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Abstract: Geodesic vector fields and other distinguished vector fields on a Riemann manifold were
used in the study of free motions on such a manifold, and we applied the geometric Hamilton–Jacobi
theory for the search of geodesic vector fields from Hamilton–Jacobi vector fields and the same for
closed vector fields. These properties were appropriately extended to the framework of Newtonian
and generalised Newtonian systems, in particular systems defined by Lagrangians of the mechanical
type and velocity-dependent forces. Conserved quantities and a generalised concept of symmetry
were developed, particularly for Killing vector fields. Nonholonomic constrained Newtonian systems
were also analysed from this perspective, as well as the relation among Newtonian vector fields and
Hamilton–Jacobi equations for conformally related metrics.
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1. Introduction

The active interface between mathematics and theoretical physics during the last
few years has been very useful for both disciplines. This interaction is very efficient,
and in particular, the modern tools of differential geometry have been used to deal with
old problems of classical and quantum mechanics, offering a new perspective to analyse
conceptual problems, as, for instance, the existence and non-uniqueness of the solution of
the inverse problem for a given system of second-order differential equations describing a
time evolution. However, many physical theories have also motivated mathematicians, a
good example being the theory of group representations, because of its usefulness in the
symmetry theory of quantum mechanics.

Riemannian geometry is very relevant in the geometric reformulation of classical
systems of a mechanical type, a Riemann metric allowing us the definition, in an intrinsic
way, of kinetic energy. Free motions of holonomic constrained systems correspond to
geodesic curves of their associated Levi-Civita connection, and the physical systems under
the action of external forces can also be dealt with, the curves of motion corresponding
to integral curves of an appropriately defined dynamical vector field. In this sense, the
Riemannian approach is closer to the elementary and original ideas of Newton on the
description of mechanical systems.

The importance of geodesics leads to the study of geodesic vector fields in a Riemann
manifold, i.e., vector fields whose integral curves are geodesics. These vector fields are
used in the study of Yamabe solitons (see, e.g., [1]) and are also useful in many other fields
of physics, where they appear as solutions of the eikonal equation and even in medical
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imaging [2]. Unfortunately, these autoparallel vector fields have scarcely been studied
in the literature, and we hope that the application of well-known ingredients of classical
mechanics, as the Hamilton–Jacobi equation, conveniently reformulated in a geometric
way, may shed some light on the characterisation and determination of such an interesting
class of vector fields. This is the main aim of the first part of this paper.

Once the study of these notions on the geodesic flow is performed, it is natural to ask
about their possible extension to more general second-order vector fields, in particular those
coming from mechanical systems subjected to external forces. We developed this extension
including the case of nonholonomic mechanical systems with nonholonomic constraints.
Then, we studied not only the geodesic case, for which many results are known, but also
the unknown case of mechanical and generalized mechanical systems, with external forces
possibly depending on the velocity.

The structure of this article is as follows. In Section 2, we quickly review the theory
of the Levi-Civita connection on a Riemann manifold, mainly to fix the notation to be
used. A quick review of the geometric approach to Lagrangian and Hamiltonian systems
is given, and the geodesic flow appears as the flow of a Hamiltonian vector field. In
Section 3, we review the properties of some distinguished vector fields in Riemannian
manifolds with a special emphasis on geodesic vector fields, which are our main aim.
The geometric approach to the Hamilton–Jacobi theory, whose fundamental ideas were
developed in a series of articles elaborated by the authors and their coworkers, is reviewed
in Section 4, where the concept of the Hamilton–Jacobi vector field is also introduced.
The search for Hamilton–Jacobi vector fields for the second-order geodesic vector field
and their relations with autoparallel vector fields are studied in Section 5, and the relation
between a geodesic vector field, its tangent lift, and the second-order geodesic vector field
is studied in Section 6. General Newtonian dynamical systems, the existence of Noether
conserved quantities, and Newtonian vector fields and their properties are studied in
Section 7, and an application for studying some relations between two conformally related
metrics is studied in Section 8. Conclusions and an outlook on future work are given in
Section 9. Finally, in order for the paper to be self-contained, we added an Appendix A
with some definitions and mathematical results on tensor fields along maps.

2. Notation, Basic Definitions, and Geometric Preliminaries
2.1. Riemannian Manifolds and Levi-Civita Connection

Let M be an n-dimensional differentiable manifold. A Riemannian metric on M is
a two-times covariant symmetric tensor field g, which is positive definite, hence non-
degenerate. The pair (M, g) is called a Riemann manifold.

Non-degeneracy implies that the map ĝ : TM // T∗M from the tangent bundle,
τM : TM //M, to the cotangent bundle, πM : T∗M //M, defined by 〈ĝ(v), w〉 = g(v, w),
where v, w ∈ Tx M, is a vector bundle isomorphism. As ĝ is a fibred map over the identity
on M, it induces a natural map between the C∞(M) modules of sections of the tangent and
cotangent bundles, denoted by the same letter ĝ : X(M) //Ω1(M): 〈ĝ(X), Y〉 = g(X, Y),
i.e., ĝ(X) = i(X)g.

Given a local chart (U, q1, . . . , qn) on M, we can consider the coordinate basis of X(U),
usually denoted {∂/∂qj | j = 1, . . . , n}, and its dual basis for Ω1(U), {dqj | j = 1, . . . , n}.

Then, any v ∈ Tq M, with q ∈ U, is v =
n

∑
j=1

vj (∂/∂qj)
q, and any ζ ∈ T∗q M is ζ =

n

∑
j=1

pj dqj
|q,

with vj = 〈dqj
|q, v〉 and pj = 〈ζ, (∂/∂qj)q〉 being the usual velocities and momenta.

The local coordinate expression for the Riemannian metric g in the open set U is:

g =
n

∑
i,j=1

gij(q) dqi ⊗ dqj, with gij(q) = g(q)
(

∂

∂qi ,
∂

∂qj

)
, i, j = 1, . . . , n = dim M. (1)
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The arc-length of a curve γ : R //M, γ(t) = (q1(t), . . . , qn(t)), between the points
γ(t1) and γ(t2) is given by

s(γ) =
∫ t2

t1

‖γ̇(t)‖ dt =
∫ t2

t1

√
g(γ̇(t), γ̇(t)) dt =

∫ t2

t1

√√√√ n

∑
i,j=1

gij(γ(t)) q̇i(t) q̇j(t) dt, (2)

i.e., the classical local expression for the arc-length ds is given by ds2 =
n

∑
i,j=1

gij dqidqj.

Recall (see, e.g., [3,4]) that a linear connection ∇ on a manifold M is a map ∇ :
X(M)×X(M) //X(M), which is R-linear on both inputs, C∞(M)-linear on the first one,
and satisfies the rule ∇X( f Y) = (X f )Y + f ∇XY, for X, Y ∈ X(M) and f ∈ C∞(M). It is
easy to prove that∇XY|U depends only on X and Y on U ⊂ M; hence, in a local coordinate
system (U, x1, . . . , xn), the connection symbols Γi

jk are defined by

∇ ∂
∂xi

(
∂

∂xj

)
=

n

∑
l=1

Γl
ji

∂

∂xl , i, j = 1, . . . , n , (3)

while ∇XY is given by

∇XY = ∇∑n
i=1 Xi ∂

∂xi

(
n

∑
j=1

Y j ∂

∂xj

)
=

n

∑
i,k=1

Xi

(
∂Yk

∂xi +
n

∑
j=1

Y jΓk
ji

)
∂

∂xk . (4)

Recall that∇XY is known as the covariant derivative of the vector field Y with respect
to the vector field X. Observe from the above local expression that the value of ∇XY on a
point q ∈ M only depends, with respect to X, on Xq.

Moreover, each linear connection has associated a (1,2) tensor field T, called the torsion
tensor, which is skew-symmetric in the two subscripts, and it is defined as follows:

T(X, Y) = ∇XY−∇YX− [X, Y]. (5)

A connection∇ on a Riemann manifold (M, g) is metric when, given X, Y, Z ∈ X(M),
we have that LX(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ), (6)

where LX denotes Lie derivative with respect to the vector field X. This is equivalent to
saying that ∇X g = 0. Recall that the operator ∇X, for X ∈ X(M), can be extended as
a derivation that commutes with the tensor contractions, on all the tensor fields on M.
In particular, ∇X g is defined by the expression:

∇X(g(Y, Z)) = (∇X g)(Y, Z) + g(∇XY, Z) + g(Y,∇XZ), Y, ZX(M) ,

because g is non-degenerate. See, e.g., [3,4] for more details on the covariant derivative of
tensor fields.

In the particular case of (6) in which the two arguments Y and Z coincide, that is,
Y = Z, we obtain

LX(g(Y, Y)) = g(∇XY, Y) + g(Y,∇XY) = 2g(∇XY, Y). (7)

It is a fundamental result that every Riemann manifold (M, g) is endowed with a
uniquely determined torsionless metric connection∇, called the Levi-Civita connection,
which is given by the so-called Koszul formula:

2g(∇XY, Z) = LX(g(Y, Z)) + LY(g(Z, X))−LZ(g(X, Y))

− g(X, [Y, Z]) + g(Y, [Z, X]) + g(Z, [X, Y]),
(8)
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for every X, Y, Z ∈ X(M). In terms of local coordinates on M, the Koszul formula gives

2g
(
∇∂/∂qi

(
∂

∂qj

)
,

∂

∂qk

)
=

∂gjk

∂qi +
∂gik

∂qj −
∂gij

∂qk , i, j, k = 1, . . . , n,

and, by the above definition of connection symbols (usually called second-class Christoffel
symbols),

Γi
jk =

1
2

n

∑
l=1

gil
(

∂gl j

∂qk +
∂glk

∂qj −
∂gjk

∂ql

)
, i, j, k = 1, . . . , n, (9)

where
n

∑
j=1

gijgjk = δi
k. On the other hand, the vanishing of the torsion tensor is equivalent

to the symmetry property of the Christoffel symbols: Γi
jk = Γi

kj. As indicated above, these

symbols Γi
jk locally determine ∇XY for every pair of vector fields X, Y ∈ X(M) by making

use of (4).

2.2. Geodesics: Definition and Second-Order Geodesic Vector Field

Let γ : I //M be a curve in the manifold M. For each t ∈ I, γ̇(t) ∈ Tγ(t)M denotes
the tangent vector to the curve γ at the point γ(t). This shows that we can define a curve

γ̇ on TM, γ̇ : I // TM, by γ̇(t) =
d
ds

γ(s)|s=t. As τM ◦ γ̇ = γ, the curve γ̇ defines a vector

field along γ, i.e., γ̇ ∈ X(γ). However, we remark that the curve γ̇ on TM can also be
considered as the lift to the tangent bundle TM of the curve γ. To distinguish both roles
of γ̇, when necessary, we will denote such a lifted curve as γT(t) = (γ(t), γ̇(t)) instead of
simply γ̇. Observe that

γT(t) = Ttγ

(
d
ds

)
t
.

Let ∇ be a connection on a manifold M. It is a remarkable fact (see, e.g., [3,4] for
details, or have a look at the expression (4) above) that the value of ∇XY at a point
x ∈ M, (∇XY)(x), only depends, with respect to X, on the value of X at such a point and,
with respect to Y, on the value of Y along any segment of the curve representing the tangent
vector X(x) ∈ Tx M.

Then, for each v ∈ Tx M, we can define ∇vY = (∇XY)(x), where X is any vector field
X ∈ X(M) such that X(x) = v. Moreover, given a curve γ in M, if Y ∈ X(γ), we can define
∇γ̇Y ∈ X(γ) by (∇γ̇Y)(t) = ∇γ̇(t)Y, while when Y ∈ X(M), ∇γ̇Y ∈ X(γ) is defined as
(∇γ̇Y)(t) = ∇γ̇(t)(Y ◦ γ). Similarly, if X, Y ∈ X(γ), we can define ∇XY ∈ X(γ) as the
vector field along γ given by (∇XY)(t) = ∇X(t)Y.

This allows us to introduce the concept of the parallelism of a vector field along a
curve as follows: a vector field, Y ∈ X(γ), along the curve γ : I //M, is parallel along γ
if ∇γ̇(t)Y = 0, for all t ∈ I. Observe that this expression is correct by the comments in the
previous paragraph.

In the particular case of Y = γ̇ ∈ X(γ), every curve γ such that its velocity vector field
is parallel along the curve, that is ∇γ̇(t)γ̇ = 0 for all t ∈ I, is called a geodesic.

Definition 1. We call geodesics of the connection ∇ the curves γ in M whose velocity vector field
is parallel along the curve, ∇γ̇γ̇ = 0.

In the case of a Riemann manifold (M, g) and its Levi-Civita connection∇, the geodesic
curves are uniquely defined by the Riemannian metric g, and they are local extrema of the
distance function as defined in (2).

Recalling the expression (4), given a curve γ : I //M, γ(s) = (q1(s), . . . , qn(s)), which
we can assume to be parametrised by its arc-length s, that is ‖γ̇(s)‖ = 1 for every s, we have
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∇γ̇ γ̇ =
n

∑
l=1

(
n

∑
j=1

q̇j ∂q̇l

∂qj +
n

∑
j,k=1

Γl
jk q̇j q̇k

)
∂

∂ql ◦ γ =
n

∑
l=1

(
q̈ l +

n

∑
j,k=1

Γl
jk q̇j q̇k

)
∂

∂ql ◦ γ .

