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Abstract: A new approach is adopted to completely classify the Lagrangian associated with the static
cylindrically symmetric spacetime metric via Noether symmetries. The determining equations repre-
senting Noether symmetries are analyzed using a Maple algorithm that imposes different conditions
on metric coefficients under which static cylindrically symmetric spacetimes admit Noether symme-
tries of different dimensions. These conditions are used to solve the determining equations, giving
the explicit form of vector fields representing Noether symmetries. The obtained Noether symmetry
generators are used in Noether’s theorem to find the expressions for corresponding conservation
laws. The singularity of the obtained metrics is discussed by finding their Kretschmann scalar.
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1. Introduction

In 1915, Albert Einstein proposed a gravitational theory, known as the theory of
general relativity. In contrast to Newton’s theory, in which gravity was considered as a
force of attraction between massive objects, the general theory of relativity states that the
observed gravitational effect between masses occurs because of their warping of spacetime.
A precise relationship between the properties of matter and spacetime geometry is provided
by Einstein’s field equations (EFEs), which are ten partial differential equations and are
considered as the centerpiece of general relativity. The concepts of Riemannian geometry
are used to formulate these equations such that the spacetime metric describes the geometric
properties of spacetime.

The solutions of EFEs are those spacetime metrics that result from solving these
equations and correspond to some physically realistic source of energy-momentum tensor.
Finding the exact solutions of these equations is not an easy task, the reason being their
non-linear nature. In literature, the exact solutions of these equations are found using some
assumptions [1], the most common being the imposition of symmetry restrictions on the
metric of spacetime. A specific type of vector fields, known as Killing vector fields (KVFs),
is used to represent these symmetry restrictions. These vector fields preserve the metric of
spacetime and satisfy the relation [2]:

gαβ,γVγ + gαγVγ
,β + gβγVγ

,α = 0. (1)

In the above equation, V is a KVF, gαβ is the metric tensor and α and β varies from
0 to 3. Killing vector fields are directly related with conservation laws. For example,
every timelike KVF gives the conservation of energy, spacelike KVFs correspond to linear
momentum, while a rotational KVF yields angular momentum in a spacetime.

Though KVFs are crucial in studying the conservation laws in spacetimes, sometimes
they do not provide a complete list of conservation laws. In such a case, one needs some
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conformal transformation that is applied to the metric of spacetime and then KVFs are
calculated for the conformally transformed metric. For example, the Friedmann metric
does not possess a timelike KVF giving conservation of energy; however, an appropriate
conformal transformation can be applied to this metric and then KVFs of the tranformed
metric can be found to recover the energy conservation. This process is equivalent to find
the conformal vector fields (CVFs) of the original metric directly. A conformal vector field
V is defined by [2]:

gαβ,γVγ + gαγVγ
,β + gβγVγ

,α = 2λ(xa), (2)

where λ denotes a smooth map that depends on spacetime coordinates. In particular, if λ is
a constant function, the conformal vector field V becomes a homothetic vector field (HVF).
For different geometries represented by spacetime metrics, the above defined symmetries
are widely studied in the literature [3–11].

In addition to the above defined spacetime symmetries, there is another symmetry,
known as Noether symmetry, that is found to be very helpful in the classification of
Lagrangians associated with spacetime metrics as well as in the study of differential
equations. As their role in finding the solution of complicated differential equations is
concerned, Noether symmetries help in reducing their orders, the number of independent
variables and in linearization of nonlinear differential equations. Moreover, the well-
known Noether’s theorem provides a direct relation between Noether symmetries and
conservation laws.

If V is a vector field of the form V = ξ∂s + Va∂xa and V[1] = V + Va
,s∂ẋa with

Va
,s = DVa − ẋaDξ is its first prolongation, then V is called a Noether symmetry of the

Lagrangian L(s, xa, ẋa) if we can find a function F(s, xa), called gauge function, such that:

V[1]L + (Dsξ)L = DsF, (3)

where Ds = ∂s + ẋa∂xa , ξ and Va depend on the geodesics parameter s and the four
spacetime coordinates xa and the derivative w.r.t s is denoted by a dot. For a spacetime
metric ds2 = gαβdxαdxβ, the corresponding Lagrangian is given by L = gαβ ẋα ẋβ. If V is a
Noether symmetry, then its associated conserved quantity is obtained as [12]:

I = ξL + (Va − ẋaξ)
∂L
∂ẋa − F. (4)

