
Citation: Sunthrayuth, P.; Naeem, M.;

Shah, N.A.; Shah, R.; Chung, J.D.

On the Solution of Fractional

Biswas–Milovic Model via Analytical

Method. Symmetry 2023, 15, 210.

https://doi.org/10.3390/

sym15010210

Academic Editor: Dumitru Baleanu

Received: 7 December 2022

Revised: 5 January 2023

Accepted: 9 January 2023

Published: 11 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

On the Solution of Fractional Biswas–Milovic Model via
Analytical Method
Pongsakorn Sunthrayuth 1,† , Muhammad Naeem 2 , Nehad Ali Shah 3,† , Rasool Shah 4

and Jae Dong Chung 3,*

1 Department of Mathematics and Computer Science, Faculty of Science and Technology,
Rajamangala University of Technology Thanyaburi (RMUTT), Pathumthani 12110, Thailand

2 Department of Mathematics, Deanship of Applied Sciences, Umm Al-Qura University,
Makkah 517, Saudi Arabia

3 Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
4 Department of Mathematics, Abdul Wali Khan University, Mardan 23200, Pakistan
* Correspondence: jdchung@sejong.ac.kr
† These authors contributed equally to this work and are co-first authors.

Abstract: Through the use of a unique approach, we study the fractional Biswas–Milovic model
with Kerr and parabolic law nonlinearities in this paper. The Caputo approach is used to take the
fractional derivative. The method employed here is the homotopy perturbation transform method
(HPTM), which combines the homotopy perturbation method (HPM) and Yang transform (YT). The
HPTM combines the homotopy perturbation method, He’s polynomials, and the Yang transform.
He’s polynomial is a wonderful tool for dealing with nonlinear terms. To confirm the validity of
each result, the technique was substituted into the equation. The described techniques can be used to
find the solutions to these kinds of equations as infinite series, and when these series are in closed
form, they give a precise solution. Graphs are used to show the derived numerical results. The maple
software package is used to carry out the numerical simulation work. The results of this research are
highly positive and demonstrate how effective the suggested method is for mathematical modeling
of natural occurrences.

Keywords: Yang transform; homotopy perturbation method; Caputo operator; time-fractional
Biswas–Milovic model

1. Introduction

Due to its numerous applications in numerous nonlinear phenomena, fractional cal-
culus (FC) has gained the attention of academics. To describe the memory and heredity
characteristics of many phenomena, FC is a reliable source. The expansion of integer to non-
integer order of differentiation is known as fractional differentiation. Few phenomenons
including quantum mechanics, viscoelasticity, diffusion processes, fluid mechanics, etc.,
are effectively described by fractional differential equations (FDEs). FC is connected to
practical endeavours and is frequently used in human diseases, nanotechnology, chaos
theory, optics, and other disciplines, as noted in Refs. [1–4]. A helpful tool for repre-
senting nonlinear events in scientific and engineering models is the fractional differential
equation. In applied mathematics and engineering, partial differential equations, particu-
larly nonlinear ones, have been utilised to simulate a wide range of scientific phenomena.
Fractional-order partial differential equations (FPDEs) allowed researchers to recognise
and model a wide range of significant and real-world physical issues in parallel with their
work in the physical sciences. It has always been claimed how important it is to obtain
approximations for scientists by using either numerical or analytical methods. Because of
this, symmetry analysis is a fantastic tool for comprehending partial differential equations,
especially when looking at equations generated from mathematical concepts connected
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to accounting. Despite the notion that symmetry is the foundation of nature, the bulk of
observations in the natural world lack it. A clever technique for disguising symmetry is
to provide unanticipated symmetry-breaking events. The two categories are finite and
infinitesimal symmetry. There are two types of discrete and continuous finite symmetries.
Natural symmetries such as parity and temporal inversion are discrete, while space is a
continuous transformation. Mathematicians have always been fascinated by patterns.