Then, the local equation of the geodesic lines, ∇γ̇ γ̇ = 0, is the second-order
differential equation:

q̈ i +
n

∑
j,k=1

Γi
jk q̇j q̇k = 0 , i = 1, . . . , n . (10)

If we consider a reparametrisation of a solution of (10) with a generic parameter τ
defined, as a given function of s, by

ds
dτ

= ξ(τ),

we have
d
ds

=
1
ξ

d
dτ

=⇒ d2

ds2 =
1
ξ

d
dτ

(
1
ξ

d
dτ

)
= −dξ/dτ

ξ3
d

dτ
+

1
ξ2

d2

dτ2 ,

and the corresponding differential Equation (10) for geodesics in such a generic parametri-
sation is

d2qi

dτ2 +
n

∑
j,k=1

Γi
jk

dqj

dτ

dqk

dτ
= λ(τ)

dqi

dτ
, i = 1, . . . , n , (11)

with

λ(τ) =
d2s
dτ2

(
ds
dτ

)−1
, or equivalently, λ(s) = −d2τ

ds2

(
ds
dτ

)2
. (12)

Hence, as λ = 0 if, and only if, τ = a s + b, we can conclude that, as indicated in [5–7],
a geodesic curve is parametrised by a parameter that is an affine function of its arc-length,
τ = a s + b, where a, b ∈ R, i.e., a geodesic is essentially parametrised by its arc-length s.

2.3. Lagrangian Dynamical Systems

A Lagrangian dynamical system is a pair (M, L), where M is a differentiable manifold,
the configuration manifold, and L : TM //R is the Lagrangian function. The associated
dynamical system is defined with the following elements (see [8,9] for details):

1. The Cartan Lagrangian one-form θL = dvL = dL ◦ S, with S being the vertical
endomorphism on the tangent bundle TM.

2. The Cartan Lagrangian two-form ωL = −dθL.
3. The energy function EL = ∆L− L, with ∆ the Liouville vector field on TM.
4. Assuming that ωL is a symplectic form (see below), a unique vector field Γ ∈ X(TM)

solution to the Hamilton dynamical equation is defined:

i(Γ)ωL = dEL . (13)

The vector field Γ is called the Lagrangian dynamical vector field, and it is the
Hamiltonian vector field, defined by the energy function EL, for the Hamiltonian sys-
tem (TM, ωL, EL). Furthermore, Γ is an SODE vector field in TM, that is its integral curves
σ : R // TM are canonical lifts to TM of curves γ : R //M, i.e., σ = (γ, γ̇) = γT .

In local natural coordinates, (qi, vi), of TM, the expressions of the above elements are:

θL =
n

∑
i=1

∂L
∂vi dqi, ωL = −

n

∑
i,j=1

(
∂2L

∂qj∂vi dqj ∧ dqi +
∂2L

∂vj∂vi dvj ∧ dqi
)

, EL =
n

∑
i=1

vi ∂L
∂vi − L ,
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and the dynamical second-order vector field is:

Γ =
n

∑
i=1

(
vi ∂

∂qi + Γi(q, v)
∂

∂vi

)
, with

n

∑
i=1

∂2L
∂vj∂vi Γi = −

n

∑
i=1

∂2L
∂vj∂qi vi +

∂L
∂qj , j = 1, . . . , n.

The differential equations for the integral curves, σ = (α, β), of Γ are

α̇i = βi, β̇i = Γi,

giving q̈ i = Γi(q, v), that is a second-order differential equation.
The condition for the Lagrangian two-form ωL to be symplectic is related to the partial

Hessian of L with respect to the velocities: ωL is symplectic if, and only if, ω∧n
L 6= 0, which,

in local coordinates, reads

det
(

∂2L
∂vj∂vi

)
=/ 0 .

As a consequence, the coefficients Γi are univocally determined if ωL is symplectic.

2.4. The Geodesic Flow as a Lagrangian Dynamical System

If γ is a geodesic curve in the Riemannian manifold (M, g), its lift to TM, γT(t) =
(γ(t), γ̇(t)), is an integral curve of a vector field Γ ∈ X(TM) (see, e.g., [5,10]); this Γ is
the Hamiltonian dynamical vector field defined by the Lagrangian L = Tg, which gives
the Lagrangian system (TM, ωTg , Tg), i.e., Γg is the unique solution of the Hamiltonian
equation i(Γg)ωTg = dTg, where the kinetic energy function, Tg : TM //R, is defined by

Tg(v) =
1
2

g(v, v), v ∈ TM; Tg(q, v) =
1
2

n

∑
i,j=1

gij(q) vivj, (14)

and the Cartan one-form θTg is given by

θTg(q, v) = gq(v, ·), θTg =
n

∑
i=1,j

gij(q) vi dqj, (15)

the associated symplectic two-form on TM being ωTg = −dθTg .
The dynamical vector field corresponding to the Lagrangian system (M, Tg) is the

unique solution to the equation:

i(Γg)ωTg = dTg , (16)

whose local expression is given by

Γg =
n

∑
i=1

vi ∂

∂qi −
n

∑
i,j,k=1

Γi
jkvjvk ∂

∂vi . (17)

The integral curves of Γg are liftings of curves in M that are solutions of the system of
differential equations for geodesic curves, ∇γ̇(t)γ̇(t) = 0, i.e., the system (10).

Observe that θTg is such that, if LXc θTg = 0, for a vector field X ∈ X(M) and Xc

its complete lift to TM, then from the relation LXc θTg = θLXc Tg = θTLX g , we obtain that
θTLX g = 0, and this is only possible when X is a Killing vector field, that is if, and only if,
LX g = 0. Moreover, if LXc ωTg = 0, i.e., LXc θTg is closed, then θTLX g is a closed semibasic
one-form, and therefore basic, and this implies that θTLX g = 0, i.e., LXc θTg = 0; we have
that LXc ωTg = 0 if, and only if, X is a Killing vector field.
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2.5. Hamiltonian Dynamical Systems

Going to T∗M, we know that there is a canonical symplectic structure coming from the
symplectic form ωM defined by ωM = −dθM, where θM is the Liouville one-form in T∗M.
See [11,12] for details. Their local expressions in natural coordinate systems, (qi, pi), are:

θM =
n

∑
i=1

pi dqi, ωM =
n

∑
i=1

dqi ∧ dpi .

Given a function, the Hamiltonian, H : T∗M //R, we can obtain a dynamical vector
field XH ∈ X(T∗M) defined univocally by the equation i(XH)ωM = d H. Locally, the
expression of the integral curves, σ(t) = (q(t), p(t)), of this vector field is

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi , i = 1, . . . , n ,

which are known as Hamilton dynamical equations.

2.6. The Geodesic Flow as a Hamiltonian Dynamical System

We study in this paragraph the case of the geodesic flow corresponding to the La-
grangian system (TM, Tg), where g is a Riemannian metric on M.

Associated with this system in TM, there is a Hamiltonian system in T∗M obtained
through the Legendre map; see [11,12] for details.

Given the geodesic Lagrangian system (TM, Tg) on the Riemann manifold (M, g), the as-

sociated Hamiltonian system is (T∗M, Hg), with Hamiltonian Hg(q, p) =
n

∑
i,j=1

1
2

gij(q)pi pj,

where
n

∑
j=1

gijgjk = δi
k; hence, (gij) is the corresponding matrix of the metric in the fibres

of T∗M.
The Hamiltonian vector field for (T∗M, Hg), Xg ∈ X(T∗M), is given by

Xg =
n

∑
i,j=1

gij(q)pi
∂

∂qj −
n

∑
i,j,k=1

∂gij

∂qk pi pj
∂

∂pk
.

Thus, the Hamilton differential equations of a geodesic σ : R // T∗M, σ(t) = (q(t),
p(t)), are

q̇k =
n

∑
i=1

gik(q)pi, ṗk =
n

∑
i,j=1

∂gij

∂qk pi pj, k = 1, . . . , n .

As pi =
n

∑
j=1

gij q̇j, the second set of these equations can be reduced, by making use of

the expression of the Christoffel symbols, to Equations (10).

3. Distinguished Vector Fields in a Riemann Manifold

The aim of this section is to review some known properties of Killing vector fields and
obtain new ones related to geodesic, and other kinds, of vector fields.

3.1. Definitions and Initial Relations

There are distinguished classes of vector fields on a Riemann manifold (M, g). If ∇
denotes its associated Levi-Civita connection, then:

Definition 2. (i) We say that a vector field X ∈ X(M) is a conformal Killing vector field if there
exists a function ψ ∈ C∞(M) such that LX g = 2ψg. A conformal Killing vector field X ∈ X(M)
is homothetic when the function ψ is a constant.
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(ii) We say that a vector field X ∈ X(M) is a Killing vector field if X is such that LX g = 0,
i.e., the local flow of the vector field X preserves g.

(iii) We say that a vector field X ∈ X(M) is an autoparallel vector field if ∇XX = 0.
(iv) We say that a vector field X ∈ X(M) is a geodesic vector field if each integral curve of

X is a geodesic curve of the associated Levi-Civita connection.

It is well known that the set of conformal Killing vector fields is a Lie algebra called
the conformal Lie algebra [13], which contains two Lie subalgebras, the homothetic Lie
subalgebra and the Killing Lie algebra, because if LX g = 2ψ1g and LYg = 2ψ2g, then

L[X,Y]g = LX(LYg)−LY(LX g) = 2LX(ψ2g)− 2LY(ψ1g) = 2(LX(ψ2)−LY(ψ1))g.

In particular, when X and Y are homothetic, then L[X,Y]g = 0.
As indicated in [5], one can see that a Killing vector field X ∈ X(M) has constant

length if, and only if, every integral curve of X is a geodesic, i.e., X is a geodesic vector field
(see, e.g., Lemma 3 in [14]). We can also see that, as will be proven later on, if the vector
field X ∈ X(M) is autoparallel, then g(X, X) is constant along the integral curves of X, that
is LX(g(X, X)) = 0.

The condition for X ∈ X(M) to be a Killing vector field, LX g = 0, can be rewritten,
using only norms, as

(LX g)(Y, Y) = 0, ∀Y ∈ X(M), (18)

because

2(LX g)(Y, Z) = (LX g)(Y + Z, Y + Z)− (LX g)(Y, Y)− (LX g)(Z, Z), ∀Y, Z ∈ X(M).

For the local expression of Killing vector fields, let X ∈ X(M) be the vector field with
local expression in a local chart:

X =
n

∑
i=1

Xi(q)
∂

∂qi , (19)

then the Lie derivative with respect to X of the metric tensor field g is

LX g =
n

∑
i,j,k=1

Xk ∂gij

∂qk dqi ⊗ dqj +
n

∑
i,j,k=1

gij

(
∂Xi

∂qk dqk ⊗ dqj +
∂X j

∂qk dqi ⊗ dqk
)

,

or using the symmetry property of the metric tensor field,

LX g =
n

∑
i,j=1

(
n

∑
k=1

Xk ∂gij

∂qk +
n

∑
k=1

gik
∂Xk

∂qj +
n

∑
k=1

gjk
∂Xk

∂qi

)
dqi ⊗ dqj, (20)

which shows that the condition for X to be a Killing vector field, i.e., LX g = 0, is written in
local coordinates as

n

∑
i,j,k=1

(
Xk ∂gij

∂qk + gik
∂Xk

∂qj + gjk
∂Xk

∂qi

)
dqi ⊗ dqj = 0.

Thus, the local conditions for a vector field X ∈ X(M) to be a Killing symmetry are:

n

∑
k=1

(
Xk ∂gij

∂qk + gik
∂Xk

∂qj + gjk
∂Xk

∂qi

)
= 0, i, j = 1, . . . , n. (21)

We can show (see next subsection) that a vector field X ∈ X(M) is a geodesic vector
field if, and only if, it is an autoparallel vector field, i.e., if ∇XX = 0, because the vector
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field X is a geodesic vector field if, and only if, its integral curves γ are geodesics, i.e., they
satisfy the condition ∇γ̇(t)γ̇(t) = 0 (see, e.g., [1]).

It has also been remarked in [5] that, for each nonvanishing function f ∈ C∞(M), if
X ∈ X(M) is an autoparallel vector field, then Y = f X satisfies ∇YY = (X f )Y. How-
ever, each integral curve of the vector field X coincides with one of f X, up to a reparametri-
sation, and therefore, the preceding property can be used to derive that each integral curve
of a vector field X can be reparametrised to be a geodesic curve if, and only if, ∇XX = f X,
where f is a nonvanishing function f ∈ C∞(M). Moreover, it was proven in [5] that all the
integral curves of a vector field X ∈ X(M) can be transformed by a Sundman transforma-
tion (see [5] and the references therein) into geodesic curves of the metric g if, and only
if, X is a pregeodesic vector field, that is there exists a function f ∈ C∞(M) such that
∇XX = f X. This leads to the following definition:

Definition 3. We say that a vector field X ∈ X(M) is a generalised geodesic vector field,
sometimes also-called pregeodesic vector field, if there is a nonvanishing function f ∈ C∞(M)
such that ∇XX = f X.

Observe that an integral curve of such a vector field is such that its acceleration is
proportional to its velocity. It was proven in [1] that a nonzero generalised geodesic vector
field of constant length is a geodesic vector field.

Using that the metric g provides an identification of X(M) and Ω1(M), and as closed
and exact one-forms are distinguished ones, we can correspondingly introduce the defini-
tion of closed and gradient vector fields [15] and some of their properties:

Definition 4. We say that a vector field X ∈ X(M) is a closed vector field when its corresponding
one-form i(X)g is closed, d(i(X)g) = 0. In the special case of exact one-forms, we say that the
vector field X is a gradient vector field: if i(X)g = d f , the vector field X is said to be the gradient
of f .

