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Abstract: Let X be a linear space over K ∈ {R,C}, Y be a real or complex Banach space and f : Xn →
Y. With some fixed aji, Ci1 ...in ∈ K (j ∈ {1, . . . , n}, i, ik ∈ {1, 2}, k ∈ {1, . . . , n}), we study, using the
direct and the fixed point methods, the stability and the general stability of the equation f (a11x11 +

a12x12, . . . , an1xn1 + an2xn2) = ∑1≤i1,...,in≤2 Ci1 ...in f (x1i1 , . . . , xnin ), for all xjij ∈ X (j ∈ {1, . . . , n},
ij ∈ {1, 2}). Our paper generalizes several known results, among others concerning equations with
symmetric coefficients, such as the multi-Cauchy equation or the multi-Jensen equation as well as the
multi-Cauchy–Jensen equation. We also prove the hyperstability of the above equation in m-normed
spaces with m ≥ 2.

Keywords: Hyers–Ulam stability; generalized stability; functional equation; fixed point; nonlinear
operator; linear operator
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1. Introduction

A general linear equation of the form

f (ax + by) = A f (x) + B f (y), (1)

with a function f acting between linear spaces over the same fields, has a long history. It
has been studied for years by many mathematicians (see, e.g., [1–7]), e.g., it is known that,
roughly speaking, f is a solution of (1) if and only if there exists an additive function ϕ
and a constant δ such that f (x) = ϕ(x) + δ, ϕ(ax) = Aϕ(x), ϕ(bx) = Bϕ(x), for all x, and
(A + B− 1)δ = 0. In [8], the authors were studying a counterpart of (1) for multivariable
functions:

f (a11x11 + a12x12, . . . , an1xn1 + an2xn2) = ∑
1≤i1,...,in≤2

Ci1 ...in f (x1i1 , . . . , xnin), (2)

for all xjij ∈ X, j ∈ {1, . . . , n}, ij ∈ {1, 2}, where X, Y are linear spaces over a field K,
f : Xn → Y, and some fixed aji, Ci1 ...in ∈ K for all j ∈ {1, . . . , n}, i, ik ∈ {1, 2}, k ∈ {1, . . . , n}.

Our purpose in the paper is to study the stability and the general stability of (2).
Considering in general the stability problem we ask how much a slight disturbance of a
state affects that state. Many physical processes are described by functional equations and
while modeling such processes various deviations and errors occur. Therefore, it is natural
to deal with stability problems in such situations. Speaking about stability of functional
equations, one usually goes back to a problem posed in 1940 by Ulam (see [9]) which
concerned the stability of homomorphisms. The first answer formulated by Hyers in 1941
(see [10]) started very rich and advanced stability investigations. For a comprehensive
study of the subject we refer the reader, e.g., to the monograph [11].
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In our paper, we shall present two approaches to the stability problem – the so-called
direct method and a fixed point method. The first method we shall apply in Section 2 while
proving the Hyers–Ulam stability of (2), that is, when the equation is slightly perturbed
and the considered difference is approximated by a constant. Even though the experienced
reader could first have the impression that the computations here do not differ from those
used for solving the equation in [8], the nature of the present problem needs in fact more
sophisticated investigations.

The latter method we shall apply in Section 3 for proving the generalized stability
of (2), when the mentioned difference is approximated by a function.

In Section 4 we present a short proof of hyperstability in m-normed spaces with m ≥ 2.
For the convenience of the reader we recall here the definition of m-normed spaces, which
was introduced by A. Misiak (see [12]). For more details we refer the reader to [12,13]).

Let m ∈ N \ {1} and Y be an at least m-dimensional real linear space. If a mapping
‖·, . . . , ·‖ : Ym → R fulfils the following four conditions:

(i) ‖x1, . . . , xm‖ = 0 if and only if x1, . . . , xm are linearly dependent,
(ii) ‖x1, . . . , xm‖ is invariant under permutation of x1, . . . , xm,
(iii) ‖βx1, . . . , xm‖ = |β|‖x1, . . . , xm‖,
(iv) ‖x11 + x12, x2, . . . , xm‖ ≤ ‖x11, x2, . . . , xm‖+ ‖x12, x2, . . . , xm‖,
for every β ∈ R and x11, x12, x1, . . . , xm ∈ Y, then ‖·, . . . , ·‖ is called an m-norm on Y, and
the pair (Y, ‖·, . . . , ·‖) is said to be an m-normed space. We will use a well-known property
which immediately follows from the above definition, namely,

if x ∈ Y and ‖x, x2, . . . , xm‖ = 0, for all x2, . . . , xm ∈ Y, then x = 0.

The hyperstability phenomenon occurs when no deviation of a state affects that state
(see, e.g., [14–16]). Proving our result we improve a result from [17], where the stability
result was shown.