In the literature, some relations have been proved between Noether and spacetime
symmetries. For example, it is well known that for any spacetime metric, the set of KVFs is
contained in the set of Noether symmetries of its associated Lagrangian. Moreover, if λ
denotes the homothety constant, then V + 2λs∂s is a Noether symmetry of a Lagrangian if
and only if V is a HVF admitted by the corresponding metric [13]. By a proper Noether
symmetry, we mean a Noether symmetry that is not a KVF and is not associated with any
HVF. A general relation between conformal and Noether symmetries is found only for the
case of Minkowski metric. It admits fifteen CVFs, and this set of fifteen CVFs is a proper
subset of the set of seventeen Noether symmetries for its associated Lagrangian. However,
no general relation could be found between conformal and Noether symmetries for non flat
spacetimes. For a detailed study of Noether symmetries in some well known spacetimes
and their relations with spacetime symmetries, we refer [14–18].

In this paper, we explore Noether symmetries of the most general static cylindrically
symmetric metric using a new approach, which we call Rif tree approach. The details of Rif
tree approach are given in the next section after deriving the Noether symmetry equations.

2. Noether Symmetry Equations and the Rif Tree

The general static cylindrically symmetric metric can be written in the form [1]:

ds2 = −A2 dt2 + dr2 + B2 dθ2 + C2 dz2, (5)
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with three minimum KVFs given by V(1) = ∂t, V(2) = ∂θ and V(3) = ∂z. Out of these
three KVFs, V(1) gives the energy conservation, while V(2) and V(3) correspond to linear
momenta in two spatial directions. In the above metric, A, B and C depend on r only and
are non-zero. Moreover, if any two of these coefficients are same, the above metric becomes
static plane symmetric metric possessing an additional rotational KVF. However, we restrict
our study to only the case when A 6= B 6= C. Below is the Lagrangian associated with the
metric (5).

L = −A2 ṫ2 + ṙ2 + B2 θ̇2 + C2 ż2, (6)

and the corresponding geodesic equations are:

ẗ = 0,

ẍ− AA′ ṫ2 − BB′ ẏ2 − CC′ ż2 = 0,

B ÿ + B′ ẋẏ = 0,

C z̈ + C′ ẋż = 0. (7)

We use the Lagrangian given in Equation (6) in Equation (3) to obtain the following
Noether symmetry equations:

ξ,t = ξ,r = ξ,θ = ξ,z = F,s = 0, (8)

2A′ V1 + 2AV0
,t = Aξs, (9)

2B′ V1 + 2BV2
,θ = Bξs, (10)

2C′ V1 + 2CV3
,z = Cξs, (11)

2V1
,1 = ξs, (12)

A2V0
,r −V1

,t = 0, (13)

A2V0
,θ − B2V2

,t = 0, (14)

A2V0
,z − C2V3

,t = 0, (15)

V1
,θ + B2V2

,r = 0, (16)

V1
,z + C2V3

,r = 0, (17)

B2V2
,z + C2V3

,θ = 0, (18)

2A2V0
,s = −Ft, (19)

2V1
,s = Fr, (20)

2B2V2
,s = Fθ , (21)

2C2V3
,s = Fz. (22)

The solution of these equations give the explicit form of Noether symmetry vector
field V. However, because of their non-linearity, these equations cannot be solved generally
unless some conditions are imposed on the metric coefficients A, B and C. In almost all
the references cited in the introduction, the Noether symmetry equations were solved by
using such restrictions on metric functions and then integrating these equations under
these restrictions. The disadvantage of this method is that one do not get a complete list of
metrics possessing different Noether algebras. Moreover, the direct integration of Noether
symmetry equations is quite cumbersome. Instead of this, here we adopt a new approach
by first analyzing these equations by a Maple algorithm (Rif algorithm) which provides
a list of all metrics admitting different dimensional Noether algebras. This list of metrics
is obtained by imposing some constraints satisfied by A, B and C in the form of a tree,
known as Rif tree. After that, we solve the Noether symmetry equations for all these
metrics to obtain a complete classification of the mentioned spacetimes. For the above set
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of equations, we have obtained the Rif tree given in Figure 1. The expressions for the nodes
p1, p2, . . . , p15 are given below:

p1 = C′, p2 = C′′, p3 = A′′, p4 = B′′, p5 = BB′′ − B′2, p6 = CC′′ − C′2,

p7 = AA′′ − A′2, p8 = B′, p9 = CC′′′ − C′C′′, p10 = AA′′′ − A′A′′,

p11 = A′′C− A′C′, p12 = A′, p13 = BB′′′ − B′B′′, p14 = C′′B− B′C′,

p15 = BA′′ − B′A′.