As an immediate application of (6), we see the above-mentioned property: if a vector
field X ∈ X(M) is autoparallel, then g(X, X) is constant along the integral curves of X,
that is

LX(g(X, X)) = 0. (22)

Having in mind also that (LX g)(Y, Z) = LX(g(Y, Z)) − g([X, Y], Z) − g(Y, [X, Z]),
we obtain from (6) and the torsionless condition for the Levi-Civita connection that

(LX g)(Y, Z) = g(∇YX, Z) + g(Y,∇ZX). (23)

In particular, for Z = Y, we have

(LX g)(Y, Y) = 2g(∇YX, Y). (24)

Similarly,
d(i(X)g)(Y, Z) = LYg(X, Z)−LZg(X, Y)− g(X, [Y, Z]), (25)

and then, as the connection is metric,

d(i(X)g)(Y, Z) = g(∇YX, Z) + g(X,∇YZ)− g(∇ZX, Y)− g(X,∇ZY)− g(X, [Y, Z]),

and as the connection is torsionless, such an expression reduces to

d(i(X)g)(Y, Z) = g(∇YX, Z)− g(∇ZX, Y), (26)

which can also be rewritten as
d(i(X)g)(Y, Z) = g(∇YX, Z)− g(∇ZX, Y) = 2g(∇YX, Z)− (LX g)(Y, Z); (27)
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therefore, when X is a closed vector field,

g(∇YX, Z) =
1
2
(LX g)(Y, Z). (28)

Some of these expressions will be used in the sequel.

3.2. Some Properties of Geodesic Vector Fields

For the sake of completeness, we give here a brief account of some known results on
geodesic vector fields and references relating them to other specific classes of vector fields.
The proofs we include are slightly different from the original ones in the given references
(see, e.g., [5] and the references therein):

1. Our first remark is that a vector field X ∈ X(M) is an autoparallel vector field if,
and only if, its integral curves γ are geodesics, i.e., they satisfy the equation ∇γ̇ γ̇ = 0,
and then, when lifted to the tangent bundle TM, are integral curves of Γg, the second-order
geodesic vector field.

In fact, suppose that ∇XX = 0, and let γ : I ⊂ R //M be an integral curve of X, that
is γ̇ = X ◦ γ. Then:

∇γ̇(t)γ̇(t) = ∇(X◦γ)(t)(X ◦ γ)(t) = (∇XX)(γ(t)) = 0,

and therefore, γ is a geodesic curve in M. If, on the contrary, we suppose that every integral
curve of X satisfies the equation ∇γ̇(t)γ̇(t) = 0 and let p ∈ M and γ : I ⊂ R //M be the
integral curve of X with initial condition p, we have

(∇XX)(p) = ∇X(p)X = ∇γ̇(0)γ̇(t) = (∇γ̇(t)γ̇(t))|t=0 = 0.

However, as this is true for every p ∈ M, we have ∇XX = 0.
Because of this property, the autoparallel vector fields are also-called geodesic vector

fields [16]. In the definitions we introduced at the beginning of the section, for a vector field,
it is the same to be geodesic as to be autoparallel. We remark that, for each real number a,
if X is a geodesic vector field, then a X is geodesic also.

2. There are some relations between autoparallel and Killing vector fields, as the
following ones.

It was proven in [14], Lemma 3, and it was used in [7,17] that a Killing vector field
X ∈ X(M) has constant length if, and only if, every integral curve of X is a geodesic, that is
X is a geodesic vector field. We can give a little more general proof:

Proof. (a) Using that the connection ∇ is metric and torsionless, we have, on the one hand,
that, for arbitrary vector fields X, Y ∈ X(M),

LX(g(X, Y)) = (LX g)(X, Y) + g(LXX, Y) + g(X,LXY)

= (LX g)(X, Y) + g(X,∇XY)− g(X,∇YX),

because LXX = 0 and, according to (5), LXY = ∇XY−∇YX. However, by making use of
(7) with an interchange of the roles of X and Y,

LX(g(X, Y)) = (LX g)(X, Y) + g(X,∇XY)− 1
2
LY(g(X, X)), (29)

and on the other hand,

LX(g(X, Y)) = g(∇XX, Y) + g(X,∇XY) . (30)
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Comparing both expressions, we have that, for arbitrary vector fields X, Y ∈ X(M),

g(∇XX, Y) = (LX g)(X, Y)− 1
2
LY(g(X, X)).

(b) If X = Y, the expression (30) reduces to LX(g(X, X)) = 2g(∇XX, X) and this
relation shows that if X is a geodesic vector field, ∇XX = 0, then LX(g(X, X)) = 0, that is
the norm of X is constant along the integral curves of X, in agreement with Property (22).

(c) Moreover, if X is a Killing vector field, we have that g(∇XX, Y) = −1
2
LY(g(X, X)),

and consequently, as Y is an arbitrary vector field, we see that, then, X is a geodesic vector
field, i.e., ∇XX = 0, if, and only if, g(X, X) is a real constant, as we wanted.

3. As far as the more general class of vector fields in a Riemannian manifold is
concerned, that of the so-called generalised geodesic vector fields, usually also-called pregeodesic
vector fields, which are those such that there exists a function f satisfying ∇XX = f X, a
remarkable property was proven in [1]: a generalised geodesic vector field X of constant
length on a Riemannian manifold is a geodesic vector field, because if ϕ is the function

defined by ϕ =
1
2

g(X, X), as ∇XX = f X, we have that

LX(ϕ) =
1
2

g(∇XX, X) +
1
2

g(X,∇XX) = 2 f ϕ,

and equivalently, 2 f = LX(log ϕ), which shows that as ϕ is constant, then f = 0; therefore,
X is a geodesic vector field.

3.3. Another Interesting Property of Killing Vector Fields

First of all, we establish a lemma whose result is to be used later on:

Lemma 1. Let (M, g) be a Riemannian manifold. The vector field X ∈ X(M) is a Killing vector
field if, and only if, we have that g(∇YX, Y) = 0, for every vector field Y ∈ X(M).

Proof. Consider the following chain of identities for X, Y ∈ X(M):

g(∇YX, Y) = g(∇XY + [Y, X], Y) = g(∇XY, Y)− g([X, Y], Y)

=
1
2
LX(g(Y, Y))−

(
1
2
LX(g(Y, Y))− 1

2
(LX g)(Y, Y)

)
=

1
2
(LX g)(Y, Y) ,

obtained by using the properties of the Levi-Civita connection. This shows that the con-
dition g(∇YX, Y) = 0, for every vector field Y ∈ X(M), is equivalent to (LX g)(Y, Y) = 0,
for every vector field Y ∈ X(M), and therefore, Condition (18) for a Killing vector field
holds; this proves the result of the lemma.

There is a kind of Noether theorem associated with a Killing vector field X ∈ X(M),
to which we can associate a one-form IX ∈ Ω1(M). We recall that, given a one-form
α ∈ Ω1(M), we can define an associated, linear in the fibres, function α̂ : TQ // R,
by α̂(q, v) = 〈αq, v〉. In particular, the one-form α = αi(q) dqi has associated the function
α̂(q, v) = αi(q) vi. Therefore, the one-form IX has associated the function ÎX ∈ C∞(TM),
and then, we can prove that if X ∈ X(M) is a Killing vector field, the function ÎX is
invariant along geodesics. More specifically, we have:

Proposition 1. Let be (M, g) a Riemannian manifold and X ∈ X(M) a Killing vector field. If
γ : R //M is a geodesic curve and IX = i(X)g ∈ Ω1(M), then the function ÎX is constant along
the lifted to TM curve γT , that is



Symmetry 2023, 15, 181 12 of 39

d
dt
(ÎX ◦ γ̇) = 0 .

Proof. We have:

d
dt
(ÎX ◦ γ̇) =

d
dt

g(X ◦ γ, γ̇) = ∇γ̇(g(X, γ̇)) = g(∇γ̇X, γ̇) + g(X,∇γ̇γ̇) = 0 ,

and both summands on the right-hand side are null, the first one as a consequence of the
preceding lemma and the second one because γ is a geodesic.

In classical mechanics, the differential one-form IX = i(X)g ∈ Ω1(M) is related
to the so-called momentum form associated with the vector field X for geodesic motion.
For instance, if M = R3 with the usual metric, the infinitesimal generators of translations
and rotations give rise to Killing vector fields whose associated momenta are the linear
momentum form and the angular momentum form. More specifically, recall the important
property (see, e.g., [18]) that, if X is a vector field on M, X ∈ X(M), and Xc denotes its
complete lift, Xc ∈ X(TM), then

LXc Tg = TLX g, (31)

because, by using the definition of the Lie derivative of the function Tg and that if φt is the
flow of X and the flow of Xc is Tφt, we have that, for all v ∈ TM,

LXc Tg(v) =
d
dt

Tg ◦ Tφt(v)
∣∣
t=0 =

d
dt

(
1
2

g(Tφt(v), Tφt(v))
)
|t=0

=
1
2

d
dt
(φ∗t g)(v, v)

∣∣
t=0 =

1
2
(LX g)(v, v) = TLX g(v).

Consequently, X ∈ X(M) is a Killing vector field for the Riemann structure g if,
and only if, Xc ∈ X(TM) is a symmetry for the corresponding kinetic energy function
defined by g, and if we consider the symplectic manifold (TM, ωTg), when X ∈ X(M)
is a Killing vector field, then the vector field Xc ∈ X(TM) is a Hamiltonian vector field,
because LXc θTg = θXcTg = 0; then, LXc ωTg = ωXcTg = 0. Its Hamilton function is the linear
in velocities function corresponding to the one-form i(Xc)θTg , because LXc θTg = 0 implies
that i(Xc)ωTg = d(i(Xc)θTg).

In order to clarify the meaning of the function î(X)g : TM //R, we remark that, if
X ∈ X(M) is given in a chart by (19), namely

X =
n

∑
i=1

Xi(q)
∂

∂qi ∈ X(M),

then the coordinate expression of its complete lift Xc ∈ X(TM) is

Xc =
n

∑
i=1

Xi ∂

∂qi +
n

∑
i,j=1

vj ∂Xi

∂qj
∂

∂vi , (32)

and that of the one-form i(X)g on M is

i(X)g =
n

∑
i,j=1

gij(q)X j dqi, (33)

whose associated function î(X)g ∈ C∞(TM) is

î(X)g(q, v) =
n

∑
i,j=1

gij(q)X j(q) vi. (34)
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We remark also that, as indicated above, the contraction of the complete lift vector
field Xc with the semibasic one-form:

θTg(q, v) =
n

∑
i,j=1

gij(q) vj dqi, (35)

is given by

(i(Xc)θTg)(q, v) =
n

∑
i,j=1

gij(q) Xi(q) vj, (36)

and therefore, î(X)g = i(Xc)θTg .
In this sense, the one-form IX = i(X)g ∈ Ω1(M) corresponds to a function on TM

that is the Hamiltonian function of the vector field Xc, as shown by a comparison of (33)
with (36).

For instance, in the particular case of M = R3 endowed with the Euclidean metric,
if X is the vector field:

X = y
∂

∂x
− x

∂

∂y
,

the infinitesimal generator of rotations along the third axis, such a vector field is a Killing
vector field, and we obtain the one-form IX = y dx − x dy, whose associated function
ÎX(x, y, z, vx, vy, vz) = y vx − x vy is constant along a geodesic line, i.e., the corresponding
constant of the motion is the third component of the angular momentum.

With our understanding of Γg as the dynamical Lagrangian vector field of the La-

grangian system (M, Tg), the function î(X)g is the Noether invariant corresponding to

the symmetry Xc of the Lagrangian Tg. This is because î(X)g = i(Xc)θg, as we have
shown above.

Note also that, as the coordinate expression of the vertical lift Xv ∈ X(TM) of the
vector field given by (19) is

Xv =
n

∑
i=1

Xi(q)
∂

∂vi ,

we have

LXv Tg =
n

∑
i=1

Xi(q) gij(q) vj = î(X)g.

3.4. Killing Vector Fields and the Geodesic Flow

In Equation (31) and the following paragraphs of Section 3.3, we proved that, if X is a
Killing vector field on the Riemannian manifold (M, g), then its complete lift to TM, Xc, is
a symmetry of the kinetic energy function Tg, and consequently we have that LXc θTg = 0
and LXc ωTg = 0. From these properties, we have the following:

Proposition 2. Let be X ∈ X(M) a Killing vector field on (M, g), Xc ∈ X(TM) its complete lift
to TM, and φX

t the local flow of X. We have the following:

(i) If Γg ∈ X(TM) is the second-order geodesic vector field, then LXc Γg = 0.

(ii) If γ : R //M is a geodesic curve, then φX
t ◦ γ is also a geodesic curve.

(iii) If Y ∈ X(M) is a geodesic vector field, i.e., ∇YY = 0, then (φX
t )∗Y is a geodesic vector field,

that is
∇(φX

t )∗Y(φ
X
t )∗Y = 0 .

Proof. (i) From Relation (16), i(Γg)ωTg = dTg, we have

LXc

(
i(Γg)ωTg

)
= i(LXc Γg)ωTg + i(Γg)LXc ωTg = i(LXc Γg)ωTg .
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However, LXc dTg = d(LXc Tg) = 0, by Equation (31). Hence, i(LXc Γg)ωTg = 0, and ωTg

being a symplectic form, we have that LXc Γg = 0.
(ii) If γ is a geodesic curve, then γT is an integral curve of Γg. From (i), we have that

(TφX
t )∗Γg = Γg; hence, if γT is an integral curve of Γg, then (TφX

t ) ◦ γ̇ is an integral curve
of (TφX

t )∗Γg = Γg.
We have then that φX

t ◦ γ is a geodesic because (TφX
t ) ◦ γ̇ = (φX

t ◦ γ)̇.
(iii) If Y ∈ X(M) is a geodesic vector field, then its integral curves γ are geodesics.

However, the integral curves of (φX
t )∗Y are of the form φX

t ◦ γ, which, by Item (ii), are
geodesics; hence, (φX

t )∗Y is a geodesic vector field by Item 1 in Section 3.2, because all its
integral curves are geodesic curves.

4. Hamilton–Jacobi Vector Fields

There are several methods to integrate systems of differential equations, and one of
the most significant is to reduce the dimension of the manifold where the vector field
corresponding to the system of differential equation is defined. Generically, this method
allows us to obtain not all the solutions, but only a subset. As an instance with these ideas,
a modern geometric approach to the Hamilton–Jacobi theory was developed in [19]. Even
if such a theory is always developed in a Hamiltonian context, we can also consider the
framework of the tangent bundle of the given Riemann manifold (M, g) and extend the
theory to a Lagrangian setting. In some cases, we can obtain what is called a complete
solution to the Hamilton–Jacobi problem and, through it, all the solutions of the initial
equation if the full set of reduced equations can be solved.