Due to the numerous engineering and scientific applications of fractional differential
equations, they have become more significant and well-liked. For example, these equations
are more frequently used to explain phenomena in a wide range of physical processes [5–7],
such as biology, acoustics, signal processing, electromagnetics, and many others. The
main advantage of fractional differential equations in these and other applications is their
non-locality [8–10].

The fractional order differential operator is non-local, whereas the integer order dif-
ferential operator is commonly conceived of as a local operator. This demonstrates how a
system’s future state depends on both its current state and its previous state. This increases
the utility of fractional calculus, which is one of the reasons it is gaining popularity [11–16].
Therefore, solving fractional differential equations has drawn a lot of attention. The exact
solution of a fractional differential equation is often difficult. Numerical methods, such as
the perturbation method, have attracted the interest of researchers. However, perturba-
tion approaches have certain important limitations. It is challenging since most nonlinear
problems do not have any smaller parameters at all, for example, the approximate solution
generally requires a lot of small parameters. Although a proper choice of minor factors
might occasionally yield the best outcome, unsuitable choices typically have adverse impact
on the solutions [17–20].

This work presents the homotopy perturbation method (HPM) and the Yang transform
(YT). Ji-Huan He of Shanghai University introduced the homotopy perturbation method
(HPM) in 1998 as a potent tool for solving technical and scientific nonlinear issues [21,22].
Numerous mathematicians have handled the nonlinear equations that appear in engineer-
ing and research using the homotopy perturbation approach [23–26]. Refs. [27–31] address
the application of the Adomian decomposition method, closely related to the homotopy
perturbation method, to various diffusive and transport models (including fractional and
nonlinear cases as well). Refs. [32–35] address time-fractional subdiffusion equations
and inverse problems of determining their coefficients and fractional orders. Ref. [36]
introduces a homotopy perturbation method for nonlinear transport equations. Ref. [37]
proposes a perturbational approach to construct analytical approximations based on the
double-parameter transformation perturbation expansion method. Ref [38] contains an
exhaustive review of various modern fractional calculus applications. Ref [39] discusses
some non-standard definitions of Caputo fractional derivatives. Ref. [40] provides an
overview of the computational practices used in fractional calculus. Recently, a lot of
authors have studied the solutions to partial differential equations, both linear and nonlin-
ear, utilizing a variety of methodologies including the homotopy perturbation transform
technique [41,42], the Elzaki transform decomposition method [43,44], the iterative Laplace
transform method [45], the homotopy analysis transform method [46], the variational
iteration method (VIM) [47,48], and many others.

Now, using HPTM, we will study the fractional model of the Biswas–Milovic equation
(BME). The BME generalises the well-known nonlinear Schrodinger’s equation to describe
solitons transcontinental and transoceanic propagation across optical fibres. The BME is
written as [49]

ιFδ
ϑ + λFδ

ϕϕ + χH(|F|2)Fδ = 0, (1)

F(ϕ, ϑ) denotes the wave profile, λ and χ are real-valued constants meeting the condition
λ · χ > 0, and the parameter δ ≥ 0, which transforms the nonlinear Schrödinger equation
to BME. The independent variables ϕ and ϑ denote the distance along the fibre and the
time, respectively. The algebraic functionH is real-valued and is assumed to be as smooth
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as the complex function H(|F|2) : C → C. Assuming that the complex plane C is a 2D
linear space R2 and that the functionH(|F|2) is differentiable n times, so

H(|F|2) ∈ U∞
l,m=1Cn((−m, m)× (−l, l); R2).

Here, we examine the following issue

H(v) = vm + βv2m.

Here, parameter m denotes the power law nonlinearity, and β denotes the nonlinear
term’s coefficient. Researchers have used a variety of methodologies to study the BME. For
δ = 1, Ahmed et al. [50] analysed the BME using the Adomian decomposition approach,
while Arnous and Mirzazadeh [51] used the HPM for solving the BME. For the first time,
Ahmadian and Darvishi [52] examined the generalised version of the sine-cosine method
of fractional BME. The (1 + 1) dimensional BME of fractional-order was then explored by
Ahmadian and Darvishi [53] using the sec-csc, sech-csch, tan-cot, and tanh-coth approaches.