Figure 1. Rif tree.

The branches of the Rif tree give rise to different conditions on the functions A, B and C.
For example, for the first branch, labeled by 1, we have pi 6= 0, for i = 1, . . . , 5. Equivalently,
C′ 6= 0, C′′ 6= 0, A′′ 6= 0, B′′ 6= 0 and BB′′ − B′2 6= 0. Thus, all static cylindrically
symmetric metrics satisfying these constraints belong to branch 1 and one need to solve
Equations (8)–(22) under these conditions on A, B and C to find all such metrics and their
associated Noether symmetries. Similarly, all other branches give different conditions on
metric coefficients, and the solutions of Equations (8)–(22) under these conditions give a
different list of static cylindrically symmetric metrics and their Noether symmetries. After
solving the determining equations for all the 33 branches of the Rif tree, we have concluded
that static cylindrically symmetric spacetimes posses Noether algebras of dimensions 4, 5,
6 and 9. We summarize our results in the forthcoming sections.

3. Four Noether Symmetries

Some branches of the Rif tree give rise to metrics possessing only four Noether symme-
tries. These four Noether symmetries include the three minimum KVFs along with a trivial
Noether symmetry V(0) = ∂s. These four symmetries are obtained in branches 2, 3, 13, 22,
24 and 25. The conserved quantities corresponding to these four symmetries V(0), . . . , V(3)
are, respectively, obtained as:

I0 = A2 ṫ2 − ṙ2 − B2 θ̇2 − C2 ż2,

I1 = −2A2 ṫ,

I2 = 2B2 θ̇,

I3 = 2C2 ż.
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4. Five Noether Symmetries

There are many metrics, obtained while using the conditions of different branches to
solve Equations (8)–(22), that possess five Noether symmetries. Four of these five symme-
tries are same as the minimum four Noether symmetries, while the additional symmetry
for all metrics is denoted by V(4) in Tables 1 and 2, where we list all the obtained metrics
along with the explicit form of the additional symmetry and the conserved quantity. For
the metrics where V(4) is independent of s, it denotes a KVF. In case V(4) is of the form
s∂s + X, it gives rise to a homothetic vector field X. In all other cases, V(4) gives a proper
Noether symmetry.

In a recent study about HVFs of the same spacetime, it was observed that there are
many static cylindrically symmetric metrics admitting four HVFs, including three minimum
KVFs and one proper HVF [19]. Out of these metrics, four are same as the metrics 5a, 5c, 5h
and 5m obtained during our classification. These are the metrics for which V(4) is of the
form s∂s + X, where X is the HVF that is exactly same as obtained in Ref. [19].

To add some discussion about the singularity of the obtained metrics, we find their
corresponding Kretschmann scalar. It is a quadratic scalar invariant, denoted by K and
it is defined as K = RabcdRabcd; Rabcd being the Riemann tensor. Note that the repeated
indices a, b, c and d indicate summation over these indices. For the metric 5a, the value of K
is obtained as:

K =
4

(a1r + 2a3
)4

[
4a2

5(a1 − 2a5)
2 + 4a2

7(a1 − 2a7)
2 + 4a2

9(a1 − 2a9)
2

+ (a1 − 2a5)
2(a1 − 2a7)

2 + (a1 − 2a5)
2(a1 − 2a9)

2 + (a1 − 2a7)
2(a1 − 2a9)

2
]

(23)

As the term a1r + 2a3 is involved in the values of the metric functions A, B and C, thus
it is non-zero. Therefore, K is finite and the spacetime has no singularity. Additionally, K is
always non-zero because a1 6= 2a5 6= 2a7 6= 2a9.

For the metric 5b, the value of K is found to be:

K = 4
[

a4
2 + a4

4 + a4
6 + a2

2a2
4 + a2

4a2
6 + a2

2a2
6

]
. (24)

One can see that this value of K is always finite and positive, showing that the metric
5b has no singularity. For metric 5c, the Kretschmann scalar is obtained as:

K =
4a4

1

(a1r + a2
)4

[
a2

3 + a2
4 + a2

3a2
4 + a2

3(a3 − 1)2 + a2
4(a4 − 1)2

]
, (25)

which is again finite as a1r + a2 6= 0, otherwise, A, B and C vanish. Thus, this metric is also
regular. One can see that for the metrics 5h and 5m, the Kretschmann scalar K has a similar
structure to that metric 5c. Thus, these metrics are also regular.