Our results generalize several known facts. Namely, as corollaries we obtain, for
example, the stability results for the multi-Cauchy (3), multi-Jensen (4) and multi-Cauchy–
Jensen (5) equations:

f (x11 + x12, . . . , xn1 + xn2) = ∑
1≤i1,...,in≤2

f (x1i1 , . . . , xnin), (3)

f
(1

2
x11 +

1
2

x12, . . . ,
1
2

xn1 +
1
2

xn2

)
= ∑

1≤i1,...,in≤2

1
2n f (x1i1 , . . . , xnin), (4)

f
(

x11 + x12, . . . , xk1 + xk2,
1
2

xk+1,1+
1
2

xk+1,2, . . . ,
1
2

xn1 +
1
2

xn2

)
(5)

= ∑
1≤i1,...,in≤2

1
2n−k f (x1i1 , . . . , xnin),

for all xjij ∈ X, j ∈ {1, . . . , n}, ij ∈ {1, 2} and fixed k ∈ {0, . . . , n}, where X, Y are linear
spaces over a field K and f : Xn → Y.

For the convenience of the reader, in what follows, we also cite a result from [8]
describing the solutions of (1).

Theorem 1. Let X, Y be linear spaces over a field K. Let aji ∈ K \ {0}, Ci1 ...in ∈ K for all
j ∈ {1, . . . , n}, i, ik ∈ {1, 2}, k ∈ {1, . . . , n}. A function f : Xn → Y satisfies (2) for all
xjij ∈ X, j ∈ {1, . . . , n}, ij ∈ {1, 2}, if and only if there exist k-additive functions gj1 ...jk : Xk → Y
(1 ≤ k ≤ n) and δ ∈ Y such that for all x1, . . . , xn ∈ X, k ∈ {1, . . . , n},

f (x1, . . . , xn) = δ +
n

∑
k=1

∑
{j1,...,jk}⊆{1,...,n}

j1<...<jk

gj1 ...jk (xj1 , . . . , xjk ),
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for each nonempty subset {j1, . . . , jk} of {1, . . . , n}, ij1 , . . . , ijk ∈ {1, 2} and xj1 , . . . , xjk ∈ X,

gj1 ...jk (aj1ij1
xj1 , . . . , ajk ijk

xjk ) = ∑
1≤ν1,...,νn≤2

νjl
:=ijl

,l=1,...,k

Cν1 ...νn gj1 ...jk (xj1 , . . . , xjk ),

and
δ
(

1− ∑
1≤i1,...,in≤2

Ci1 ...in

)
= 0. (6)

Unless stated differently, in the paper X will denote a linear space over the field of
real or complex numbers, and (Y, ‖ · ‖) will be a real or complex Banach space. By R+, N,
N0 we understand the sets of nonnegative real numbers, positive integers, nonnegative
integers, respectively. To shorten the statements we use the notation n := {1, . . . , n} for
n ∈ N.

2. Hyers–Ulam Stability of (2)

In what follows, let

(Φ f )(x11, . . . , xn1, x12, . . . , xn2) := f (a11x11 + a12x12, . . . , an1xn1 + an2xn2)

− ∑
i1,...,in∈2

Ci1 ...in f (x1i1 , . . . , xnin),

for x11, x12, . . . , xn1, xn2 ∈ X. Let us also denote C := ∑i1,...,in∈2 Ci1 ...in .
We present a quite general result not depending on the coefficients aji (we assume

only that they are non-zero) and Ci1 ...in . The price for this general approach is the size of
the approximating constant. In our first result, we will use the direct method to prove the
stability.

We start the section by recalling the Hyers–Ulam stability result for the multi-Cauchy
equation (see, e.g., [18,19]).

Lemma 1. Let (H,+) be an abelian group. Given ε > 0 assume that g : Hk → Y satisfies

‖g(x11 + x12, . . . , xk1 + xk2)− ∑
i1,...,ik∈2

g
(
x1i1 , . . . , xkik

)
‖ ≤ ε,

for all xj1, xj2 ∈ H, j ∈ k. Then there exists a k-additive function G : Hk → Y such that

‖g(x)− G(x)‖ ≤ 1
2k − 1

ε, x ∈ Hk.

Now, we can present the main result of this section.

Theorem 2. Given ε > 0, let f : Xn → Y be a mapping such that

‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2)‖ ≤ ε, (7)

for x11, x12, . . . , xn1, xn2 ∈ X. Then there exists a solution F : Xn → Y of (2) such that

‖ f (x1, . . . , xn)− f (0, . . . , 0)− F(x1, . . . , xn)‖ ≤ (3n + 2n+1 − 3) ε, (8)

for all x1, . . . , xn ∈ X. Moreover, if C 6= 1 then F is the unique solution of (2) such that f − F is
bounded.
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Proof. For each nonempty subset {j1, . . . , jk} of n with j1 < j2 < . . . < jk we define

gj1 ...jk (xj1 , . . . , xjk ) := ∑
A⊆{j1,...,jk}

(−1)k−|A| f
(
(xj1 , . . . , xjk )

A), (9)

where |A| := card(A), and

(xj1 , . . . , xjk )
A := (z1, . . . , zn), zl =


xl , for l ∈ A,

0, for l /∈ A,
A ⊆ {j1, ..., jk}.