By using the homotopy perturbation approach, Darvishi and Zaidan [54] studied
the nonlinear (1 + 1) dimensional BME of order fraction. Additionally, to examine the
fractional BME with the Atangana–Baleanu derivative, Jagdev et al. [55] introduced the
fractional homotopy analysis transform method (FHATM) and discussed several novel
elements of the discovered solution. There are six sections throughout the entire paper. The
introduction is in Section 1, and the definitions and attributes are explained in Section 2.
An implementation of the suggested analytical technique is provided in Section 3. The
suggested technique are put into practise on a few test examples in Section 4. The conclusion
is covered in Section 5.

2. Preliminaries

In this part, we provide the basic definitions related to this study.

Definition 1. The fractional Caputo derivative is given as [56,57]

Dς
ϑF(ϕ, ϑ) =

1
Γ(k− ς)

∫ ϑ

0
(ϑ− ψ)k−ς−1F(k)(ϕ, ψ)dψ, k− 1 < ς ≤ k, k ∈ N. (2)

Definition 2. For the function F(ϑ), the YT is given as [57]

Y{F(ϑ)} = M(u) =
∫ ∞

0
e
−ϑ
u F(ϑ)dϑ, ϑ > 0, u ∈ (−ϑ1, ϑ2), (3)

with inverse YT as
Y−1{M(u)} = F(ϑ). (4)

Definition 3. The inverse YT is given by [57]

Y−1[Y(u)] = F(ϑ) = 1
2πι

∫ ς+ι∞

ς−ι∞
F
(

1
u

)
euϑudu = Σ residues o f F

(
1
u

)
euϑu.

Definition 4. The fractional derivative YT is given as [57]

Y{F(ς)(ϑ)} = M(u)
uς
−

n−1

∑
k=0

F(k)(0)
uς−(k+1)

, n− 1 < ς ≤ n. (5)

3. General Idea of HPTM

We consider the following differential equation to give the general implementation
of HPTM.

Dς
ϑF(ϕ, ϑ) = P1[ϕ]F(ϕ, ϑ) +Q1[ϕ]F(ϕ, ϑ), 0 < ς ≤ 1, (6)
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subject to initial conditions
F(ϕ, 0) = ξ(ϕ).

where Dς
ϑ = ∂ς

∂ϑς stand for the Caputo fractional derivative, P1[ϕ], Q1[ϕ] denote linear and
nonlinear terms.

On operating YT, we get

Y[Dς
ϑF(ϕ, ϑ)] = Y[P1[ϕ]F(ϕ, ϑ) +Q1[ϕ]F(ϕ, ϑ)], (7)

1
uς
{M(u)− uF(0)} = Y[P1[ϕ]F(ϕ, ϑ) +Q1[ϕ]F(ϕ, ϑ)]. (8)

After simplification, we get

M(F) = uF(0) + uςY[P1[ϕ]F(ϕ, ϑ) +Q1[ϕ]F(ϕ, ϑ)]. (9)

By implementing inverse YT, we get

F(ϕ, ϑ) = F(ϕ, 0) + Y−1[uςY[P1[ϕ]F(ϕ, ϑ) +Q1[ϕ]F(ϕ, ϑ)]]. (10)

By utilizing the HPM

F(ϕ, ϑ) =
∞

∑
k=0

εkFk(ϕ, ϑ). (11)

having perturbation parameter ε ∈ [0, 1].
The decomposition of nonlinear terms is stated as

Q1[ϕ]F(ϕ, ϑ) =
∞

∑
k=0

εk Hn(F), (12)

and Hn(F) represent He’s polynomials as [58]