For metric 5d, the Kretschmann scalar becomes:

K =
4

C2

[
C′′2 + a4

2C2 +
A′2C′2

A2

]
(26)

As A 6= 0 and C 6= 0, therefore the above value of K is always finite, giving a regular
metric. Similarly, the metrics 5e, 5f, 5g, 5i, 5j, 5l, 5o, 5p, 5q and 5u are also regular because
the Kretschmann scalar for these metrics is similar to that of the metric 5d.

For the metrics 5k, 5r, 5s and 5v, the Kretschmann scalar has a similar structure. Out
of these, the Kretschmann scalar K for metric 5k turned out to be:

K = 4
[

a2
3 +

a2
1C′2

B2C2

]
, (27)
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which is finite because B 6= 0 and C 6= 0. Hence, all the metrics 5k, 5r, 5s,and 5v are regular.
The value of the Kretschmann scalar for the metrics 5n and 5t is the same in structure

as is obtained as:

K =
4a2

1a2
3

A2C2 , (28)

which is finite because A 6= 0 and C 6= 0. Thus, the metrics 5n and 5t are also regular. Hence
all the metrics of this section are regular at every point.

Table 1. Metrics with five Noether symmetries.

No/Branch Metric Additional Symmetry
and Gauge Function Conserved Quantity

5a A = (a1r + 2a3)
1−2 a5

a1 , B = (a1r + 2a3)
1−2 a7

a1 , V(4) = s∂s +
r
2 ∂r I4 = −sL

1 C = (a1r + 2a3)
1−2 a9

a1 .

where a1, a5, a7, a9 6=, 0 a5 6= a7 6= a9

and a1 6= 2ai , for i = 5, 7, 9

5b A = a1ea2r , B = a3ea4r , C = a5ea6r , V(4) = −a2t∂t + ∂r I4 = 2A2 ṫta2 + 2ṙ

4 where a2 6= a4 6= a6 and ai 6= 0, for i = 1, . . . , 6. −a4θ∂θ − a6z∂z. −2B2 θ̇θa4 − 2żzC2a6.

5c A = Ba3 , B = a1r + a2, C = Ba4 , V(4) = s∂s +
t
2 (1− a3)∂t I4 = −sL− ṫtA2(1− a3)

5 where a3 6= 0, 1; a4 6= 0, 1;

a1 6= 0 and a3 6= a4 + B
2a1

∂r +
z
2 (1− a4)∂z, +ṙ B

a1
+ żzC2(1− a4)

5d A = a1ea2r + a3e−a2r , ; B = const = κ; V(4) =
s

2κ2 ∂θ , F = θ I4 = θ̇s− θ

6 C = C(r), C
...
C − ĊC̈ 6= 0 where a1, a2, a3 6= 0,

5e A = A(r), A
...
A− ȦÄ 6= 0; B = const = κ; V(4) =

s
2κ2 ∂θ , F = θ I4 = θ̇s− θ

7 C = a1ea2r + a3e−a2r where a1, a2, a3 6= 0,

5f A = a1ea2r + a3e−a2r ; B = const = κ; V(4) =
s

2κ2 ∂θ , F = θ I4 = θ̇s− θ

8 C = a4ea5r + a6e−a5r where a2, a4, a5, a6 6= 0,

5g A = a1ea2r + a3e−a2r ; B = const = κ; V(4) =
s

2κ2 ∂θ , F = θ I4 = θ̇s− θ

9 C = a4ea5r where a1, a2, a3, a4, a5 6= 0,

5h A = a1r + a2, B = Aa3 V(4) = s∂s +
A

2a1
∂r I4 = A2sṫ2 + A

a1
ṙ− sṙ2

12 C = Aa4 , + θ
2 (1− a3)∂θ +

z
2 (1− a4)∂z, +θθ̇B2(1− a3)− sθ̇2B2

where a1 6= 0 ai 6= 0, 1 for i = 3, 4 +żzC2(1− a4)− sż2C2

5i A = const = κ, B = a1ea2r + a3e−a2r V(4) = − s
2κ2 ∂t, F = t I4 = ṫs− t

16 C = C(r), C
...
C − ĊC̈ 6= 0

where a1, a2, a3 6= 0,

5j A = const = κ, B = a1ea2r + a3e−a2r V(4) = − s
2κ2 ∂t, F = t, I4 = ṫs− t

17 C = a4ea5r + a6e−a5r

where a1, a2, a3 6= 0,

5k A = const = κ, B = a1r + a2 V(4) = − s
2κ2 ∂t, F = t I4 = ṫs− t

17 C = a4ea3r + a5e−a3r

where a1, a2, a3 6= 0,

5l A = const = κ, B = a1ea2r V(4) = − s
2κ2 ∂t, F = t I4 = ṫs− t

18 C = a3ea4r + a5e−a4r

where a1, a2, a3, a4 6= 0,
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Table 2. Metrics with five Noether symmetries.