One can show (see [8] (Proof of Theorem 1 or Remark 1)) that

n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

gj1 ...jk (xj1 , . . . , xjk ) = f (x1, . . . , xn)− f (0, . . . , 0). (10)

We will prove that for all ∅ 6= {j1, . . . , jk} ⊆ n and all xjij ∈ X, j ∈ n, ij ∈ 2,

‖gj1 ...jk (xj11 + xj12, . . . , xjk1 + xjk2)− ∑
i1,...,ik∈2

gj1 ...jk (xj1i1 , . . . , xjk ik )‖ ≤ εk, (11)

where εk := (4k + 2k − 2)ε.
First we will show that each function gj with j ∈ n is 4ε-additive, i.e., it satisfies

‖gj(xj1 + xj2)− gj(xj1)− gj(xj2)‖ ≤ 4ε, xj1, xj2 ∈ X. (12)

For J := {j}, xj1, xj2 ∈ X, on account of (7) we have

‖gj(aj1xj1 + aj2xj2)− gj(aj1xj1)− gj(aj2xj2)‖
=
∥∥ f
(
(aj1xj1 + aj2xj2)

J)− f
(
(aj1xj1)

J)− f
(
(aj2xj2)

J)+ f
(
0, . . . , 0

)∥∥
≤
∥∥∥ f
(
(aj1xj1 + aj2xj2)

J)− ∑
i1,...,in∈2

Ci1 ...in f
(
(xjij)

J)∥∥∥
+
∥∥∥− f

(
(aj1xj1)

J)+ ∑
i1,...,in∈2, ij :=1

Ci1 ...in f
(
(xj1)

J)
+ ∑

i1,...,in∈2, ij :=2
Ci1 ...in f

(
0, . . . , 0

)∥∥∥
+
∥∥∥− f

(
(aj2xj2)

J)+ ∑
i1,...,in∈2, ij :=1

Ci1 ...in f
(
0, . . . , 0

)
+ ∑

i1,...,in∈2, ij :=2
Ci1 ...in f

(
(xj2)

J)∥∥∥
+
∥∥∥ f
(
0, . . . , 0

)
− ∑

i1,...,in∈2, ij :=1
Ci1 ...in f

(
0, . . . , 0

)
− ∑

i1,...,in∈2, ij :=2
Ci1 ...in f

(
0, . . . , 0

)∥∥∥ ≤ 4ε.

Since aji 6= 0, we have (12).
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Now, for an arbitrary nonempty J = {j1, . . . , jk} ⊆ n we obtain∥∥∥gj1 ...jk (aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

− ∑
ij1 ,...,ijk∈2

gj1 ...jk (aj1ij1
xj1ij1

, . . . , ajk ijk
xjk ijk

)
∥∥∥

=
∥∥∥ ∑

A⊆J
(−1)k−|A| f

(
(aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

A)
− ∑

ij1 ,...,ijk∈2
∑

A⊆J
(−1)k−|A| f

(
(aj1ij1

xj1ij1
, . . . , ajk ijk

xjk ijk
)A)∥∥∥

=
∥∥∥ ∑

∅ 6=A⊆J
(−1)k−|A| f

(
(aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

A)
− ∑

ij1 ,...,ijk∈2
∑

∅ 6=A⊆J
(−1)k−|A| f

(
(aj1ij1

xj1ij1
, . . . , ajk ijk

xjk ijk
)A)

− (−1)k(2k − 1) f (0, . . . , 0)
∥∥∥

=
∥∥∥ ∑

∅ 6=A⊆J
(−1)k−|A|

[
f
(
(aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

A)
− ∑

ij1
,...,ijk

∈2

for j1,...,jk∈A

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A)]

− ∑
ij1 ,...,ijk∈2

∑
∅ 6=A⊆J

(−1)k−|A|
[

f
(
(aj1ij1

xj1ij1
, . . . , ajk ijk

xjk ijk
)A)

− ∑
A1⊆A

∑
ij1

,...,ijk
∈2

for j1,...,jk∈A1

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A1

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A1
)]

− (−1)k(2k − 1)
[

f (0, . . . , 0)− ∑
ν1,...,νn∈2

Cν1 ...νn f (0, . . . , 0)
]∥∥∥

≤ ∑
∅ 6=A⊆J

∥∥∥(−1)k−|A|
[

f
(
(aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

A)
− ∑

ij1
,...,ijk

∈2

for j1,...,jk∈A

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A)]

− ∑
ij1 ,...,ijk∈2

(−1)k−|A|
[

f
(
(aj1ij1

xj1ij1
, . . . , ajk ijk

xjk ijk
)A)

− ∑
A1⊆A

∑
ij1

,...,ijk
∈2

for j1,...,jk∈A1

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A1

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A1
)]∥∥∥

+ (2k − 1)
∥∥∥ f (0, . . . , 0)− ∑

ν1,...,νn∈2
Cν1 ...νn f (0, . . . , 0)