Hn(F0,F1, ...,Fn) =
1

Γ(n + 1)
Dn

ε

[
Q1

(
∞

∑
k=0

εiFi

)]
ε=0

, (13)

where Dn
ε = ∂n

∂εn .
By putting (11) and (12) in (10), we obtain

∞

∑
k=0

εkFk(ϕ, ϑ) = F(ϕ, 0) + ε×
(

Y−1

[
uςY{P1

∞

∑
k=0

εkFk(ϕ, ϑ) +
∞

∑
k=0

εk Hk(F)}
])

. (14)

Comparing the coefficient of ε, we obtain

ε0 : F0(ϕ, ϑ) = F(ϕ, 0),

ε1 : F1(ϕ, ϑ) = Y−1[uςY(P1[ϕ]F0(ϕ, ϑ) + H0(F))],
ε2 : F2(ϕ, ϑ) = Y−1[uςY(P1[ϕ]F1(ϕ, ϑ) + H1(F))],
.

.

.

εk : Fk(ϕ, ϑ) = Y−1[uςY(P1[ϕ]Fk−1(ϕ, ϑ) + Hk−1(F))],
k > 0, k ∈ N.

(15)
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Thus, the analytical solution Fk(ϕ, ϑ) is obtained using the truncated series

F(ϕ, ϑ) = lim
M→∞

M

∑
k=1

Fk(ϕ, ϑ). (16)

4. Applications

In this section, we implement HPTM to obtain the solution of time-fractional Biswas–
Milovic model. Let us assume nonlinear fractional BME

ι
∂ςF
∂ϑς

+ λ
∂2F
∂ϕ2 + χ|F(ϕ, ϑ)|2F(ϕ, ϑ) = 0, 0 < ς ≤ 1, (17)

subject to initial source
F(ϕ, 0) = exp(ιϕ).

On operating YT, we get

Y
(

ι
∂ςF
∂ϑς

)
= −Y

[
λ

∂2F
∂ϕ2 + χ|F(ϕ, ϑ)|2F(ϕ, ϑ)

]
, (18)

After simplification, we get

1
uς
{M(u)− uF(0)} = Y

[
λι

∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|2F(ϕ, ϑ)

]
, (19)

M(u) = uF(0) + uςY
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|2F(ϕ, ϑ)

]
. (20)

By implementing inverse YT, we get

F(ϕ, ϑ) = F(ϕ, 0) + Y−1
[

uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|2F(ϕ, ϑ)

]}]
,

F(ϕ, ϑ) = exp(ιϕ) + Y−1
[

uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|2F(ϕ, ϑ)

]}]
.

(21)

On utilizing the HPM

∞

∑
k=0

εkFk(ϕ, ϑ) = exp(ιϕ) + ε

Y−1

uςY

λι

(
∞

∑
k=0

εkFk(ϕ, ϑ)

)
ϕϕ

+ ιχ

(
∞

∑
k=0

εk Hk(F)
). (22)

The non-linear terms by means of He’s polynomial Hk(F) is given as

∞

∑
k=0

εk Hk(F) = |F(ϕ, ϑ)|2F(ϕ, ϑ) (23)

Some He’s polynomial terms are determined as

H0(F) = |F0(ϕ, ϑ)|2F0(ϕ, ϑ),

H1(F) =
1
1!

∂

∂ε
[(|F0(ϕ, ϑ) + εF1(ϕ, ϑ))|2(F0(ϕ, ϑ) + εF0(ϕ, ϑ))]ε=0

H2(F) =
1
2!

∂2

∂ε2 [(|F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ)|2)(F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ))]ε=0

Comparing the coefficient of ε, we have
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ε0 : F0(ϕ, ϑ) = exp(ιϕ),

ε1 : F1(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH0(F)

])
= ι(χ− λ) exp(ιϕ)

ϑς

Γ(ς + 1)
,

ε2 : F2(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH1(F)

])
=

1
2

(
ϑς

Γ(ς + 1)

)2

(χ− λ)(λ− χ) exp(ιϕ),

ε3 : F3(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH2(F)

])
=

1
3

(
ϑς

Γ(ς + 1)

)3{
−ιλ

2
(χ− λ)(λ− χ) exp(ιϕ)+

3
2

χι(χ− λ)(λ− χ) exp(ιϕ) + χι(χ− λ)2 exp(ιϕ)

}
,

...