No/Branch Metric Additional Symmetry
and Gauge Function Conserved Quantity

5m A = Ca4 , B = Ca3 , V(4) = s∂s +
t
2 (1− a4)∂t I4 = −ṫtA2(1− a4) + A2sṫ2

21 C = a1r + a2, + C
2a1

∂r +
θ
2 (1− a3)∂θ , +ṙ C

a1
− sṙ2 + θ̇θB2(1− a3)

where a1 6= 0 and ai 6= 0, 1 for i = 3, 4 −sB2 θ̇2 − sC2 ż2

5n A = a1r + a2, B = const = κ, V(4) =
s

2κ2 ∂θ , F = θ I4 = θ̇s− θ

26 C = a3r + a4,
where ai 6= 0, for i = 1, 3

5o A = a1ea2r + a3e−a2r , V(4) =
s

2κ2 ∂z, F = z I4 = żs− z
28 B = B(r), B

...
B − B̈Ḃ 6= 0, C = const = κ,

5p A = A(r), A
...
A− ÄȦ 6= 0, V(4) =

s
2κ2 ∂z, F = z I4 = żs− z

29 B = a1ea2r + a3e−a2r , C = const = κ,
5q A = a1ea2r + a3e−a2r , V(4) =

s
2κ2 ∂z, F = z I4 = żs− z

30 B = a4ea5r + a6e−a5r , C = const = κ,
where ai 6= 0 for i = 2, 4, 5, 6

5r A = a1ea2r + a3e−a2r , V(4) =
s

2κ2 ∂z, F = z I4 = żs− z
30 B = a4r + a5, C = const = κ,

where ai 6= 0 for i = 1, 2, 3, 4, 5
5s A = a1r + a2, V(4) =

s
2κ2 ∂z, F = z I4 = żs− z

30 B = a3ea4r + a5e−a4r , C = const = κ,
where ai 6= 0 for i = 1, 2, 3, 4, 5

5t A = a1r + a2, V(4) =
s

2κ2 ∂z, F = z I4 = żs− z
30 B = a3r + a4, C = const = κ,

where ai 6= 0 for i = 1, 2, 3, 4,
5u A = a1ea2r + a3e−a2r , V(4) =

s
2κ2 ∂z, F = z I4 = żs− z

31 B = a4ea5r , C = const = κ,
where ai 6= 0 for i = 1, 2, 3, 4, 5

5v A = a1r + a2, V(4) =
s

2κ2 ∂z, F = z I4 = żs− z
31 B = a3ea4r , C = const = κ,

where ai 6= 0 for i = 1, 2, 3, 4

5. Six Noether Symmetries

Like the case of five Noether symmetries, there are many branches of the Rif tree,
which give rise to the metrics admitting two additional symmetries along with the four
minimum Noether symmetries. These two extra symmetries (denoted by V(4) and V(5)),
their associated conserved quantities and the explicit form of the metrics are listed in
Table 3. For the metrics of branches 10, 19 and 32, V(4) is a KVF, while for other branches it
corresponds to a HVF. In all branches, V(5) is a proper Noether symmetry.

For the metrics 6a, 6c, 6d, 6e, 6g, 6h, 6i and 6j, V(4) is of the form s∂s + X, where X is
the HVF admitted by the corresponding metric and for all these eight metrics, this HVF is
same as obtained in Ref. [19].