∥∥∥
≤ ∑

∅ 6=A⊆J

∥∥∥ f
(
(aj11xj11 + aj12xj12, . . . , ajk1xjk1 + ajk2xjk2)

A)
− ∑

ij1
,...,ijk

∈2

for j1,...,jk∈A

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A)∥∥∥

+ ∑
∅ 6=A⊆J

∑
ij1 ,...,ijk∈2

∥∥∥ f
(
(aj1ij1

xj1ij1
, . . . , ajk ijk

xjk ijk
)A)

− ∑
A1⊆A

∑
ij1

,...,ijk
∈2

for j1,...,jk∈A1

∑
ν1,...,νn∈2

νjl
:=ijl

, jl∈A1

Cν1 ...νn f
(
(xj1ij1

, . . . , xjk ijk
)A1
)∥∥∥

+ (2k − 1)ε

≤
(
2k − 1 + (2k − 1)2k + 2k − 1

)
ε =

(
4k + 2k − 2

)
ε.
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By Lemma 1, for every nonempty {j1, . . . , jk} ⊆ n and function gj1 ...jk given by (9) there
exists a k-additive function Gj1 ...jk : Xk → Y such that

‖gj1 ...jk (x)− Gj1 ...jk (x)‖ ≤ 1
2k − 1

εk, x ∈ Xk.

Putting

F(x1, . . . , xn) :=
n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

Gj1 ...jk (xj1 , . . . , xjk ),

and using (10) and (11) we obtain

‖ f (x1, . . . , xn)− f (0, . . . , 0)− F(x1, . . . , xn)‖

≤
n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

‖gj1 ...jk (xj1 , . . . , xjk )− Gj1 ...jk (xj1 , . . . , xjk )‖

≤
n

∑
k=1

(
n
k

)
εk

2k − 1
=

n

∑
k=1

(
n
k

)
(4k + 2k − 2)ε

2k − 1
=

n

∑
k=1

(
n
k

)
(2k + 2)ε

=
(
3n − 1 + 2 · (2n − 1)

)
ε = (3n + 2n+1 − 3)ε.

For the proof of the uniqueness, assume that C 6= 1 and suppose that F′ is another
function satisfying (2) and such that

‖ f (x1, . . . , xn)− f (0, . . . , 0)− F′(x1, . . . , xn)‖ ≤ M,

for some positive constant M ∈ R. Therefore, F′ is of the form (cf., Theorem 1)

F′(x1, . . . , xn) :=
n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

G′j1 ...jk (xj1 , . . . , xjk ),

for all x1, . . . , xn ∈ X, with k-additive functions G′j1 ...jk
and with δ′ = 0 in the case C 6= 1, on

account of (6). We have for all x1, . . . , xn ∈ X, l ∈ N,

‖F(lx1, . . . , lxn)− F′(lx1, . . . , lxn)‖ ≤ (3n + 2n+1 − 3)ε + M,∥∥∥ n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

(
Gj1 ...jk (lxj1 , . . . , lxjk )− G′j1 ...jk (lxj1 , . . . , lxjk )

)∥∥∥
≤ (3n + 2n+1 − 3)ε + M,

∥∥∥ln(G1...n(x1, . . . , xn)− G′1...n(x1, . . . , xn)
)

+
n−1

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

lk(Gj1 ...jk (xj1 , . . . , xjk )− G′j1 ...jk (xj1 , . . . , xjk )
)∥∥∥

≤ (3n + 2n+1 − 3)ε + M.

Dividing the above inequality by ln side by side and letting l tend to infinity we derive that
G1...n = G′1...n, and consequently,

∥∥∥ n−1

∑
k=1

∑
{j1,...,jk}⊂n

j1<...<jk

lk(Gj1 ...jk (xj1 , . . . , xjk )− G′j1 ...jk (xj1 , . . . , xjk )
)∥∥∥

≤ (3n + 2n+1 − 3)ε + M.
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Dividing the above inequality by ln−1 side by side and letting l tend to infinity we obtain

∑
{j1,...,jn−1}⊂n

j1<...<jn−1

Gj1 ...jn−1(xj1 , . . . , xjn−1) = ∑
{j1,...,jn−1}⊂n

j1<...<jn−1

G′j1 ...jn−1
(xj1 , . . . , xjn−1), (13)

for all x1, . . . , xn ∈ X. Fix an arbitrary {j1, . . . , jn−1} ⊂ n and let n \ {j1, . . . , jn−1} =: {j}.
Substituting xj := 0 in (13) we obtain Gj1 ...jn−1 = G′j1 ...jn−1

, and consequently,

∥∥∥ n−2

∑
k=1

∑
{j1,...,jk}⊂n

j1<...<jk

lk(Gj1 ...jk (xj1 , . . . , xjk )− G′j1 ...jk (xj1 , . . . , xjk )
)∥∥∥

≤ (3n + 2n+1 − 3)ε + M.

Proceeding analogously, we derive that all corresponding k-additive functions coincide,
which results in F = F′ and completes the proof.