In the next subsections, we develop a quick survey of the general theory of Hamilton–
Jacobi reduction and the particular cases of the Lagrangian and Hamiltonian formalism
with their differences and relations.

4.1. Geometric Hamilton–Jacobi Theory

Let π : E //M be a differentiable vector bundle and Z ∈ X(E). We say that a pair
(X, s) ∈ X(M)× Γ(π), where Γ(π) denotes the set of sections of π, i.e., the set of maps
s : M // E such that π ◦ s = idM, is a Hamilton–Jacobi pair for the vector field Z if X ≈

s
Z,

that is X ∈ X(M) is s-related with Z. Equivalently, Z ◦ s = Ts ◦ X.
Suppose that (X, s) is a Hamilton–Jacobi pair for Z and γ is an integral curve of X,

γ̇ = X ◦ γ, then we have that

˙s ◦ γ = Ts ◦ γ̇ = Ts ◦ X ◦ γ = Z ◦ s ◦ γ = Z ◦ (s ◦ γ) ,

and then, the curve s ◦ γ in E is an integral curve of Z. It is easy to see that the converse
property is true: if Z and (X, s) are such that every integral curve of X lifted to E by s is an
integral curve of Z, then X ≈

s
Z, which can be seen by using that, for every point p ∈ M,

there is an integral curve of X with the initial condition at p.
We can summarize the situation in the following diagram:

E

π

��

Z
44 TE

Tπ
��

TτMoo

R
γ // M

s

VV

X
33 TM ,

τMoo

Ts

VV

where the initial data are the vector field Z, the Hamilton–Jacobi pair is (X, s), and the
diagram is commutative.

4.2. Lagrangian Theory

In the Lagrangian case, the initial bundle E is a tangent bundle E = TQ, τQ : TQ //Q,
Z ∈ X(TQ), and (X, s) ∈ X(Q)×X(Q); hence, the section s is another vector field, s = Y ∈
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X(Q), and we have that, if (X, Y) is a Hamilton–Jacobi pair, then X ≈
Y

Z, or equivalently,

Z ◦Y = TY ◦ X. The corresponding commutative diagram is

TQ

τQ

��

Z
11 T(TQ)

TτQ

��

τTQoo

R
γ // Q

Y

UU

X
33 TQ

τQoo

TY

UU

and therefore, if γ is an integral curve of X, then Y ◦ γ is an integral curve of Z.
A particular case, very relevant in the Lagrangian framework, is when the vector

field Z ∈ X(TQ) is an SODE, a second-order differential equation, vector field. Then,
as indicated above, (X, Y) with X ∈ X(TQ) and Y ∈ X(Q) is a Hamilton–Jacobi pair if
Z ◦ Y = TY ◦ X. However, if γ is an integral curve of X, i.e., γ̇ = X ◦ γ, the relatedness
condition shows that the curve Y ◦ γ in TQ is an integral curve of the Z, but as Z is assumed
to be a SODE vector field, its integral curves are canonical lifts of curves in Q; hence, we
have that, necessarily, Y ◦ γ = γ̇, because the curve Y ◦ γ in TQ is an integral curve of Z,
and this implies that Y = X, because γ is an arbitrary integral curve of X. Thus, in this case,
given Z, we look for a vector field X such that Z ◦ X = TX ◦ X, or equivalently, X ≈

X
Z,

and the relevant commutative diagram is

TQ

τQ

��

Z
11 T(TQ)

TτQ

��

τTQoo

R
γ // Q

X

UU

X
33 TQ

τQoo

TX

UU

This is a specific characteristic of the Hamilton–Jacobi problem in the case of second-
order differential equations: we have only one vector field, which plays a double role, first,
as a vector field on Q and, second, as a section for τQ, as solution of the Hamilton–Jacobi
problem associated with a vector field Z.

4.3. Hamiltonian Theory

In this case, the initial bundle is the cotangent bundle πQ : T∗Q //Q, Z ∈ X(T∗Q),
and (X, s) ∈ X(Q)×Ω1(Q), i.e., the section s is a one-form on Q, s = α ∈ Ω1(Q); we
have that (X, α) is a Hamilton–Jacobi par for Z if, and only if, X ≈

α
Z, or equivalently,

Z ◦ α = Tα ◦ X. The corresponding commutative diagram is

T∗Q

πQ

��

Z
11 T(T

∗Q)

TπQ

��

τTQoo

R
γ // Q

α

UU

X
33 TQ

τQoo

Tα

UU

We can ask ourselves if there is any relation between the vector field X and the one-
form α. Actually, from the relation Z ◦ α = Tα ◦ X and as α is a section of πQ, we have
that

TπQ ◦ Z ◦ α = TπQ ◦ Tα ◦ X = T(πQ ◦ α) ◦ X = X .

Thus, we have that
X = TπQ ◦ Z ◦ α. (37)

In this case, we have two relevant specific situations. Recall first that a cotangent
bundle πQ : T∗Q //Q, with dim Q = n, is endowed with a canonical one-form θ, called
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the Liouville one-form, such that α∗θ = α, for each α ∈ Ω1(Q). Moreover, the two-form
ω = −dθ is a symplectic form. Then, the first relevant situation is when the one-form α of
the Hamilton–Jacobi pair (X, α) is a closed (and therefore, locally exact) one-form, α = dU,
where U : Q //R is a differentiable function. This is equivalent to saying that the image of
α is a Lagrangian submanifold of the natural symplectic manifold (T∗Q, ω), because it is
an n-dimensional submanifold such that, since α∗ω = −α∗dθ = −d(α∗θ) = −dα, by the
definition of the canonical one-form θ of T∗Q, we see that, as α is a closed one-form, we
have α∗ω = 0, i.e., the image of α is a Lagrangian submanifold of T∗Q.

The second relevant situation is when the considered vector field Z ∈ X(T∗Q) is
a Hamiltonian vector field, namely i(Z)ω = dH, with H : T∗Q // R being a differen-
tiable function, the Hamiltonian function associated with Z. In this case, we have the
following result:

Proposition 3. Suppose that Z ∈ X(T∗Q) is a Hamiltonian vector field, with Hamiltonian
function H, i.e., i(Z)ω = dH, and that (X, α) is a Hamilton–Jacobi pair for Z with α a closed
one-form, dα = 0. Then, α∗dH = d(H ◦ α) = 0.

Proof. From i(Z)ω = dH, we have that α∗(i(Z)ω) = α∗dH. However, using that Z ◦ α =
Tα ◦ X because (X, α) a Hamilton–Jacobi pair for Z, the left-hand side of this relation is

α∗(i(Z)ω) = i(X)α∗ω , (38)

because, for any vector field Y ∈ X(Q),

α∗(i(Z)ω)(Y) = ω(Z ◦ α, Tα ◦Y) = ω(Tα ◦ X, Tα ◦Y) = α∗ω(X, Y) = (i(X)α∗ω)(Y) .

We proved before that the closedness of the one-form α implies that α∗ω = 0, and from
the relation α∗(i(Z)ω) = α∗(dH), we obtain that d(H ◦ α) = α∗dH = 0.

Consequently, when Q is connected, locally, H ◦ α = constant, and if, also locally,
α = dU by the Poincaré lemma, then H ◦ dU = constant, that is

H
(

q,
∂U
∂qi

)
= constant ,

which is the classical Hamilton–Jacobi equation. Recall that, as indicated in (37), the vector
field X can be recovered from the vector field Z and the one-form α as X = TπQ ◦ Z ◦ α.

5. Hamilton–Jacobi Vector Fields for the Second-Order Geodesic Vector Field

In this section, we fix our attention on the particular case of Hamilton–Jacobi vector
fields for a second-order geodesic vector field according to the theory developed in [19],
but not only in a Hamiltonian context, but also in the Lagrangian setting for systems of a
mechanical type developed in the framework of the tangent bundle of the given Riemann
manifold (M, g) (see, e.g., [5]).

Recall that, as indicated in the preceding section, a Hamilton–Jacobi pair for a vector
field in the tangent bundle TQ reduces to only a vector field in Q playing a double role.
More explicitly, we establish the following definition:

Definition 5. Given an SODE vector field Z ∈ X(TQ), a vector field X ∈ X(Q) is said to
be a Hamilton–Jacobi vector field for Z if, for every integral curve γ : R // Q of X, the curve
X ◦ γ : R // TQ is an integral curve of Z.

In [19–22], some useful properties of these Hamilton–Jacobi vector fields were studied.
Recall that, alternatively, a vector field X ∈ X(M) is a Hamilton–Jacobi vector field for an
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SODE vector field Z if, and only if, TX ◦ X = Z ◦ X, i.e., X and Z are X-related vector fields,
X ≈

X
Z, or equivalently, if the following diagram is commutative:

TQ

τQ

��

TX
11 T(TQ)

TτQ

��

TτQoo

R
γ // Q

X

UU

X
33 TQ

τQoo

Z

UU

Let now (M, g) be an n-dimensional Riemann manifold and ∇ denote its associated
Levi-Civita connection. The relation among autoparallel vector fields and Hamilton–Jacobi
vector fields for the second-order geodesic vector fields Γ is given in the following statement:

Proposition 4. A vector field X ∈ X(M) is an autoparallel vector field on a Riemann manifold
(M, g), that is ∇XX = 0, if, and only if, it is a Hamilton–Jacobi vector field for the second-order
geodesic vector field Γ of g, i.e., Γ ◦ X = TX ◦ X.

Proof. Suppose that the vector field X ∈ X(M) is autoparallel. If p ∈ M and γ is the
integral curve of the vector field X, γ̇ = X ◦ γ, with initial condition γ(0) = p, then we
know that the tangent lift γT of γ from M to TM is an integral curve of Γ, and hence,
as γ̇ = X ◦ γ, X ◦ γ is an integral curve of Γ; therefore, Γ and X are X-related, i.e., X is a
Hamilton–Jacobi vector field for Γ.

Conversely, suppose that γ is the integral curve with initial condition p ∈ M of a
vector field X ∈ X(M), i.e., γ̇ = X ◦ γ. If X is a Hamilton–Jacobi vector field for Γ, then
γT is an integral curve of Γ. Hence, γ is a geodesic curve, and then, ∇γ̇(t)γ̇(t) = 0, which
implies that ∇Xp X = 0. However, as p ∈ M is arbitrary, we have ∇XX = 0, i.e., and X is
autoparallel.

Observe that, in that case, the curve (X ◦ γ)T is given in local coordinates as(
γi,

n

∑
j=1

γ̇j
(

∂Xi

∂qj

)
◦ γ

)
. (39)

Hence, the local condition for X to be geodesic is

n

∑
j=1

γ̇j
(

∂Xi

∂qj

)
◦ γ =

(
−

n

∑
j,k=1

Γi
jkX jXk

)
◦ γ , i = 1, . . . , n,

for every integral curve γ of X. Equivalently:(
n

∑
j=1

X j ∂Xi

∂qj

)
◦ γ =

(
−

n

∑
j,k=1

Γi
jkX jXk

)
◦ γ , i = 1, . . . , n. (40)

As there are integral curves of X passing through every point in M, we have

n

∑
j=1

X j ∂Xi

∂qj = −
n

∑
j,k=1

Γi
jkX jXk , i = 1, . . . , n, (41)

as the set of local conditions for a vector field X in M to be a geodesic vector field.
Now, we go to the problem of how to find geodesic vector fields because Equation (41)

is not easy to solve, nor is it even easy to know whether it has solutions. As far as closed
Hamilton–Jacobi fields are concerned, we have the following:

Proposition 5. (Hamilton–Jacobi equation)
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Let X ∈ X(M) be a closed vector field on a Riemann manifold (M, g), i.e., satisfying the
condition d(i(X)g) = 0. Then, X is an autoparallel vector field, ∇XX = 0, i.e., X is a geodesic
vector field, if, and only if, the function Tg ◦ X on M satisfies d(Tg ◦ X) = 0, where Tg : TM //R
is the kinetic energy function defined by (14).

Proof. For each vector field Y ∈ X(M), as Tg ◦ X =
1
2

g(X, X), we have:

d(Tg ◦ X)(Y) = LY(Tg ◦ X) =
1
2
LY(g(X, X)) = g(∇YX, X), (42)

where use has been made of (7).
Now, taking into account (26), i.e., that

d(i(X)g)(Y, Z) = g(∇YX, Z)− g(∇ZX, Y),

when the vector field X is closed and Z = X, we have

g(∇YX, X) = g(∇XX, Y), (43)

and then, (42) shows that d(Tg ◦ X)(Y) = g(∇XX, Y). Therefore, as Y ∈ X(M) is an
arbitrary vector field, we proved that, for closed vector fields X, i.e., such that d(i(X)g) = 0,

d(Tg ◦ X) = 0 ⇐⇒ ∇XX = 0.

As indicated above, the closedness condition d(i(X)g) = 0 tells us that the image of
the differential one-form i(X)g on T∗M is a Lagrangian submanifold of T∗M endowed with
its canonical symplectic structure. Of course, as each exact form is closed, the closedness
condition d(i(X)g) = 0 is satisfied for the particular case of gradient vector fields.

According to the Poincaré lemma, condition d(Tg ◦ X) = 0 is equivalent to saying that
the function Tg ◦ X is locally constant, and this is the standard Hamilton–Jacobi equation.
In fact, in local coordinates, it reads as

n

∑
i,j=1

gijXiX j = constant .