To check the singularity of the metric 6a, we find its Kretschmann scalar given by:

K =
4

(a1r + 2a2
)4

[
4a2

6(a1 − 2a6)
2 + 4a2

8(a1 − 2a8)
2 + (a1 − 2a6)

2(a1 − 2a8)
2
]

, (29)

which is finite as a1r + 2a2 6= 0. It shows that this metric has no singularity. For the metrics
6d and 6i, K has a similar structure, showing that these metrics are also regular. For metric
6b, K receives the value:

K = 4
[

a4
2 + a4

4 + a2
2a2

4

]
, (30)

which is clearly finite, showing that the metric has no singularity. Similarly, 6f and 6k, being
similar to 6b, are also regular metrics.
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The value of K for the metrics 6c, 6e, 6g, 6h, and 6j has a similar structure. Out of these,
the Kretschmann scalar for the metric 6c is found to be:

K =
16a2

1(2a3 − a4)
2(4a2

3 + a2
4)

a4
4(a1r + a2)4

, (31)

which is finite because a1r + a2 6= 0 and a4 6= 0. Hence, the metrics 6c, 6e, 6g, 6h and 6j
have no singularity.

Table 3. Metrics with six Noether symmetries.

No/Branch
No Metric Additional Symmetries

and Gauge Function Conserved Quantities

6a A = (a1r + 2a2)
1− 2a6

a1 , B = Const. = κ, V(4) = s∂s +
r
2 ∂r +

θ
2 ∂θ , I4 = sA2 ṫ2 + rṙ− 2sṙ2

6 C = (a1r + 2a2)
1− 2a8

a1 , where a1, a6, a8 6= 0, V(5) =
s

2κ2 ∂θ F = θ +θθ̇B2 − sθ̇2B2 − sC2 ż2

a6 6= a8 and a1 6= 2ai , for i = 6, 8. I5 = θ̇s− θ

6b A = a1ea2r , B = const,= κ, C = a3ea4r , V(4) = −a2t∂t + ∂r − a4z∂z, I4 = 2a2 ṫtA2 + 2ṙ− 2a4zżC2

10 where a1, a2, a3, a4 6= 0 and a2 6= a4 V(5) =
s

2κ2 ∂θ , F = θ, I5 = sθ̇ − θ

6c A = a1r + a2, B = cost = κ, C = A1− 2a3
a4 , V(4) = s∂s +

A
2a1

∂r +
θ
2 ∂θ , I4 = sA2 ṫ2 + A

a1
ṙ− sṙ2

14 where a1, a3, a4 6= 0 and a4 6= 2a3. V(5) =
s

2κ2 ∂θ , F = θ, +B2θθ̇ − sB2 θ̇2 − sC2 ż2

I5 = sθ̇ − θ

6d A = const. = κ, B = (a1r + 2a5)
1− 2a7

a1 , V(4) = s∂s +
t
2 ∂t +

r
2 ∂r , I4 = 2A2(sṫ− t)

15 C = (a1r + 2a5)
1− 2a9

a1 , where a1, a7, a9 6= 0, V(5) = − s
2κ2 ∂t, F = t I5 = −A2tṫ + sA2 ṫ2 + rṙ

a7 6= a9 and a1 6= 2ai , for i = 7, 9. −sṙ2 − sB2 θ̇2 − sC2 ż2

6e A = cost = κ, B = a1r + a2, C = B1− 2a3
a4 , V(4) = s∂s +

t
2 ∂t +

B
2a1

∂r , I4 = −A2tṫ + sA2 ṫ2 + B
a1

ṙ

16 where a1, a3, a4 6= 0 and a4 6= 2a3. V(5) = − s
2κ2 ∂t, F = t, −sṙ2 − sB2 θ̇2 − sC2 ż2

I5 = sṫ− t

6f A = const = κ, B = a1ea2r , C = a3ea4r , V(4) = ∂r − a2θ∂θ − a4z∂z, I4 = 2ṙ− 2a2B2θθ̇ − 2a4C2zż

19 where a1, a2, a3, a4 6= 0 and a2 6= a4 V(5) = − s
2κ2 ∂r , F = t I5 = sṫ− t

6g A = C1− 2a3
a4 , B = cost = κ, C = a1r + a2, V(4) = s∂s +

C
2a1

∂r +
θ
2 ∂θ , I4 = sA2 ṫ2 + C

a1
ṙ− sṙ2

23 where a1, a3, a4 6= 0 and a4 6= 2a3. V(5) =
s

2κ2 ∂θ , F = θ, +B2θθ̇ − sB2 θ̇2 − sC2 ż2

I5 = sθ̇ − θ

6h A = cost = κ, B = C1− 2a3
a4 , C = a1r + a2, V(4) = s∂s +

C
2a1

∂r +
t
2 ∂t, I4 = −A2tṫ + sA2 ṫ2 + C

a1
ṙ

27 where a1, a3, a4 6= 0 and a4 6= 2a3. V(5) = − s
2κ2 ∂t, F = t −sṙ2 − sB2 θ̇2 − sC2 ż2