Remark 1. A thorough inspection of the proof of Theorem 2 shows that in the case C = 1 we have a
better approximation. Namely, if f : Xn → Y is a mapping satisfying (7) for x11, x12, . . . , xn1, xn2 ∈
X, then there exists a solution F : Xn → Y of (2) such that

‖ f (x1, . . . , xn)− f (0, . . . , 0)− F(x1, . . . , xn)‖ ≤ (3n + 2n − 2) ε,

for all x1, . . . , xn ∈ X.

Remark 2. It is also easy to observe that in the case C = 1 the function F in (8) is not uniquely
determined. Indeed, each function F : Xn → Y,

F(x1, . . . , xn) :=
n

∑
k=1

∑
{j1,...,jk}⊆n

j1<...<jk

Gj1 ...jk (xj1 , . . . , xjk ) + δ′

with Gj1 ...jk defined as in the proof of Theorem 2 with δ′ ∈ Y such that

‖δ′‖ ≤ (2n − 1)ε

satisfies, on account of Remark 1, conditions (2) and (8).

Remark 3. By Theorem 2 and Remark 1 we obtain, for example, the Hyers–Ulam stability result for
multi-Jensen Equation (4). However, due to the general nature of our considerations, the obtained
estimation (3n + 2n − 2) ε is not optimal (cf., [20]).

3. Generalized Stability of (2) in Banach Spaces

This section provides some results concerning generalized stability with given ap-
proximation functions. Let us denote aj := aj1 + aj2 for j ∈ n, αz := (αz1, . . . , αzn), for
α ∈ K, z = (z1, . . . , zn) ∈ Xn, n ∈ N. We also keep the notation for Φ f and C from the
previous section.

Theorem 3. Suppose that C 6= 0, aj 6= 0, j ∈ n. Let f : Xn → Y and θ : X2n → R+ be mappings
satisfying the inequality

‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2)‖ ≤ θ(x11, . . . , xn1, x12, . . . , xn2), (14)
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for x11, x12, . . . , xn1, xn2 ∈ X. Assume, further, that for some s ∈ {−1, 1} (depending on aj, C)
we have

ε∗(x1, ... , xn) :=
∞

∑
m=0

θ
(
asm+ s−1

2
1 x1, ... , asm+ s−1

2
n xn, asm+ s−1

2
1 x1, ... , asm+ s−1

2
n xn

)
|C|sm+ s+1

2
< ∞, (15)

for all x1, . . . , xn ∈ X and

lim
m→∞

θ
(
asm

1 x11, . . . , asm
n xn1, asm

1 x12, . . . , asm
n xn2

)
|C|sm = 0, (16)

for all x11, x12, . . . , xn1, xn2 ∈ X. Then there exists a unique solution F : Xn → Y of (2) such that

‖ f (x1, . . . , xn)− F(x1, . . . , xn)‖ ≤ ε∗(x1, . . . , xn), (17)

for all x1, . . . , xn ∈ X.

Proof. Putting xj1 = xj2 = xj for j ∈ n in (14) we obtain

‖ f
(
a1x1, . . . , anxn

)
− C f (x1, . . . , xn)‖ ≤ θ(x1, . . . , xn, x1, . . . , xn),

for all x1, . . . , xn ∈ X, hence,∥∥∥∥ f
(
a1x1, . . . , anxn

)
C

− f (x1, . . . , xn)

∥∥∥∥ ≤ 1
|C| θ(x1, . . . , xn, x1, . . . , xn), (18)

for all x1, . . . , xn ∈ X. Similarly, putting xj1 = xj2 =
xj
aj

for j ∈ n in (14) we obtain∥∥∥ f (x1, . . . , xn)− C f
( x1

a1
, . . . ,

xn

an

)∥∥∥ ≤ θ
( x1

a1
, . . . ,

xn

an
,

x1

a1
, . . . ,

xn

an

)
, (19)

for all x1, . . . , xn ∈ X.
Define

(T ξ)(x1, . . . , xn) :=
1

Cs ξ(as
1x1, . . . , as

nxn),

for all ξ ∈ YXn
, x1, . . . , xn ∈ X, and

ε(x1, . . . , xn) :=


1
|C| θ(x1, . . . , xn, x1, . . . , xn), for s = 1,

θ
( x1

a1
, . . . ,

xn

an
,

x1

a1
, . . . ,

xn

an

)
, for s = −1,

for all x1, . . . , xn ∈ X. Then, for any ξ, µ : Xn → Y, x1, . . . , xn ∈ X we have

‖(T ξ)(x1, . . . , xn)− (T µ)(x1, . . . , xn)‖

=
1
|C|s

∥∥ξ
(
as

1x1, . . . , as
nxn
)
− µ

(
as

1x1, . . . , as
nxn
)∥∥,

and by (18) and (19),

‖(T f )(x1, . . . , xn)− f (x1, . . . , xn)‖ ≤ ε(x1, . . . , xn),

for all x1, . . . , xn ∈ X.
Next, put

(Λη)(x1, . . . , xn) :=
1
|C|s η

(
as

1x1, . . . , as
nxn
)
,
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for all η ∈ RXn
+ , x1, . . . , xn ∈ X. As one can check,