Thus the analytical solution is obtained using the truncated series as

F(ϕ, ϑ) = exp(ιϕ) + ι(χ− λ) exp(ιϕ)
ϑς

Γ(ς + 1)
+

1
2

(
ϑς

Γ(ς + 1)

)2

(χ− λ)(λ− χ) exp(ιϕ)+

1
3

(
ϑς

Γ(ς + 1)

)3{
−ιλ

2
(χ− λ)(λ− χ) exp(ιϕ) +

3
2

χι(χ− λ)(λ− χ) exp(ιϕ) + χι(χ− λ)2 exp(ιϕ)

}
+ · · ·

Example 1. Let us assume nonlinear fractional BME

ι
∂ςF
∂ϑς

+ λ
∂2F
∂ϕ2 + χ|F(ϕ, ϑ)|4F(ϕ, ϑ) = 0, 0 < ς ≤ 1, (24)

subject to initial source
F(ϕ, 0) = exp(ιϕ).

On operating YT, we get

Y
(

ι
∂ςF
∂ϑς

)
= −Y

[
λ

∂2F
∂ϕ2 + χ|F(ϕ, ϑ)|4F(ϕ, ϑ)

]
, (25)

After simplification, we get

1
uς
{M(u)− uF(0)} = Y

[
λι

∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|4F(ϕ, ϑ)

]
, (26)

M(u) = uF(0) + uςY
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|4F(ϕ, ϑ)

]
. (27)

By implementing inverse YT, we get

F(ϕ, ϑ) = F(ϕ, 0) + Y−1
[

uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|4F(ϕ, ϑ)

]}]
,

F(ϕ, ϑ) = exp(ιϕ) + Y−1
[

uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ|F(ϕ, ϑ)|4F(ϕ, ϑ)

]}]
.

(28)

On utilizing the HPM
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∞

∑
k=0

εkFk(ϕ, ϑ) = exp(ιϕ) + ε

Y−1

uςY

λι

(
∞

∑
k=0

εkFk(ϕ, ϑ)

)
ϕϕ

+ ιχ

(
∞

∑
k=0

εk Hk(F)
). (29)

The non-linear terms by means of He’s polynomial Hk(F) are given as

∞

∑
k=0

εk Hk(F) = |F(ϕ, ϑ)|2F(ϕ, ϑ) (30)

Few He’s polynomial terms are determined as

H0(F) = |F0(ϕ, ϑ)|4F0(ϕ, ϑ),

H1(F) =
1
1!

∂

∂ε
[(|F0(ϕ, ϑ) + εF1(ϕ, ϑ))|4(F0(ϕ, ϑ) + εF0(ϕ, ϑ))]ε=0

H2(F) =
1
2!

∂2

∂ε2 [(|F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ)|4)(F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ))]ε=0

Comparing the coefficient of ε, we have

ε0 : F0(ϕ, ϑ) = exp(ιϕ),

ε1 : F1(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH0(F)

])
= ι(χ− λ) exp(ιϕ)

ϑς

Γ(ς + 1)
,

ε2 : F2(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH1(F)

])
=

1
2

(
ϑς

Γ(ς + 1)

)2

(χ− λ)(χ− λ− 4χ exp(2ιϕ)) exp(ιϕ),

ε3 : F3(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH2(F)

])
=

1
3

(
ϑς

Γ(ς + 1)

)3

(χ− λ)

{
ιλ(−λ exp(ιϕ) + 16χ exp(5ιϕ))+

χι[exp(5ιϕ)(2 + λ− χ− exp(4ιϕ))]

}
+

1
3

(
ϑς

Γ(ς + 1)

)3

(χ− λ)χι

{
3
2

exp(3ιϕ)[(λ− χ) exp(ιϕ) + λ− χ exp(4ιϕ)]

}
,

...