I5 = sṫ− t

6i A = (a1r + 2a2)
1− 2a6

a1 , B = (a1r + 2a2)
1− 2a8

a1 , V(4) = s∂s +
r
2 ∂r +

z
2 ∂z, I4 = sA2 ṫ2 + rṙ− sṙ2

28 C = Const. = κ, where a1, a6, a8 6= 0, V(5) =
s

2κ2 ∂z, F = z −sθ̇2B2 + zC2 ż− sC2 ż2

a6 6= a8 and a1 6= 2ai , for i = 6, 8. I5 = sż− z

6j A = B1− 2a3
a4 , B = a1r + a2, C = cost = κ, V(4) = s∂s +

B
2a1

∂r +
z
2 ∂z, I4 = sA2 ṫ2 + B

a1
ṙ− sṙ2

29 where a1, a3, a4 6= 0 and a4 6= 2a3. V(5) =
s

2κ2 ∂z, F = t, −sB2 θ̇2 + C2zż− sC2 ż2

I5 = sż− z

6k A = a1ea2r , B = a3ea4r , C = const. = κ, V(4) = −a2t∂t + ∂r − a4θ∂θ , I4 = 2a2 A2tṫ + 2ṙ− 2a4B2θθ̇

32 where a1, a2, a3 6= 0 a2 6= a4 V(5) =
s

2κ2 ∂z I5 = sż− z

6. Nine Noether Symmetries

Three branches labeled by 11, 20 and 33 produce metrics possessing five additional
symmetries along with the four minimum Noether symmetries. For each metric, we
have obtained four additional KVFs, represented by V(4), . . . , V(7) and one proper Noether
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symmetry, denoted by V(8) in Tables 4 and 5. For all the metrics of this section, the
Kretschmann scalar is obtained as K = 12a4

1, which shows that all these metrics are regular.

Table 4. Metrics with nine Noether symmetries.

No/Branch Metric Additional Symmetries Conserved Quantities

9a A = a2ea1r + a3e−a1r , V(4) = sin(mz)cos(nt) A′
nA ∂t + sin(mz)sin(nt)∂r I4 = −2 AA′

n ṫsin(mz)cos(nt) + 2ṙsin(mz)sin(nt)

11 +cos(mz)sin(nt) Aa4
mC ∂z. +2 a4CA

m żcos(mz)sin(nt)

B = const = κ, V(5) = cos(mz)cos(nt) A′
nA ∂t + cos(mz)sin(nt)∂r I5 = −2 AA′

n ṫcos(mz)cos(nt) + 2ṙcos(mz)sin(nt)

−sin(mz)sin(nt) Aa4
mC ∂z −2 a4CA

m żsin(mz)sin(nt)

C = a4
a1
(a2ea1r − a3e−a1r) V(6) = −sin(mz)sin(nt) A′

nA ∂t + sin(mz)cos(nt)∂r

+cos(mz)cos(nt) Aa4
mC ∂z, I6 = 2 AA′

n ṫsin(mz)sin(nt) + 2ṙsin(mz)cos(nt)

where m = 2a4
√

a2a3, +2ż a4 AC
m cos(mz)cos(nt).

n = 2a1
√

a2a3 V(7) = cos(mz)sin(nt) A′
nA ∂t + cos(mz)cos(nt)∂r I7 = 2 AA′

n ṫcos(mz)sin(nt) + 2ṙcos(mz)cos(nt)

−sin(mz)cos(nt) Aa4
mC ∂z, −2 a4CA

m żsin(mz)cos(nt).

and a1, a2, a3, a4 6= 0

V(8) =
s

2κ2 ∂θ , F = θ I8 = sθ̇ − θ

9b A = const = κ, V(4) = sin(mz)enθ∂r − sin(mz)enθ B′
nB ∂θ I4 = 2ṙsin(mz)enθ − 2θ̇ BB′

n sin(mz)enθ

20 cos(mz)enθ Ba4
mC ∂z. +2 a4CB

m żcos(mz)enθ

B = a2ea1r + a3e−a1r , V(5) = cos(mz)enθ∂r − cos(mz)enθ B′
nB ∂θ I5 = 2ṙcos(mz)enθ − 2θ̇cos(mz)enθ BB′

n

−sin(mz)enθ Ba4
mC ∂z −2 a4CB

m żsin(mz)enθ

C = a4
a1
(a2ea1r − a3e−a1r) V(6) = sin(mz)e−nθ∂r + sin(mz)e−nθ B′

nB ∂θ

+cos(mz)e−nθ Ba4
mC ∂z, I6 = 2ṙsin(mz)e−nθ + 2θ̇sin(mz)e−nθ BB′

n

where m = 2a4
√

a2a3, +2ż a4 BC
m cos(mz)e−nθ .