When X is a gradient vector field, X = grad U, then X =
n

∑
i,j=1

gij ∂U
∂xi

∂

∂xj , and as

Tg ◦ X =
1
2

n

∑
i,j=1

gijX iX j =
1
2

n

∑
i,k=1

gik ∂U
∂xi

∂U
∂xk ,

the Hamilton–Jacobi equation is the standard one:

1
2

n

∑
i,k=1

gik ∂U
∂xi

∂U
∂xk = constant.

This last equation provides a method for finding Hamilton–Jacobi gradient vector
fields for the second-order geodesic dynamical vector field Γg of the metric g, by solving
the preceding partial differential equation for the function U. This is, once again, another
particular expression of the Hamilton–Jacobi equation.

From a complete solution of this PDE, we can obtain all the geodesics of the metric by
integrating vector fields on M, that is systems of first-order ordinary differential equations.

Observe that, if X is a gradient vector field, then X is a geodesic vector field,∇XX = 0,
if, and only if, g(X, X) = constant, because if X is a gradient, then it satisfies d(i(X)g) = 0.
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Therefore, by taking into account the three conditions for vector fields in a
Riemann manifold:

a)∇XX = 0, b) g(X, X) = constant, c) d(i(X)g) = 0 ,

we proved the following logical relations for vector fields:

b ∧ c⇒ a, b ∧ a⇒ c, c⇒ (a⇔ b), b⇒ (a⇔ c).

In the case where X is a gradient, it satisfies c) and the corresponding logical relations.
Finally, we remark that, if ∇XX = 0, the length of X, the function g(X, X), is constant

along the integral curves of X, but this does not imply that g(X, X) must be a real constant.
For example, in the ordinary Euclidean plane (x, y), the vector field X = y ∂/∂x is a
geodesic vector field, but g(X, X) is not a constant.

6. Hamilton–Jacobi Vector Fields and Complete Lift of Vector Fields

In Section 4.2, we saw that, when looking for Hamilton–Jacobi vector fields for an
SODE Z ∈ X(TM), we must take as the section s : M // TM appearing in a Hamilton–
Jacobi pair (X, s), the same Hamilton–Jacobi vector field X ∈ X(M). Hence, the Hamilton–
Jacobi pair is (X, X). We analyse a similar situation where this also happens.

Let X ∈ X(M) be a vector field and Xc ∈ X(TM) denote its complete lift from
M to TM. We can ask whether (X, X) is a Hamilton–Jacobi pair for Xc, i.e., whether
Xc ◦ X = TX ◦ X.

Proposition 6. If X ∈ X(M) is a vector field on a Riemann manifold (M, g), then Xc ◦ X =
TX ◦ X, and therefore, X is a Hamilton–Jacobi vector field for Xc.

Proof. In local coordinates (qi) for M and the induced ones (qi, vi) for TM, respectively,
the local expressions of X and its complete lift are

X(q) =
n

∑
j=1

X j(q)
∂

∂qj , Xc(q, v) =
n

∑
j=1

X j(q)
∂

∂qj +
n

∑
j,k=1

vj ∂Xk

∂qj
∂

∂vk .

Hence,

Xc ◦ X =

(
n

∑
j=1

X j ∂

∂qj +
n

∑
j,k=1

X j ∂Xk

∂qj
∂

∂vk

)
,

which is equal to TX ◦ X, as it can be easily computed. Consequently, X ≈
X

Xc, i.e., (X, X)

is a Hamilton–Jacobi pair.

For a geodesic vector field X on a Riemann manifold (M, g), for which ∇XX = 0, we
have that X is a Hamilton–Jacobi vector field for Γg and for Xc. The results of Proposition 4
and Proposition 6 are summarised as follows:

Proposition 7. Let X ∈ X(M) be a geodesic vector field on a Riemann manifold (M, g) and Γg
the second-order geodesic vector field on TM. Then, Γg ◦ X = Xc ◦ X, and X is a Hamilton–Jacobi
vector field for Xc and also for Γg.

7. General Newtonian Dynamical Systems and Newtonian Vector Fields

Up to now, we have studied geodesic motions on Riemann manifolds; from the point of
view of dynamical systems, they are called free systems. In the coming sections, we extend
our study to motions under the action of external forces acting on the system, i.e., forced
geodesic motions. We will define Newtonian systems and give the dynamical equations,
the notion of symmetry, and a kind of Noether theorem. We will finish the section by
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introducing the idea of Newtonian vector fields and the Hamilton–Jacobi equation. We will
follow the notation used in [5].

7.1. Newtonian Systems and Their Dynamical Equations

Let (M, g) be an n-dimensional Riemann manifold, and consider a semibasic one-form
F called the force form or work form. The dynamics is given by the SODE vector field Γ
solution of the dynamical equation:

i(Γ)ωTg − dTg = F, (44)

instead of the corresponding one for the free case, i(Γg)ωTg = dTg. When the one-form F is

basic, F =
n

∑
i=1

Fi(q) dqi, the system is said to be Newtonian. In this last case, given the force

form F, then Γ = Γg + XF, where Γg is the second-order geodesic vector field defined by

(16) and XF = −
n

∑
i,j=1

gijFi
∂

∂vj is the local expression of the vector field of force, which is the

vertical lift to TM of the vector field ZF on M such that −i(ZF)g = F, i.e., XF = Zv
F. The

local expression of ZF is ZF =
n

∑
i,j=1

Zi ∂/∂qi, with F = −
n

∑
j=1

Fj dqj = −
n

∑
i,j=1

gijZidqj.

Moreover, when F is exact, F = −τ∗M(dV) with V : M //R, we say that F is a force
of potential type, and then, if we introduce a Lagrange function on TM by L = Tg − V,
and therefore EL = Tg + V, the dynamical vector field Γ is the solution of

i(Γ)ωL = dEL. (45)

When the one-form F can be written as a sum F = −τ∗M(dV) + F̄, if we define the
Lagrangian function L as L = Tg −V, the dynamical Equation (44) becomes

i(Γ)ωL − dEL = F̄. (46)

See [23] for a more detailed study on Lagrangian systems with external forces.
Going back to the above general case, as indicated in [5], the projections on M of

the integral curves of the SODE vector field Γ corresponding to Equation (44) satisfy the
second-order differential equation:

q̈i = −
n

∑
k,l=1

Γi
kl q̇k q̇l + Zi , i = 1, . . . , n, (47)

and a curve γ : I ⊂ R //M is a solution of this system if, and only if, it satisfies the
following condition:

∇γ̇γ̇ = ZF ◦ γ, (48)

as we can prove by expressing both members of the last equation in local coordinates. The
trajectories γ : I //M of the mechanical system defined on (M, g) we are studying are
therefore solutions of the dynamical Equation (48), which only uses tensorial objects on the
base manifold M

We denote this system by (M, g, F) and collect this notion in the following:

Definition 6. A Newtonian dynamical system is given by (M, g, F), where (M, g) is a Riemann
manifold and F is a basic one-form on TM, and its dynamical equation is

∇γ̇γ̇ = ZF ◦ γ , (49)

where ZF ∈ X(M) is the vector field such that i(ZF)g = −F. The solution curves to this equation
are called trajectories of the system.
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Observe that, when F = 0, then we obtain the equation of geodesic curves, ∇γ̇γ̇ = 0.
Recall that we say that (M, g, F) is a simple mechanical-type system if F is an exact one-form,
F = −τ∗M(dV).

We are also interested in the relevant case in which the external force F is a semibasic
one-form, which can also be seen as a one-form along the map τM : TM //M, i.e., F :
TM // T∗M is such that πM ◦ F = τM. In this more general case of generalised Newtonian
systems for which F may be strictly semibasic, we must use the formalism of tensor fields
along maps, and a short summary of this theory is summarised in the Appendix A. Now,
F is not a basic one-form on TM, but a semibasic one. The vector field Γ solution of the
dynamical Equation (44) when F is semibasic is said to be the second-order dynamical vector
field associated with the given system (M, g, F), and it is given by

Γ = Γg + XF ,

where XF ∈ X(TM) is the vertical vector field of force whose local coordinate expression is

XF(q, v) = −
n

∑
i,j=1

gij(q) Fj(q, v)
∂

∂vi . (50)

In order to recover in an intrinsic way such a vector field, observe first that there is
one vector field along τM, ZF ∈ X(τM), such that iZF g = −F, where iZg is the one-form on
TM defined for Z ∈ X(τM) by [24,25]

(iZg(Y))(q, v) = gq(Z(q, v), τM∗(q,v)(Y(q, v))), ∀Y ∈ X(TM). (51)

Remark that iZg is semibasic because when Y is a τM vertical vector field, then,
according to the definition (51), (iZg)(Y) = 0.

Then, the vector field XF is defined as the vertical lift to TM of the mentioned ZF ∈
X(τM), a vector field along τM, that is:

XF(q, v) = (λ ◦ ZF)(q, v) = λ
(q,v)
q (ZF(q, v)) ,

where λ
(q,v)
q : Tq M // T(q,v)TM is the usual vertical lifting.

The local coordinate expressions of ZF and F are, respectively,

ZF =
n

∑
i,j=1

Zi
(

∂

∂qi ◦ τM

)
, F = −

n

∑
i,j=1

gijZi dqj,

where, now, Zi are functions on TM. The vector field of force XF is as defined above, and
its coordinate expression is

XF =
n

∑
i,j=1

Zi(q, v)
∂

∂vi , Zi(q, v) = −
n

∑
j=1

gij(q) Fj(q, v).

The trajectories of (M, g, F) are the projections on M of the integral curves of Γ and
satisfy the system of second-order differential equations

q̈i = −
n

∑
k,l=1

Γi
kl(q)q̇

k q̇l + Zi(q, v) , i = 1, . . . , n. (52)

This system corresponds to the SODE vector field:

Γ(q, v) =
n

∑
i=1

vi ∂

∂qi +
n

∑
i,j,k=1

(
−Γi

jk(q) vjvk + Zi(q, v)
) ∂

∂vi . (53)
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A curve γ : I ⊂ R //M is a solution of the system (52) if, and only if, it satisfies the
following condition:

∇γ̇γ̇ = ZF ◦ γ̇, (54)

as we can prove by expressing both members of the equation in local coordinates.
We remark first that, if Z ∈ X(τM), i.e., Z : TM // TM is such that τM ◦ Z = τM, then

Z ◦ γ̇ : I //TM is such that τM ◦ (Z ◦ γ̇) = (τM ◦ Z) ◦ γ̇ = τM ◦ γ̇ = γ, and therefore, Z ◦ γ̇
is a vector field along γ, that is Z ◦ γ̇ ∈ X(γ). Consequently, both sides of the equality (54)
are vector fields along the curve γ.

The trajectories γ : I // M of the mechanical system defined on (M, g, F) we are
studying are therefore solutions of the dynamical Equation (54).

As basic one-forms are also semibasic ones, the apparent difference between the
dynamical Equations (48) and (54) may seem a surprise. Note, however, that, given a vector
field ZF ∈ X(M) as in (48), it has associated a Z̃F ∈ X(τM) by means of Z̃F = ZF ◦ τM, and
using such Z̃F in (54), we see that Z̃F ◦ γ̇ = ZF ◦ τM ◦ γ̇ = ZF ◦ γ, which shows the identity
of the dynamical Equations (48) and (54) for basic force one-forms. More explicitly:

Definition 7. A generalised Newtonian dynamical system is given by (M, g, F), where (M, g)
is a Riemann manifold and F is a semibasic one-form on TM, and its dynamical equation is

∇γ̇γ̇ = ZF ◦ γ̇ , (55)

where ZF is the vector field along τM defined by i(ZF)g = −F.

As we have shown in the previous comments, this definition includes as a particular
case the case of Newtonian dynamical systems. From now on, we will study the gener-
alised systems and only comment on the particular case when necessary. This situation
corresponds to the case where the forces on a mechanical system depend not only on the
positions, but also on the velocities.

7.2. Conserved Quantities and Dynamical Symmetries

The reduction processes of the integrability problem of a system make mainly use of
infinitesimal symmetries and of constants of motion, and sometimes, there exist relations
among these ingredients when a compatible geometric structure is known, using results
similar to those of the well-known Noether’s theorem.

The concept of (infinitesimal) symmetry plays a relevant role. We have seen that, for
free geodesic motions, the symmetries are given by the Killing vector fields, because if
X ∈ X(M) is a Killing vector field, then its complete lift Xc ∈ X(TM) preserves both the
symplectic form ωTg and the free Lagrangian Tg. Moreover, LXc θTg = 0 shows that the
vector field Xc is Hamiltonian with corresponding Hamiltonian function i(Xc)θTg , which
is, moreover, a conserved quantity for the second-order geodesic vector field Γg, as we
showed in Proposition 1 and the associated comments.

We can ask for the vector fields playing in the case of forced geodesic motions the role
of Killing vector fields in the case of free geodesic flow, that is we look for a generalisation
of Killing vector fields for this kind of Newtonian systems.

We devote the first part of this section to a kind of Noether theorem for these Newto-
nian, and even for generalised Newtonian, dynamical systems. According to Definition 7
and the previous comments, the Newtonian systems can be considered as a particular case
of generalised Newtonian dynamical systems; hence, we develop our results for these vec-
tor fields and only comment on the particular case when there are some specific differences.

Given a vector field X ∈ X(M), consider the one-form i(X)g on M and its associated
function ÎX = î(X)g defined on TM as î(X)g(q, v) = g(X(q), v). We study under what
conditions the function ÎX is constant along the lifts γT to TM of the trajectories γ of
a generalised Newtonian system (M, g, F), that is γT(t) = (γ(t), γ̇(t)). Then, if γ is a
trajectory of the dynamical system on M defined by (M, g, F), i.e., it is the projection onto
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M of an integral curve of the associated dynamical SODE vector field Γ, and thus, γ satisfies
(55), we have that

d
dt

ÎX(γ
T(t)) =

d
dt

g(X(γ(t)), γ̇(t)) = ∇γ̇(t)(g(γ̇(t), X(γ(t))))

= g(∇γ̇(t)γ̇(t), X(γ(t))) + g(γ̇(t),∇γ̇(t)X(γ(t))).