Thus the analytical solution is obtained using the truncated series as

F(ϕ, ϑ) = exp(ιϕ) + ι(χ− λ) exp(ιϕ)
ϑς

Γ(ς + 1)
+

1
2

(
ϑς

Γ(ς + 1)

)2

(χ− λ)(χ− λ− 4χ exp(2ιϕ)) exp(ιϕ)+

1
3

(
ϑς

Γ(ς + 1)

)3

(χ− λ)

{
ιλ(−λ exp(ιϕ) + 16χ exp(5ιϕ)) + χι[exp(5ιϕ)(2 + λ− χ− exp(4ιϕ))]

}
+

1
3

(
ϑς

Γ(ς + 1)

)3

(χ− λ)χι

{
3
2

exp(3ιϕ)[(λ− χ) exp(ιϕ) + λ− χ exp(4ιϕ)]

}
+ · · ·

Example 2. Let us assume nonlinear fractional BME

ι
∂ςF
∂ϑς

+ λ
∂2F
∂ϕ2 + χ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ) = 0, 0 < ς ≤ 1, (31)

subject to initial source
F(ϕ, 0) = exp−

ιϕ
2 .
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On operating YT, we get

Y
(

ι
∂ςF
∂ϑς

)
= −Y

[
λ

∂2F
∂ϕ2 + χ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ)

]
, (32)

After simplification, we get

1
uς
{M(u)− uF(0)} = Y

[
λι

∂2F
∂ϕ2 + ιχ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ)

]
, (33)

M(u) = uF(0) + uςY
[

λι
∂2F
∂ϕ2 + ιχ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ)

]
. (34)

By implementing inverse YT, we get

F(ϕ, ϑ) = F(ϕ, 0) + Y−1
[

uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ)

]}]
,

F(ϕ, ϑ) = exp−
ιϕ
2 +Y−1

[
uς

{
Y
[

λι
∂2F
∂ϕ2 + ιχ(|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ)

]}]
.

(35)

On utilizing the HPM

∞

∑
k=0

εkFk(ϕ, ϑ) = exp−
ιϕ
2 +ε

Y−1

uςY

λι

(
∞

∑
k=0

εkFk(ϕ, ϑ)

)
ϕϕ

+ ιχ

(
∞

∑
k=0

εk Hk(F)
). (36)

The non-linear terms by means of He’s polynomial Hk(F) are given as

∞

∑
k=0

εk Hk(F) = (|F(ϕ, ϑ)|2 + |F(ϕ, ϑ)|4)F(ϕ, ϑ) (37)

Some He’s polynomial terms are determined as

H0(F) = |F0(ϕ, ϑ)|2F0(ϕ, ϑ) + |F0(ϕ, ϑ)|4F0(ϕ, ϑ),

H1(F) =
1
1!

∂

∂ε
[(|F0(ϕ, ϑ) + εF1(ϕ, ϑ)|2 + |F0(ϕ, ϑ) + εF1(ϕ, ϑ)|4)(F0(ϕ, ϑ) + εF1(ϕ, ϑ))]ε=0

H2(F) =
1
2!

∂2

∂ε2 [(|F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ)|2 + |F0(ϕ, ϑ) + εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ)|4)(F0(ϕ, ϑ)+

εF1(ϕ, ϑ) + ε2F2(ϕ, ϑ))]ε=0

Comparing the coefficient of ε, we have

ε0 : F0(ϕ, ϑ) = exp−
ιϕ
2 ,

ε1 : F1(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH0(F)

])
= ι

(
2χ− λ

4

)
exp−

ιϕ
2

ϑς

Γ(ς + 1)
,

ε2 : F2(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH1(F)

])
=

1
2

(
ϑς

Γ(ς + 1)

)2(
2χ− λ

4

)
(

λ

4
− 2χ− 3ι + 3ι exp(−2ιϕ)) exp−

ιϕ
2 ,

ε3 : F3(ϕ, ϑ) = Y−1

(
uςY

[
λι

∂2F
∂ϕ2 + ιχH2(F)

])
=

1
3

(
ϑς

Γ(ς + 1)

)3(
2χ− λ

4

){
ιλ(−λ exp(ιϕ) + 16χ exp(5ιϕ))+

χι exp(ιϕ)(χ− λ)2(2 + λ− χ− exp(4ιϕ))

}
,

...