n = 2a1
√

a2a3 V(7) = cos(mz)e−nθ∂r + cos(mz)e−nθ B′
nB ∂θ I7 = 2ṙcos(mz)e−nθ + 2θ̇cos(mz)e−nθ BB′

n

−sin(mz)e−nθ Ba4
mC ∂z, −2 a4CB

m żsin(mz)e−nθ .

and a1, a2, a3, a4 6= 0

V(8) = − s
2κ2 ∂t, F = t I8 = sṫ− t

Table 5. Metrics with nine Noether symmetries.

No/Branch Metric Additional Symmetries Conserved Quantities

9c A = a2ea1r + a3e−a1r , V(4) = sin(my)cos(nt) A′
nA ∂t + sin(my)sin(nt)∂r I4 = −2 AA′

n ṫsin(my)cos(nt) + 2ṙsin(my)sin(nt)

33 +cos(my)sin(nt) Aa4
mB ∂z. +2 a4 BA

m θ̇cos(my)sin(nt)

B = a4
a1
(a2ea1r − a3e−a1r), V(5) = cos(my)cos(nt) A′

nA ∂t + cos(my)sin(nt)∂r I5 = −2 AA′
n ṫcos(my)cos(nt) + 2ṙcos(my)sin(nt)

−sin(my)sin(nt) Aa4
mB ∂z −2 a4 BA

m θ̇sin(my)sin(nt)

C = const = κ V(6) = −sin(my)sin(nt) A′
nA ∂t + sin(my)cos(nt)∂r

+cos(my)cos(nt) Aa4
mB ∂z, I6 = 2 AA′

n ṫsin(my)sin(nt) + 2ṙsin(my)cos(nt)

where m = 2a4
√

a2a3, +2θ̇ a4 AB
m cos(my)cos(nt).

n = 2a1
√

a2a3 V(7) = −cos(my)sin(nt) A′
nA ∂t + cos(my)cos(nt)∂r I7 = 2 AA′

n ṫcos(my)sin(nt) + 2ṙcos(my)cos(nt)

−sin(my)cos(nt) Aa4
mB ∂z, −2 a4 BA

m θ̇sin(my)cos(nt).

and a1, a2, a3, a4 6= 0

V(8) =
s

2κ2 ∂θ , F = θ I8 = sθ̇ − θ

7. Summary and Discussion

We have achieved a complete classification of static cylindrically symmetric spacetimes
via their Noether symmetries. For this purpose, instead of the conventional method, we
have used a new approach based on a Maple algorithm, which provided a number of
metrics possessing different Noether algebras with dimensions 4, 5, 6 and 9. The expressions
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for the conserved quantities associated with all the obtained Noether symmetries are found
by using Noether’s theorem. The authors of Ref. [20] classified the same spacetime via its
Noether symmetries using direct integration technique. Though the algebra of Noether
symmetries is obtained the same as in our current investigations, the metrics obtained in
our study through the Rif tree approach are more generalized than those given in Ref. [20].
In fact, one may easily recover all the metrics of Ref. [20] by taking specific values of the
parameters involved in the obtained metrics of the current classification.

The present classification also provides a complete list of static cylindrically symmetric
metrics along with their Killing and homothetic symmetries. The dimension of Killing
algebra turned out to be 3, 4 and 7. For the metrics of branches 4, 10, 19 and 32, we
have obtained 4-dimensional Killing algebra, while the metrics of branches 11, 20 and 33
admit 7-dimensional Killing algebra. For all other metrics, the Killing algebra is minimum
dimensional, that is three-dimensional. Moreover, it can be seen that there are twelve
different metrics (four in Section 4 and eight in Section 5) admitting proper HVFs. In all
these cases, V(4) represents a symmetry of the form 2λs∂s + V with the homothety constant
λ = 1

2 . As stated in the introduction part, in such a case V represents a proper HVF. This
result has been verified by comparing the HVFs obtained during the current classification
with those of Ref. [19]. Thus, the present analysis shows that the classification of the
Lagrangian associated to a spacetime metric via Noether symmetries also gives a complete
classification of the corresponding metric through its Killing and homothetic symmetries.
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