Hence, if F is a semibasic one-form on M, and ZF ∈ X(τM) is the vector field along τM
such that iZF g = −F, then

d
dt

ÎX(γ
T(t)) = g(ZF, X)(γT(t)) + g(γ̇(t),∇γ̇(t)X(γ(t))) . (56)

We can change the expression of the second element of the right-hand side to a more
suitable one with the following lemma:

Lemma 2. Let be (M, g) a Riemannian manifold and Tg : TM //R the associated kinetic energy.
For any X, Y ∈ X(M), we have that

(LXc Tg)(Y) = g(∇YX, Y).

Proof. Using that LXc Tg = TLX g and the torsionless property of the Levi-Civita connection,
we have that

(LXc Tg)(Y) = TLX g(Y) =
1
2
(LX g)(Y, Y) =

1
2
LX(g(Y, Y))− g(LXY, Y)

=
1
2
∇X(g(Y, Y))− g(LXY, Y) = g(∇XY, Y)− g(LXY, Y)

= g(∇YX, Y) + g(LXY, Y)− g(LXY, Y)

= g(∇YX, Y),

from which the result of the lemma follows.

As a consequence, we have the following result:

Proposition 8. Let be (M, g, F) a generalised Newtonian dynamical system and X ∈ X(M) and
Xc ∈ X(TM) its complete lift. Then, the function î(X)g : TM //R is constant along the lifts γT

to TM of the trajectories γ of the given system on M if, and only if,

LXc Tg − i(Xc)F = 0 . (57)

Proof. Considering the two sides of the Equation (56), we remark that if ZF ∈ X(τM) is
such that iZF g = −F,

g(ZF(γ
T(t)), X(γ(t))) = ((i(ZF)g)(X))(γT(t)) = −(i(Xc)F)(γT(t)) ,

while, as a result of the preceding lemma,

g(∇γ̇(t)X(γ(t)), γ̇(t)) = (LXc Tg)(γ̇(t)),

and therefore, by (56), we see that the function î(X)g is constant along the lifts γT to TM of
the trajectories γ if, and only if,

LXc Tg − i(Xc)F = 0 ,

because the trajectory γ is arbitrary.



Symmetry 2023, 15, 181 24 of 39

Particularly interesting cases are those corresponding to Killing vector fields X ∈
X(M), for which LXc Tg = TLX g = 0, and then, Condition (57) reduces to i(Xc)F = 0,
or what is equivalent g(ZF, X) = 0, that is, at every vector vx ∈ TM, the vector ZF(vx)
is orthogonal to X(x). One says that the Killing vector field X ∈ X(M) satisfying the
condition i(Xc)F = 0 is a Killing symmetry of the generalised Newtonian system (M, g, F)
and the function î(X)g is the associated conserved quantity. Summing up, we obtained the
following proposition:

Proposition 9. Let be (M, g, F) a generalised Newtonian dynamical system, ZF ∈ X(τM) such
that iZF g = −F, X ∈ X(M) a Killing vector field, and Xc ∈ X(TM) its complete lift. Then,

the function î(X)g : TM //R is constant along the lifts γT to TM of the trajectories γ of the
given system if, and only if, the semibasic one-form F vanishes on Xc, i.e., i(Xc)F = 0.

Comments:

1. Observe that i(Xc)F = i(X)F = −g(ZF, X); hence, the condition in the above propo-
sition is that ZF and X are orthogonal.

2. If F is a basic one-form, that is (M, g, F) is a Newtonian dynamical system, the result
is the same.

3. In the case of the geodesic systems, F = 0, the condition g(X, ZF) = 0 is trivially
satisfied, and we obtain the result of Proposition 1 as a particular case.

4. If the system is a conservative simple mechanical one and its potential function is
V : M // R, then ZF = grad V and F = −dV. In this situation, the condition
i(Xc)F = 0 is LXV = 0, that is the potential function V is invariant by the vector
field X.

Now, we go to the dynamical symmetries of a Newtonian system.
Recall that a vector field Y ∈ X(TM) is a dynamical symmetry for the dynamics

Γ ∈ X(TM) if [Y, Γ] = 0, i.e., the flow of the vector field Y preserves Γ.

Definition 8. A vector field X ∈ X(M) is called a Lie symmetry of the dynamics defined by
the generalised Newtonian system (M, g, F), when Xc is a dynamical symmetry of the associated
dynamical vector field Γ, namely [Xc, Γ] = 0.

To characterise the dynamical symmetries of a generalised Newtonian system (M, g, F),
we need to have an expression of the dynamical vector field Γ. We know that the curves γ
in M solutions to the dynamical Equation (55), when lifted to TM, are the integral curves
of the SODE vector field Γ, the uniquely defined solution to the equation:

i(Γ)ωTg − dTg = F, (58)

then applying the exterior differential to both sides, we obtain that the SODE vector field Γ
satisfies

LΓωTg = dF, (59)

and therefore, Γ is not a locally Hamiltonian vector field when F is not closed, but only
when F is closed.

With this interpretation of the dynamical vector field, we can obtain Proposition 8 and
Proposition 9 in this different approach for the generalised Newtonian system (M, g, F):

Proposition 10. (i) Given a vector field X ∈ X(M), the function î(X)g is a conserved quantity
for the generalised Newtonian system (M, g, F) if, and only if, LXc(Tg) = i(Xc)F.

(ii) If X ∈ X(M) is a Killing vector field, then the function î(X)g is a conserved quantity for
the generalised Newtonian system (M, g, F) if, and only if, i(Xc)F = 0.
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Proof. (i) The contraction with the complete lift Xc of the vector field X ∈ X(M) of both
sides of Relation (58) leads to

i(Xc)i(Γ)ωTg = i(Xc)dTg + i(Xc)F. (60)

The left-hand side can be rewritten as

ωTg(Γ, Xc) = −dθTg(Γ, Xc) = −LΓ(θTg(Xc)) + LXc(θTg(Γ)) + θTg([Γ, Xc]),

and having in mind that

θTg(Γ) =
n

∑
i,j=1

gij(q)vivj = 2 Tg, θTg(Xc) =
n

∑
i,j=1

gij(q)vjXi = ̂i(Xc)g,

and that [Γ, Xc] is a vertical vector field on which θTg vanishes, the relation (60) becomes

−LΓ(î(X)g) + LXc(Tg)− i(Xc)F = 0,

and therefore, ̂i(Xc)g is a conserved quantity if, and only if, LXc(Tg) = i(Xc)F.

(ii) In the particular case of a Killing vector field, as LXc(Tg) = 0, we have that î(X)g
is a conserved quantity if, and only if, i(Xc)F = 0.

As far as the dynamical symmetries are concerned, we have the following:

Proposition 11. Given a generalised Newtonian system (M, g, F), a Killing vector field X ∈
X(M) is a Lie symmetry of the dynamical vector field Γ ∈ X(TM) solution of (58) if, and only if,
LXc F = 0.

Proof. Using the relation:

i([Xc, Γ])ωTg = (LXc ◦ i(Γ)− i(Γ) ◦ LXc)ωTg ,

we obtain
i([Xc, Γ])ωTg = LXc(dTg + F)− i(Γ)ωTLX g = LXc F,

because, as X is a Killing vector, LXc Tg = 0 and LXc ωTg = 0. Since ωTg is nonde-
generate, i([Xc, Γ])ωTg vanishes if, and only if, [Xc, Γ] does, and then, the result of the
proposition follows.

Another approach to a similar result, but related to the case of conserved quantities, is
the following property:

Proposition 12. For a generalised Newtonian system (M, g, F), if a Killing vector field X ∈ X(M)
is such that i(Xc)F = 0, then X is a Lie symmetry of Γ if, and only if, i(Xc)dF = 0.

Proof. We first remark about an important relation that we can derive by making use of
the relation LXc θTg = θLXc Tg = θTLX g , from which we see that

i(Xc)ωTg = −i(Xc)dθTg = −LXc θTg + d(i(Xc)θTg) = −θTLX g + d(i(Xc)θTg). (61)

As the dynamical vector field Γ satisfies (59), we can write

i(Xc)dF = i(Xc)LΓωTg = LΓ(i(Xc)ωTg) + i([Xc, Γ])ωTg ,

and from the expression (61) for i(Xc)ωTg , the preceding equation becomes

i(Xc)dF = −LΓ(θTLX g) + LΓ(d(i(Xc)θTg) + i([Xc, Γ])ωTg ;
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if X ∈ X(M) is a Killing vector field, LX g = 0 reduces the preceding relation to

i(Xc)dF = LΓ(dî(X)g) + i([Xc, Γ])ωTg = LΓ(d(i(Xc)θTg) + i([Xc, Γ])ωTg .

This shows that, if i(Xc)F = 0 and, therefore, LΓ(dî(X)g) = 0, we have that [Xc, Γ]) =
0 if, and only if, i(Xc)dF = 0. Recall that i(Xc)F = 0 and i(Xc)dF = 0 imply that
LXc F = 0.

Comments:

1. We remark about the difference between Proposition 9 and Proposition 12 for the
characterisation of the vector field X as a generator of a conserved quantity or as a
dynamical symmetry.

2. In the case of a conservative simple mechanical system, that is F = −d V, if X is a
Killing vector field, we have that:
(a) If LXV = 0, then the quantity î(X)g is conserved by the dynamics;
(b) If LXdV = 0, then the vector field Xc is a dynamical symmetry of Γ. This condition
on V and X is equivalent to dLXV = 0, which is a condition weaker than Condition
(a).
In fact, we have that Condition (a) implies Condition (b), then we can have a dynamical
symmetry X such that î(X)g is not a conserved quantity. In these circumstances,
the vector fields X satisfying Condition (a) are usually called Noether symmetries.
Obviously, a Noether symmetry is a dynamical symmetry, but not the contrary.

As we said above, see [23] for a comparison of the obtained results and used methods.

7.3. Newtonian Vector Fields

Similar to the definition of geodesic vector fields, we introduce the following definitions:

Definition 9. (i) A Newtonian vector field for the Newtonian system (M, g, F) is a vector field
X ∈ X(M) satisfying the equation:

∇XX = ZF , (62)

where the vector field ZF ∈ X(M) is such that i(ZF)g = −F.
(ii) A generalised Newtonian vector field for the generalised Newtonian system (M, g, F)

is a vector field X ∈ X(M) such that

∇XX = ZF ◦ X , (63)

where ZF ∈ X(τM) is such that iZF g = −F.

We remark that, when ZF ∈ X(M), we can replace ZF on the right-hand side of (62)
by (ZF ◦ τM) ◦ X, and this fact identifies (62) with (63), because the remark preceding
Definition 7 leads to considering as equivalent both definitions (62) and (63), and hereafter,
we only consider the generalised case and Condition (63).

These concepts play an interesting role when studying relations among geodesics for
conformal metrics in the next section.

The first interesting property of this kind of vector fields is similar to the characterisa-
tion of the geodesic vector fields for the second-order geodesic vector field.

Proposition 13. A vector field X ∈ X(M) is a generalised Newtonian vector field for the gener-
alised Newtonian system (M, g, F) if, and only if, its integral curves satisfy the dynamical equation
∇γ̇γ̇ = ZF ◦ γ̇.
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Proof. Let X ∈ X(M), and suppose that its integral curves γ : I //M satisfy the dynamical
Equation (54). If p ∈ M and γ : I //M is the integral curve of X with the initial condition
γ(0) = p, we have that γ̇ = X ◦ γ and ∇γ̇γ̇ = ZF ◦ γ̇. Then,

(∇XX)(p) = ∇Xp X = ∇γ̇(0)γ̇(t) = ZF(γ̇(0)) = (ZF ◦ X)(γ(0)) = (ZF ◦ X)(p) .

However, the point p ∈ M is arbitrary; hence, ∇XX = ZF ◦ X.
Conversely, suppose that X ∈ X(M) satisfies the equation ∇XX = ZF ◦ X, and let

γ : I //M be an integral curve of X, that is γ̇ = X ◦ γ. Then,

(∇XX)(γ(t)) = (ZF ◦ X)(γ(t)) ;

hence, as γ is arbitrary, ∇γ̇γ̇ = ZF ◦ γ̇.

We can extend some results on geodesic vector fields contained in Proposition 2 to
the case of generalised Newtonian vector fields. In fact, recall first that, according to
Proposition 12, if X ∈ X(M) is a Killing vector field of the Riemann manifold (M, g) and
Xc ∈ X(TM) denotes its complete lift, then the vector field X is a Lie symmetry of Γ if,
and only if, i(Xc)dF = 0. Two important properties are then the following:

Proposition 14. (i) Let be X ∈ X(M) a Lie symmetry of the generalised Newtonian system
(M, g, F) and φX

t its local flow. If γ : R //M is a trajectory of the generalised Newtonian system
(M, g, F), then φX

t ◦ γ is also a trajectory.
(ii) If Y ∈ X(M) is a generalised Newtonian vector field for (M, g, F), i.e., ∇YY = ZF ◦Y,

then (φX
t )∗Y is also a generalised Newtonian vector field for the same system, that is

∇(φX
t )∗Y(φ

X
t )∗Y = ZF ◦ ((φX

t )∗Y) .

Proof. (i) Let γ be a trajectory of the system (M, g, F), then γT is an integral curve of Γ.
As [Xc, Γ] = 0, we have that (TφX

t )∗Γ = Γ. Hence being γT an integral curve of Γ, we have
that (TφX

t ) ◦ γT is an integral curve of (TφX
t )∗Γ = Γ. Thus, φX

t ◦ γ is a trajectory of the
system because (TφX

t ) ◦ γ̇ = (φX
t ◦ γ)̇.