Thus the analytical solution is obtained using the truncated series as
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F(ϕ, ϑ) = exp−
ιϕ
2 +ι

(
2χ− λ

4

)
exp−

ιϕ
2

ϑς

Γ(ς + 1)
+

1
2

(
ϑς

Γ(ς + 1)

)2(
2χ− λ

4

)
(

λ

4
− 2χ− 3ι + 3ι exp(−2ιϕ)) exp−

ιϕ
2 +

1
3

(
ϑς

Γ(ς + 1)

)3(
2χ− λ

4

){
ιλ(−λ exp(ιϕ) + 16χ exp(5ιϕ)) + χι exp(ιϕ)(χ− λ)2(2 + λ− χ− exp(4ιϕ))

}
+ · · ·

Numerical Simulation Studies

To verify the suggested strategy, numerical simulation studies for the nonlinear time-
fractional Biswas–Milovic equations are conducted. With the help of the 3D plots of the
real and imaginary divisions of the wave profile F(ϕ, ϑ) and their corresponding contours,
once can clearly see how the wave solution behaves for various numeric values. Figure 1
displays the 3D plots of the numerical solution for Ex. 4.1 real and imaginary division
when χ = 2, λ = 1, and ς = 1 within the domain −5 ≤ ϕ ≤ 5 and ϑ ∈ [0, 0.1]. Figure 2
displays the 3D plots of the numerical solution for Ex. 4.2 real and imaginary division
when χ = 2, λ = 1, and ς = 1 within the domain −10 ≤ ϕ ≤ 10 and ϑ ∈ [0, 0.1]. Similarly,
Figure 3 displays the 3D plots of the numerical solution for Ex. 4.3 real and imaginary
division when χ = 2, λ = 4, and ς = 1 within the domain −20 ≤ ϕ ≤ 20 and ϑ ∈ [0, 0.1].
The numerical solution’s contour plots, which express the three-dimensional data in a
two-dimensional plane, are also provided. The third iteration provided all of the results,
and other iterations can be found to produce more precise results.

Figure 1. Aspects of the analytical result of problem 1 in 3D and its contour for χ = 2, λ = 1, and
ς = 1. (a) Real part, (b) Real part contour, (c) Imaginary part, and (d) Imaginary part contour.
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Figure 2. Aspects of the analytical result of problem 2 in 3D and its contour for χ = 2, λ = 1, and
ς = 1. (a) Real part, (b) Real part contour, (c) Imaginary part, and (d) Imaginary part contour.

Figure 3. Aspects of the analytical result of problem 3 in 3D and its contour for χ = 2, λ = 1, and
ς = 1. (a) Real part, (b) Real part contour, (c) Imaginary part, and (d) Imaginary part contour.
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5. Conclusions

With the use of the HPTM, the approximate and analytical solutions to the fractional
Biswas–Milovic equations are successfully achieved in this study. Numerous domains,
including communications, all-optical rapid switching devices, nonlinear fibre optics, and
others, analyse the Biswas–Milovic equation. Many phenomena in biology, fluid flow,
economics, control theory, chemistry, the life sciences, and other branches of research and
engineering may now be well described using fractional calculus. An accurate simulation
of a physical phenomenon depends on both the current time and the past time history. Frac-
tional calculus can be used in this regard. Therefore, science and engineering may benefit
from any new solutions to fractional equations. This paper’s main contribution is to offer
a straightforward, trustworthy, and effective solution method for challenging fractional
partial differential equations. The results obtained with this innovative approaches have
greater accuracy in the numerical results and take less time and computational effort.
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