(Λmε)(x1, . . . , xn) =
ε
(
asm

1 x1, . . . , asm
n xn

)
|C|sm

=


θ(am

1 x1, . . . , am
n xn, am

1 x1, . . . , am
n xn)

|C|m+1 , for s = 1,

|C|mθ
( x1

am+1
1

, . . . ,
xn

am+1
n

,
x1

am+1
1

,
xn

am+1
n

)
, for s = −1,

for all x1, . . . , xn ∈ X, m ∈ N0.
The operators T : YXn → YXn

and Λ : RXn
+ → RXn

+ satisfy the assumptions of [21]
(Theorem 1), therefore, there exists a unique fixed point F : Xn → Y of T such that (17)
holds. Moreover,

F(x1, . . . , xn) = lim
m→∞

(T m f )(x1, . . . , xn),

for all x1, . . . , xn ∈ X.
Now, we prove that for any x11, x12, . . . , xn1, xn2 ∈ X and m ∈ N0 we have∥∥(Φ(T m f )

)
(x11, . . . , xn1, x12, . . . , xn2)

∥∥
≤

θ
(
asm

1 x11, . . . , asm
n xn1, asm

1 x12, . . . , asm
n xn2

)
|C|sm .

(20)

Since the case m = 0 is just (14), fix an m ∈ N0 and assume that (20) holds for any
x11, x12, . . . , xn1, xn2 ∈ X. Then for any x11, x12, . . . , xn1, xn2 ∈ X we obtain∥∥(Φ(T m+1 f )

)
(x11, . . . , xn1, x12, . . . , xn2)

∥∥
=

∥∥(T (T m f )
)
(a11x11 + a12x12, . . . , an1xn1 + an2xn2)

− ∑
i1,...,in∈2

Ci1 ...in
(
T (T m f )

)
(x1i1 , . . . , xnin)

∥∥
=

∥∥∥ 1
Cs (T

m f )
(
as

1(a11x11 + a12x12), . . . , as
n(an1xn1 + an2xn2)

)
− ∑

i1,...,in∈2
Ci1 ...in

1
Cs (T

m f )(as
1x1i1 , . . . , as

nxnin)
∥∥∥

=
1
|C|s

∥∥(Φ(T m f )
)
(as

1x11, . . . , as
nxn1, as

1x12, . . . , as
nxn2)

∥∥
≤

θ
(
as(m+1)

1 x11, . . . , as(m+1)
n xn1, as(m+1)

1 x12, . . . , as(m+1)
n xn2

)
|C|s(m+1)

,

and thus, (20) holds for any x11, x12, . . . , xn1, xn2 ∈ X and m ∈ N0.
Letting m→ ∞ in (20) and using (16) we finally obtain

(ΦF)(x11, . . . , xn1, x12, . . . , xn2) = 0,

for all x11, x12, . . . , xn1, xn2 ∈ X, which means that F satisfies (2).
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For the proof of the uniqueness, suppose that F′ is another function satisfying (2) and
(17). We have for all x1, . . . , xn ∈ X, l ∈ N0,

‖F(x1, . . . , xn)− F′(x1, . . . , xn)‖

=
∥∥∥ 1

Csl F(asl
1 x1, . . . , asl

n xn)−
1

Csl F′(asl
1 x1, . . . , asl

n xn)
∥∥∥

≤ 1
|C|sl

(
‖F(asl

1 x1, . . . , asl
n xn)− f (asl

1 x1, . . . , asl
n xn)‖

+ ‖F′(asl
1 x1, . . . , asl

n xn)− f (asl
1 x1, . . . , asl

n xn)‖
)

≤ 2
∞

∑
m=0

θ
(
as(m+l)+ s−1

2
1 x1, . . . , as(m+l)+ s−1

2
n xn, as(m+l)+ s−1

2
1 x1, . . . , as(m+l)+ s−1

2
n xn

)
|C|s(m+l)+ s+1

2

= 2
∞

∑
m=l

θ
(
asm+ s−1

2
1 x1, . . . , asm+ s−1

2
n xn, asm+ s−1

2
1 x1, . . . , asm+ s−1

2
n xn

)
|C|sm+ s+1

2
,

hence letting l → ∞ and using (15) we obtain F = F′, which finishes the proof.

From Theorem 3 we can derive several consequences.

Remark 4. Putting n = 2 in Theorem 3 we obtain [5] (Theorem 3).

Remark 5. Applying Theorem 3 with aj1 = aj2 = 1 (aj = 2), for j ∈ n and Ci1 ...in = 1,
i1, . . . , in ∈ 2, (C = 2n) we obtain immediately the well known result on generalized stability of
the multi-Cauchy Equation (3) characterizing multiadditive mappings (see [18,19]).