(ii) Let Y ∈ X(M) be a generalised Newtonian vector field, then its integral curves
γ are trajectories of the system. However, the integral curves of (φX

t )∗Y are of the form
φX

t ◦ γ, which, by Item (i), are also trajectories; hence, (φX
t )∗Y is a Newtonian vector field

by Proposition 13.

The geodesic systems are characterized by F = 0, and then, all the results on geodesic
vector fields appear as particular cases of Newtonian systems. Moreover, in these geodesic
cases, the condition LXc Tg = 0 is equivalent to LX g = 0, that is X is a Killing vector field,
and the above results correspond to those in Proposition 2.

In [23], several different situations with symmetries of a Lagrangian system with
external forces were studied. We only work here with geodesic systems whose Lagrangian
is Tg and forced geodesic systems, where external forces depending on the velocities may
appear, and we study them as generalised Newtonian systems. In the coming sections, we
will try to generalise the ideas of geodesic vector fields and apply them to conformal metrics.

7.4. Hamilton–Jacobi Vector Fields for Generalised Newtonian Systems

This section is devoted to generalising to the framework of generalised Newtonian
systems the results obtained in Section 5.

Consider a generalised Newtonian system (M, g, F) as above, and let Γ = Γg + XF,
with XF = Zv

F, the corresponding dynamical SODE vector field. We say that a vector field
X ∈ X(M) is a Hamilton–Jacobi vector field for the system if, for every integral curve γ
of X, we have that X ◦ γ is an integral curve of Γ. As in the geodesic case, we have the
following equivalence:
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Proposition 15. A vector field X ∈ X(M) is a generalised Newtonian vector field for the gen-
eralised Newtonian system (M, g, F) if, and only if, it is a Hamilton–Jacobi vector field for the
same system.

Proof. Suppose that X ∈ X(M) is a Hamilton–Jacobi vector field for the generalised
Newtonian system (M, g, F), and let γ be an integral curve of X. Then, γ̇ = X ◦ γ is an
integral curve of Γ. Hence, γ satisfies the equation ∇γ̇γ̇ = ZF ◦ γ̇. By Proposition 13, we
have that ∇XX = ZF ◦ X, because γ is arbitrary, and consequently, X is a generalised
Newtonian vector field.

Conversely, if X ∈ X(M) is a generalised Newtonian vector field, then, for any integral
curve γ, we have that ∇γ̇γ̇ = ZF ◦ γ̇, and therefore, γ̇ is an integral curve of Γ.

Apart from the definition, we have no explicit characterisation of the generalised
Newtonian vector fields, but, using the preceding proposition, we can try to obtain a local
equation for them.

Suppose that X ∈ X(M) is a Hamilton–Jacobi vector field for the generalised Newto-
nian system (M, g, F), and let γ be an integral curve of X. Then, (X ◦ γ)· = Γ ◦ X ◦ γ, that
is TX ◦ γ̇ = Γ ◦ X ◦ γ. In local natural coordinates, we have:

n

∑
j=1

(
∂Xi

∂qj

)
γ

γ̇j =

(
−

n

∑
j,k=1

Γi
jkX jXk

)
γ

+ Zi ◦ γ̇ , i = 1, . . . , n,

for every integral curve γ of X. Equivalently:(
n

∑
j=1

X j ∂Xi

∂qj

)
◦ γ =

(
−

n

∑
j,k=1

Γi
jkX jXk

)
◦ γ + Zi ◦ γ̇ , i = 1, . . . , n.

However, as γ̇ = X ◦ γ and there are integral curves through every point in M, we
have

n

∑
j=1

X j ∂Xi

∂qj = −
n

∑
j,k=1

Γi
jkX jXk + Zi ◦ X , i = 1, . . . , n, (64)

as the local condition for a vector field X in M to be a generalised Newtonian vector field.
Observe that, if the external force vanishes, F = 0, hence Zi = 0, then we obtain the
corresponding expression (41) for geodesic vector fields.

In parallel with Proposition 5, we have the following result for a generalised Newto-
nian system (M, g, F):

Proposition 16. (Hamilton–Jacobi equation)
Let be X ∈ X(M) a closed vector field, i.e., satisfying the condition d(i(X)g) = 0, and (M, g, F)

a general Newtonian system. The following conditions are equivalent:

(i) X is a generalised Newtonian vector field, ∇XX = ZF ◦ X.
(ii) The function Tg ◦ X on M satisfies the condition d(Tg ◦ X) = −F ◦ X, where Tg : TM //R

is the kinetic energy function defined by (14).

Proof. We know (see (42)) that, for each vector field Y ∈ X(M), we have:

d(Tg ◦ X)(Y) = g(∇YX, X).

Now, as indicated in Section 5, taking into account that X is closed and using (26), we
have that g(∇YX, X) = g(∇XX, Y). Consequently, if X is a generalised Newtonian vector
field, using (63), d(Tg ◦X)(Y) = g(∇XX, Y) = g(ZF ◦X, Y) = −(F ◦X)(Y). However, Y ∈
X(M) is an arbitrary vector field, then for closed vector fields, i.e., such that d(i(X)g) = 0,
we have that

d(Tg ◦ X) = −F ◦ X. (65)
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If, conversely, the vector field X ∈ X(M) satisfies (65), then, from Equation (42), we
obtain that g(∇YX, X) = −(F ◦ X)(Y), and using (43), because X is a closed vector field,
this can be rewritten as g(∇XX, Y) = −(F ◦ X)(Y). However, ZF satisfies iZF g = −F, then
we obtain g(∇XX, Y) = g(ZF ◦ X, Y),̊ and as the vector field Y is arbitrary, this implies that
∇XX,= ZF ◦ X, i.e., the vector field X is a generalised Newtonian vector field.

The expression (65) is the Hamilton–Jacobi equation for a generalised Newtonian
system (M, g, F) for an associated closed generalised Newtonian vector field X, and as

d(Tg ◦ X) = d(X∗Tg) = X∗d Tg = −F ◦ X ,

we can rewrite such an equation as

d(X∗Tg) + F ◦ X = 0, (66)

which, in the case of F being an exact one-form, gives the usual expression of the Hamilton–
Jacobi equation for simple mechanical systems.

In local coordinates Equation (66) gives

1
2

d

(
n

∑
i,j=1

gij(q)Xi(q)X j(q)

)
+

n

∑
j=1

Fj(q, X(q)) dqj = 0.

7.5. The Case of Nonholonomic Generalised Newtonian Systems

Consider now a generalised Newtonian system (M, g, F), with F ∈ Ω1(τM), and sup-
pose the system is constrained to move on a submanifold C ⊂ TM, with τM(C) = M. Then,
we have a nonholonomic system, and the dynamical equation is obtained supposing there
exists a constraint force R ∈ X(τM), which forces the system to move on the submanifold
C. Hence, the dynamical equation is

∇γ̇γ̇ = ZF ◦ γ̇ + R ◦ γ̇ (67)

and by the application of the d’Alembert nonholonomic principle (see [10] for more details),
we impose that the constraint force R ∈ X(τM) is such that its vertical lift Rv ∈ X(TM) is
orthogonal to C: for every (q, u) ∈ TM, we suppose that

R(q, u) ∈ (V(q,u)TM ∩ T(q,u)C)
⊥
q .

Recall that R(q, u) ∈ Tq M.
Comment: For every (q, u) ∈ C, we used the notation (V(q,u)TM ∩ T(q,u)C)q to denote the
subspace of Tq M such that its vertical lifting gives (V(q,u)TM ∩ T(q,u)C). As (V(q,u)TM ∩
T(q,u)C)q is a linear subspace of Tq M, the meaning of its orthogonal complement with
respect to the metric g is clear.

One of the most-interesting cases is when the constraint submanifold C is defined by
the annihilation of a family of functions φα : TM //R, α = 1, . . . , h, independent with
respect to the velocities, that is such that dvφ1, . . . , dvφh are linearly independent at every
point of C (recall that dvφ = dφ ◦ S, where S is the vertical endomorphism in TM). Locally,
this condition is equivalent to saying that, for a natural coordinate system on TM, (qi, vi),
they satisfy that

rank

(
∂(φ1, . . . , φh)

∂(v1, . . . , vn)

)
= h ,

at every point of C.
In this situation, in order to satisfy the d’Alembert nonholonomic principle, see [10],

we have that there exist functions λα : TM //R, called Lagrange multipliers, such that
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R =
h

∑
α=1

λαZα = λ1Z1 + . . . + λhZh ,

where the vector fields along τM, Zα ∈ X(τM), are defined by iZα g = −dvφα, and the
dynamical equation is:

∇γ̇γ̇ = ZF ◦ γ̇ +
h

∑
α=1

λαZα .

To solve this equation for the trajectory γ and the Lagrange multipliers λα, we need
to add the equations φ1 = 0, . . . , φh = 0, which are the constraint functions defining C.
Observe that we also have the constraint form FR ∈ Ω1(τM), defined by iRg = −FR, whose
expression is given by:

FR = −
h

∑
α=1

λαdvφα .

Going to conserved quantities, we can apply Propositions 8 and 9 to the dynamical
Equation (67) and obtain, by direct application, the following results for a nonholonomic
system defined by (M, g, F) and the constraint submanifold C, with the above notations:

Proposition 17. Let be X ∈ X(M) and Xc ∈ X(TM) its complete lift. Then, the function
î(X)g : TM //R is constant along the lifts γT to TM of the trajectories γ of the given system on
M if, and only if,

LXc Tg − i(Xc)F− i(Xc)FR = 0 . (68)

Proposition 18. Let be X ∈ X(M) a Killing vector field and Xc ∈ X(TM) its complete lift. Then,
the function î(X)g : TM //R is constant along the lifts γT to TM of the trajectories γ of the given
system if, and only if, the semibasic one-form F + FR vanishes on Xc, i.e., i(Xc)(F + FR) = 0.

Proposition 19. Let X ∈ X(M) be a Killing vector field and Xc ∈ X(TM) its complete lift.
Suppose that i(Xc)FR = 0. Then, the function î(X)g : TM //R is constant along the lifts γT to
TM of the trajectories γ of the given system if, and only if, the semibasic one-form F vanishes on Xc,
i.e., i(Xc)F = 0.

If the constraint submanifold C is C = {(q, u) ∈ TM | φ1 = 0, . . . , φh = 0}, the condi-
tion i(Xc)FR = 0 can be reduced to

0 = i(Xc)FR =
h

∑
α=1

λαi(Xc)dvφα =
h

∑
α=1

λαi(X)dvφα ,

because dvφα are semibasic forms. Hence, in order to satisfy the condition i(Xc)FR = 0, it is
enough to satisfy i(X)dvφα = 0, α = 1, . . . , h. This is equivalent to saying that g(X, R) = 0
at every point of C.

With respect to the Newtonian and Hamilton–Jacobi vector fields, we can extend to
this case Propositions 13, 14, and 16 and Hamilton–Jacobi Equation (66) without change,
but including the constraint force.

8. Application to Conformal Metrics
8.1. Conformal Metrics: Definitions And Geodesics

Definition 10. Two metrics g and ḡ on the manifold M are conformally related if there exists a
function ϕ : M //R such that ḡ = exp(2ϕ) g.
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This definition allows us to establish an equivalence relation in the set of metrics.
A conformal structure is an equivalence class of metrics. The covariant derivatives with
respect to both metrics g and ḡ are related by (see [5] for details):

∇̄XY = ∇XY + (LX ϕ)Y + (LY ϕ)X− g(X, Y) gradg ϕ

= ∇XY + (LX ϕ)Y + (LY ϕ)X− ḡ(X, Y) gradḡ ϕ .
(69)

In the case of X = Y, the above expression reduces to

∇̄XX = ∇XX + 2(LX ϕ)X− g(X, X) gradg ϕ . (70)

The new Christoffel symbols of the second kind of the Levi-Civita connection are
related to the previous ones by (see [5]):

Γ̄i
jk = Γi

jk + δi
j

∂ϕ

∂qk + δi
k

∂ϕ

∂qj −
n

∑
l=1

gjk gil ∂ϕ

∂ql , i, j, k = 1, . . . , dim M, (71)

where δi
k denotes the Kronecker delta symbol.

How related are the geodesic curves of conformally related Riemannian metrics? This
is the question we will study now. Recall that, as we stated in Section 2, given a Riemann
manifold (M, g), the geodesic curves are the curves γ in M whose velocity vector field γ̇ is
parallel along the curve,∇γ̇(t)γ̇(t) = 0. They satisfy that g(γ̇(t), γ̇(t)) is a constant function,
and we can parametrise the curves with the arc parameter, then g(γ̇(t), γ̇(t)) = 1. Locally,
the geodesics are the solutions to the system of second-order differential Equations (10).

q̈i +
n

∑
j,k=1

Γi
jk q̇j q̇k = 0 , i = 1, . . . , n , (72)

where the functions Γi
jk are the Christoffel symbols corresponding to the Levi-Civita con-

nection of the Riemannian metric g. This equation corresponds to an SODE vector field on
the tangent bundle TM, the so-called second-order geodesic vector field, denoted by Γg,
whose local expression is given by

Γg =
n

∑
i=1

vi ∂

∂qi −
n

∑
i,j,k=1

Γi
jkvjvk ∂

∂vi .

As indicated above Γg is the only vector field on TM satisfying (16):

i(Γg)ωg = dTg ,

that is Γ is the Hamiltonian dynamical vector field defined by the Lagrangian dynamical
system, (TM, ωg, Tg), where the kinetic energy function Tg is defined in (14) and ωg is the
associated Cartan two-form.

Now, we go to the expression of the geodesic curves of the conformal metric
ḡ = exp(2ϕ) g.

