Li1 ...im is an mth-order generalized KT.
By integrating Equation (A31), we find

M =
eλt

λ
LcQc + G(q) (A36)

where G(q) is an arbitrary smooth function.
By replacing (A36) in Equations (A32) and (A34), we find that G(q) = const ≡ 0 and

the condition:
(LcQc),i1 = 2λLi1i2(m > 1)Qi2 − λ2Li1 . (A37)

Equation (A33) gives the condition

L(i1 ...ir−1|ir) = (r + 1)Li1 ...ir ir+1 Qir+1 − λLi1 ...ir , r = 2, 3, . . . , m− 1, m > 2 (A38)
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and the remaining condition (A35) implies that

Li1 ...im = − 1
λ

L(i1 ...im−1|im), m > 1. (A39)

The associated mth-order FI (2) is

I(m)
e =

eλt

λ

(
λ

m

∑
r=1

Li1 ...ir q̇i1 . . . q̇ir + LcQc

)
(A40)

where λ 6= 0, Li1 ...im(q) is an mth-order generalized KT satisfying the condition (A39), and
the remaining totally symmetric tensors Li1 ...ir (q) with r = 1, 2, . . . , m− 1 and m > 1 satisfy
the conditions (A37) and (A38).

The notation I(m)
e indicates the mth-order FI (upper index) with exponential time-

dependence (lower index).

The above completes the proof of Theorem 1.
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