Remark 6. The conditions imposed on θ in Theorem 3 exclude its application for the multi-Jensen
Equation (4). Indeed, with C = 1 and aj = 1, j ∈ n, the series ∑∞

m=0 θ
(
x1, . . . , xn, x1, . . . , xn

)
, for

all x1, . . . , xn ∈ X, is not convergent for any non-zero θ, therefore condition (15) is not satisfied.
However, this situation changes completely if at least for one j ∈ n there is aj1 = aj2 = 1, that is,
we have the multi-Cauchy–Jensen Equation (5) with k ∈ n. Namely, we have the following.

Corollary 1. Let f : Xn → Y and θ : X2n → R+ be mappings satisfying for a fixed k ∈ n the
inequality ∥∥∥ f

(
x11 + x12, . . . , xk1 + xk2,

1
2

xk+1,1 +
1
2

xk+1,2, . . . ,
1
2

xn1 +
1
2

xn2

)
− ∑

i1,...,in∈2

1
2n−k f (x1i1 , . . . , xnin)

∥∥∥ ≤ θ(x11, . . . , xn1, x12, . . . , xn2),

for x11, x12, . . . , xn1, xn2 ∈ X. Assume, further, that for some s ∈ {−1, 1} we have

ε∗(x1, . . . , xn) :=
∞

∑
m=0

θ
(
2αm x1, . . . , 2αm xk, xk+1, . . . , xn, 2αm x1, . . . , 2αm xk, xk+1, . . . , xn

)
2k(αm+1)

< ∞,

for x1, . . . , xn ∈ X, where αm := sm + s−1
2 , and

lim
m→∞

θ
(
2smx11, ... , 2smxk1, xk+1,1, ... , xn1, 2smx12, ... , 2smxk2, xk+1,2, ... , xn2

)
2k(sm)

= 0,

for x11, x12, . . . , xn1, xn2 ∈ X. Then there exists a unique solution F : Xn → Y of (5) such that

‖ f (x1, . . . , xn)− F(x1, . . . , xn)‖ ≤ ε∗(x1, . . . , xn), x1, . . . , xn ∈ X.
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Proof. It is enough to take aj1 = aj2 = 1 for j ∈ n (a1 = . . . = ak = 2, ak+1 = . . . = an =

1), Ci1 ...in = 1
2n−k for all i1, . . . , in ∈ 2, (C = 2k), and apply Theorem 3.

Remark 7. Analyzing the proof of Theorem 3 we derive that for the results concerning the multi-
Cauchy and multi-Cauchy–Jensen equations (cf., Remark 5 and Corollary 1) it is enough to assume
about X that it is a commutative semigroup uniquely divisible by 2 with the identity element 0 (see
also [18] (Theorem 3.3), [22] (Theorem 6)). In fact, if s = 1 in case (3) we may assume even less,
namely, we do not need to assume divisibility in X (see [18] (Theorem 3.2)).

Theorem 3 with θ(x11, . . . , xn1, x12, . . . , xn2) =: ε > 0 and with additional assumption
that |C| 6= 1 gives immediately the classical Hyers–Ulam stability result for (2). Namely,
we have the following corollary.

Corollary 2. Let ε > 0, C 6= 0, |C| 6= 1, aj 6= 0 for j ∈ n. If f : Xn → Y satisfies the inequality

‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2)‖ ≤ ε, x11, x12, . . . , xn1, xn2 ∈ X,

then there exists a unique solution F : Xn → Y of (2) such that

‖ f (x1, . . . , xn)− F(x1, . . . , xn)‖ ≤
ε

|1− |C|| , x1, . . . , xn ∈ X.

Proof. From (15) we have

ε∗(x1, . . . , xn) =


∞

∑
m=0

ε

|C|m+1 , for |C| > 1

∞

∑
m=0
|C|mε, for 0 < |C| < 1

=


ε

|C| − 1
, for |C| > 1

ε

1− |C| , for 0 < |C| < 1

=
ε

|1− |C|| , for C ∈ R \ {−1, 0, 1}.

Remark 8. If |C| > 1 then ε∗(x1, . . . , xn) =
ε

|C|−1 and Corollary 2 coincides with the result of
Ciepliński from [17] (Theorem 2).

From Corollary 2 we obtain Hyers–Ulam stability for multi-additive functions (C = 2n) and
multi-Cauchy–Jensen mappings (C = 2k).

Remark 9. Comparing the results in Corollary 2 and Theorem 2 we observe that the approximating
constant in the theorem is much bigger. This is, however, the price for assuming less about the
coefficients.

Remark 10. Studying the proof of Theorem 3 one can make several further observations:

◦ We do not demand that the coefficients aji are non-zero (only aj 6= 0).
◦ If C = 0 then for the series in (15) to be convergent we take s = −1. If also al 6= 0 for l ∈ n ,

then in Theorem 3, f satisfies the condition

‖ f (x1, . . . , xn)‖ ≤ θ
( x1

a1
, . . . ,

xn

an
,

x1

a1
, . . . ,

xn

an

)
,



Symmetry 2023, 15, 19 12 of 14

for all x1, . . . , xn ∈ X, and in Corollary 2, f is bounded by ε. Both, in the theorem and in the
corollary, we have then

F(x1, . . . , xn) = lim
m→∞

(T m f )(x1, . . . , xn)

= lim
m→∞

Cm f
( x1

am
1

, . . . ,
xn

am
n

)
= 0,

for all x1, . . . , xn ∈ X.
◦ If a1 = . . . = an = 0 (and |C| > 1, for (15) to be satisfied), we take s = 1, and we have∥∥∥ f (x1, . . . , xn)−

f (0, . . . , 0)
C

∥∥∥ ≤ 1
|C| θ(x1, . . . , xn, x1, . . . , xn), (21)

for all x1, . . . , xn ∈ X, in Theorem 3, and with θ(x1, . . . , xn, x1, . . . , xn) = ε, in Corollary 2.
Then

F(x1, . . . , xn) = lim
m→∞

(T m f )(x1, . . . , xn) = lim
m→∞

1
Cm f (0, . . . , 0) = 0.

From (21), it follows that in Theorem 3, f is majorized by the function

Xn 3 (x1, . . . , xn) 7→
1
|C| θ(x1, . . . , xn, x1, . . . , xn) +

θ(0, . . . , 0)
|C− 1||C| ,

and in Corollary 2, it is simply bounded.
◦ If a1 = . . . = ak = 0 (1 ≤ k < n) and al 6= 0 for l ∈ {k + 1, . . . , n} (and |C| > 1) then

s = 1 and the approximating function F depends only on n− k last variables

F(x1, . . . , xn) = lim
m→∞

(T m f )(x1, . . . , xn)

= lim
m→∞

1
Cm f (0, . . . , 0, am

k+1xk+1, . . . , am
n xn),

for all x1, . . . , xn ∈ X. We have an analogous approach for aj1 , . . . , ajk = 0 and ajl 6= 0
for l ∈ {k + 1, . . . , n}, where {j1, . . . , jk} is a nonempty subset of n and {jk+1, . . . , jn} :=
n \ {j1, . . . , jk}.

At the end of this section we should point out that without any additional assumptions
imposed on θ we are not able to obtain any stability result. Our Theorem 3 describes some
sufficient conditions for the generalized stability of the general n-linear Equation (2). The
set of conditions affects considerably the method of the proof. And the fact that we were
not able to apply Theorem 3 for proving stability of (4) was, therefore, caused by the
assumptions imposed on θ, and consequently, by the method of the proof, and not by θ
itself. In Section 2, by use of the direct method we proved for example the Hyers–Ulam
stability (with θ(x11, . . . , xn1, x12, . . . , xn2) ≡ ε) of (4) (cf., Remark 3).

4. Hyperstability of (2) in m-Normed Spaces with m ≥ 2

In [17] (compare also [23]), the author has proved the Hyers–Ulam stability of (2) in
m-Banach spaces with m ≥ 2 under the additional assumption that |∑i1,...,in∈2 Ci1,··· ,in | > 1.
In fact, we are able to obtain more, namely, the hyperstability of (2), that is, we do not only
obtain an approximation of f by a function satisfying the equation, but f itself has to satisfy
already the equation.

In order to simplify the notation we write

‖x, z‖ := ‖x, z1, . . . , zm−1‖, x ∈ Y, z = (z1, · · · , zm−1) ∈ Ym−1.

Now, we are in the position to present the main result of this section
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Theorem 4. Let ε > 0, m ∈ N \ {1} and (Y, ‖·, . . . , ·‖) be an m-normed space. Assume also that
f : Xn → Y is a mapping satisfying

‖ f (a11x11 + a12x12, . . . , an1xn1 + an2xn2)− ∑
i1,...,in∈2

Ci1,...,in f (x1i1 , . . . , xnin), z‖ ≤ ε,

for all x11, x12, . . . , xn1, xn2 ∈ X and all z ∈ Ym−1. Then f satisfies (2).

Proof. Fix x11, x12, . . . , xn1, xn2 ∈ X and z ∈ Ym−1. Then, for all k ∈ N,

‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2), kz‖ ≤ ε,

therefore, on account of properties (ii) and (iii) of the m-norm,

km−1‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2), z‖ ≤ ε,

and consequently, for all k ∈ N,

‖(Φ f )(x11, . . . , xn1, x12, . . . , xn2), z‖ ≤ ε

km−1 .

Hence, letting k → ∞, for every x11, x12, . . . , xn1, xn2 ∈ X and z ∈ Ym−1, we obtain ‖(Φ f )
(x11, . . . , xn1, x12, . . . , xn2), z‖ = 0, which means that f satisfies (2).

5. Concluding Remarks

In our paper, we were dealing with the stability problem for (2) obtaining various
approximations. Often, this kind of investigations originate a discussion on the optimality
of the estimates. In our results, e.g., the optimality of the constants occurring in Theorem 2
or Corollary 2 is an open problem.

One can observe the connections between general n-linear functional equations and
the behaviors of approximate homomorphisms and derivations on Banach algebras (see,
e.g., [24–26]), therefore it is recommended to proceed with some research in this direction.
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