As the Christoffel symbols corresponding to ḡ = exp(2ϕ) g are given by (71), we
have that

n

∑
i=1

Γ̄i
jk(q)

∂

∂vi =
n

∑
i=1

Γi
jk(q)

∂

∂vi + 2
n

∑
i,k=1

∂ϕ

∂qk vkvi ∂

∂vi −
n

∑
i,j,k,l=1

gjkvjvkgil ∂ϕ

∂ql
∂

∂vi ,

which gives
Γḡ = Γg + Zv,
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where

Zv = 2
n

∑
i,k=1

∂ϕ

∂qk vkvi ∂

∂vi −
n

∑
i,j,k,l=1

gjkvjvkgil ∂ϕ

∂ql
∂

∂vi ,

namely

Zv =

(
2

n

∑
i,k=1

∂ϕ

∂qk vkvi ∂

∂qi

)v

−
(

n

∑
i,j,k,l=1

gjkvjvkgil ∂ϕ

∂ql
∂

∂qi

)v

.

We can rewrite it as Z = Z1 + Z2, with

Z1 = 2
n

∑
i,k=1

∂ϕ

∂qk vkvi ∂

∂qi = 2 d̂ϕ ITM ∈ X(τM) ,

where ITM : TM // TM is the identity map, seeing it as a vector field along τM, and

Z2 = −
n

∑
i,j,k,l=1

gjkvjvkgil ∂ϕ

∂ql
∂

∂qi = − exp(−2ϕ)grad ϕ =
1
2

grad(exp(−2ϕ)) ,

because exp(2ϕ)gjkvjvk = 1, as we consider the geodesic curves parametrised by the
parameter arc defined by ḡ.

We obtained in this way that the geodesic curves of the metric ḡ = exp(2ϕ) g are the
trajectories of a generalised Newtonian system (M, g, F), where F = F1 + F2 with

F1 = −2 d̂ϕ iITM g, F2 = −1
2

d(exp(−2ϕ)) .

As the one-form F2 is exact, following the terminology of [23] and Expression (46),
we can consider the system as the Lagrangian system on M with Lagrangian function
L = Tg +

1
2 (exp(−2ϕ)) and external force F1.

We remark that, in the expression of F1, ITM : TM // TM appears as a vector field
along τM. This ITM corresponds to the classical evolution operator for functions defined on
the configuration space M, that is, for f : M //R,

d
d t

f = ITM( f ) =
n

∑
i=1

∂ f
∂qi vi = d̂ f .

If γ is a trajectory of the system, that is γT = (γ, γ̇) is an integral curve of the SODE
dynamical vector field ΓL, then

d
d t

∣∣∣∣
γ(t)

f = ITM(γ(t), γ̇(t)) f =
n

∑
i=1

∂ f
∂qi

∣∣∣∣
γ(t)

γ̇i(t) .

See [26] and the references therein for a detailed exposition on the evolution operator
and its extension to functions defined on the phase space.

8.2. Newtonian Vector Fields and Hamilton–Jacobi Equation for Geodesics of the Metric
ḡ = exp(2ϕ) g

We know that the geodesic vector fields X ∈ X(M) of the metric ḡ satisfy the equation

∇̄XX = 0 , (73)

where ∇̄ denotes the Levi-Civita connection for the Riemann structure ḡ.
However, we proved that the geodesic curves of the metric ḡ = exp(2ϕ) g are the

trajectories of a generalised Newtonian system (M, g, F) with

F = F1 + F2 = −2 d̂ϕ iITM g− 1
2

d(exp(−2ϕ)) ,
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and then, according to (63), the associated Newtonian vector fields X ∈ X(M) satisfy
the equation

∇XX = Z ◦ X = Z1 ◦ X + Z2 ◦ X = 2 (d̂ϕ ITM) ◦ X +
1
2

grad(exp(−2ϕ)) ◦ X .

If we look for the corresponding Hamilton–Jacobi equation, corresponding to (65),
we have

d Tg ◦ X = −F ◦ X = 2d̂ϕ i(X)g +
1
2

d(exp(−2ϕ)) ,

or equivalently,

d
(

Tg +
1
2
(exp(−2ϕ))

)
◦ X = 2d̂ϕ ◦ X i(X)g , (74)

which is the classical Hamilton–Jacobi equation for a simple mechanical system with
external force given by Z1. Compare with similar expressions in [27].

If we consider our system as the Lagrangian system defined on the Riemann manifold
(M, g) by the Lagrangian function L = Tg +

1
2 (exp(−2ϕ)) and with an external force

one-form F1 = −2 d̂ϕ iITM g, then Equation (74) can be written as

dEL ◦ X = 2d̂ϕ ◦ X i(X)g ,

where EL is the Lagrangian energy corresponding to L. This last expression is the classical
Hamilton–Jacobi equation in Lagrangian form for our Lagrangian system. See [19,27] for
a comparison.

9. Conclusions and Future Work

We developed a detailed study from the perspective of the geometric mechanics of the
properties of geodesic vector fields, i.e., autoparallel vector fields, on a Riemann manifold.
Geodesic motion then corresponds to free motions of mechanical systems on a Riemann
manifold, and therefore, the relevant tools in classical mechanics, as Hamilton–Jacobi
theory, must shed light on the properties on geodesic motions and related vector fields.
As the autoparallel vector fields are very helpful in such a study, one can try to introduce
an analogous concept for classical systems of the mechanical type, also-called natural
Lagrangian systems, or even for systems under the action of additional external forces,
even in the case of velocity-dependent forces. We identified autoparallel vector fields on a
Riemann manifold (M, g) as Hamilton–Jacobi vector fields for the second-order geodesic
vector field of the given metric g, and furthermore, we showed that closed vector fields are
autoparallel vector fields and satisfy d(Tg ◦ X) = 0, the classical Hamilton–Jacobi equation.
We also remarked that each vector field X ∈ X(M) is a Hamilton–Jacobi vector field for its
complete lift Xc and that each geodesic vector field X ∈ X(M) is a Hamilton–Jacobi vector
field for both its complete lift Xc and the second-order geodesic vector field of the given
metric g.

These properties were appropriately extended to the framework of Newtonian and
generalised Newtonian systems, in particular systems defined by Lagrangians of the
mechanical type. Conserved quantities and a generalised concept of symmetry were
developed, particularly for the case of Killing vector fields. The role of geodesic vector
fields is now played by the so-called Newtonian vector fields, and their properties
were studied, in particular the relation with Hamilton–Jacobi theory. The properties
of generalised Newtonian systems subjected to nonholonomic constraints were also
analysed from this perspective, and the relation among Newtonian vector fields and
Hamilton–Jacobi equations for conformally related metrics was displayed. This last
property is a consequence of the understanding of the geodesic flow of a conformal metric
as a generalised mechanical system on the Riemann manifold of the initial metric.

There are other interesting systems to continue studying with the same methods.
First is the particular case where the velocity-dependent forces come from a Rayleigh
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function and the study of the associated dissipated quantities. See [23] for another approach
and [28,29] for several generalizations and nice examples.

Finally, there is another geometric way of dealing with dissipative systems, which
comes from contact mechanics. We hope that the application of similar techniques to
those of our approach may be interesting. Therefore, we will study one of the simplest
mechanical contact systems, where the Lagrangian has, in addition to the kinetic energy
coming from the metric, a velocity-dependent potential with an extra variable, usually
called s, to describe the dissipation, that is L = Tg − V(q, v, s). The variational principle
is due to Herglotz /9see [30] and the references therein), and the dynamical equations
contain another term coming from the potential, the gradient as in the usual situation, and a
dissipation term. Furthermore, another dynamical equation for the dissipation variable
is needed, ṡ = L(q, v, s). See [31,32] for other approaches. We also aim to use in the near
future all the geometric machinery here developed to deal with these contact dissipative
systems and complete the application to the study of conformal metrics, started in Section 8,
together with the utilisation of the Sundman transformation; see [5,33].
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Appendix A. Sections along Maps and External Forces

Recall the concept of section along a map, [24,25,34–36]. Let π : E // M be a fibre
bundle and φ : N //M a differentiable map. A section along φ is a map σ : N // E such
that π ◦ σ = φ.

They are in a 1-1 correspondence with sections of the induced bundle φ∗E

φ∗E
φ[π] //

φ∗π
��

E

π

��
N

φ
//

σ

==

M

where
φ∗E = {(n, e) ∈ N × E | φ(n) = π(e)} ⊂ N × E.

The set of sections along φ will be noted Σφ(π). When E is a vector bundle the set
Σφ(π) is endowed with a C∞(N)-module structure.
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In particular we will be interested in the vector bundles τM : TM // M, π
p
M :

(T∗M)∧p // M, ρ
p
M = (T∗M)∧p ⊗ TM // M for p ∈ N, and in these cases we will

denote, respectively,

X(φ) = Σφ(τM), Ωp(φ) = Σφ(π
p
M), Vp(φ) = Σφ(ρ

p
M).

When N = M and φ = id the set X(id ) coincides with X(M) and the set Ωp(id )
reduces to Ωp(M).

As an example, if γ : R //M is a curve on M, the tangent vectors γ̇ define a section
γ̇ : R // TM of τM along γ. The restriction of X ∈ X(M) on the curve γ, that is the
composition X ◦ γ, defines also a vector field along γ.

The generalisation of these examples is:
Let φ be a map from N to M. A vector field Y ∈ X(N) defines a vector field along φ

by Tφ ◦ Y ∈ X(φ). Similarly, when X ∈ X(M) the restriction X ◦ φ of X on the image by
φ is a vector field along φ. The above vector fields X and Y are said to be φ-related when
X ◦ φ and Tφ ◦Y coincide along φ.

TM

τM
��

N
φ
//

X◦φ
==

M

X

OO TN

τN
��

Tφ // TM

τM
��

N
φ
//

Y

OO

M

If β is a p-form in M, the restriction β ◦ φ of β on the image φ(N) of φ is a p-form
along φ.

Given α ∈ Ωp(φ), T∗φ ◦ α is a p-form in N. The pull-back by φ of β ∈ Ωp(M) is
obtained by iteration of both processes φ∗(β) = T∗φ ◦ β ◦ φ.

T∗M∧p

π
p
M
��

N
φ
//

β◦φ
;;

M

β

OO T∗N∧p

π
p
N
��

T∗M∧p

π
p
M
��

T∗φoo

N
φ

//

α

99

M

Local expressions:
When E is a vector bundle and {σα} is a local basis of Σ(π), then {σα ◦ φ} is a local

basis of Σφ(π), and σ ∈ Σπ can be written as

σ = ζα(σα ◦ φ) ζα ∈ C∞(N).

In the above case, taking local coordinates (zA) in N and (xi) in M we have

X ∈ X(φ) X = Xi(zA)

(
∂

∂xi ◦ φ

)
α ∈ Ωp(φ) α = αi1 ...ip(z

A)(dxi1 ◦ φ) ∧ . . . ∧ (dxip ◦ φ) .

Observe that Xi, αi1 ...ip and Li
i1 ...ip

are functions in N.
When N = TM and φ is the projection τM the vector fields and forms along τM are

written as

X = Xi(x, v)
(

∂

∂xi ◦ τM

)
α = αi1 ...ip(x, v)(dxi1 ◦ τM) ∧ . . . ∧ (dxip ◦ τM)
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Vector fields along φ act on functions on M giving rise to functions on N. If X ∈ X(φ)
and n ∈ N then X(n) is a tangent vector to M at the point φ(n) which acts on a function
h ∈ C∞(M) by (Xh)(n) = X(n)h. The Leibniz rule for tangent vectors implies that

X(h1h2) = φ∗h1 Xh2 + φ∗h2 Xh1.

A map satisfying this property is called a φ∗-derivation (of degree 0).
Pidello and Tulczijev generalised in [37] the theory of Frölicher and Nijenhuis for these

new derivations:

Definition A1. Given a differentiable map φ : N //M, a φ∗-derivation of degree r of scalar on
M is a R-linear map D : Ω(M) //Ω(N) satisfying

D
(
Ωp(M)

)
⊂ Ωp+r(N)

D(α ∧ β) = Dα ∧ φ∗β + (−1)prφ∗α ∧ Dβ

for β ∈ Ωq(M) and α ∈ Ωp(M). It is said to be of type i∗ when Dg = 0 ∀g ∈ C∞(M).

For instance, given a vector field along φ : N //M, X ∈ X(φ), a type i∗ φ-derivation
iX : Ωp(M) // Ωp−1(N) of degree −1 is defined by iX g = 0, ∀g ∈ C∞(M) and if
ω ∈: Ωp(M),

(iXω)z(v1, . . . , vp−1) = ωφ(z)(Xz, φ∗zv1, . . . , φ∗zvp−1)

where v1, . . . , vp−1 ∈ Tz(N).
By a type d∗ φ-derivation of degree r we mean a φ-derivation such that

D ◦ d(M) = (−1)rd(N) ◦ D. An example of such a type φ-derivation, dX , is defined by

dX = iX ◦ d(M) + d(N) ◦ iX ,

where d(M) stands for the operator of exterior differentiation in M. This is of type d∗, i.e.,

dX ◦ d(M) = d(N) ◦ dX .

Note that when X ∈ X(id M) ≡ X(M) the id M-derivations iX and dX are but the
contraction or inner product i(X) (or iX) and the Lie derivative LX , respectively. For this
reason, iX and dX will be called contraction and Lie derivative, respectively.

Appendix A.1. The Case of a Riemannian Manifold

We are especially interested in the case of vector fields and one-forms along the
projection τM : TM // M on a Riemann manifold (M, g). The metric induces natural
isomorphisms between the C∞-modules of vector fields X(M) and one-forms Ω1(M).
They are given by the musical isomorphisms between the tangent and cotangent bundles

[ : TM // T∗M, ] : T∗M // TM ,

one inverse of the other, defined by

[(up) = i(up)g, ](αp) = i(αp)g−1 ,

and extended by C∞-linearity to the sections X(M) and Ω1(M). We use the same notation,
[ and ], for the maps on the bundles and the sections, as usual.

These isomorphisms can be extended in the same way to the spaces of vector fields
and one-forms along τM. In fact, given τM : TM //M, X ∈ X(τM), α ∈ Ω1(τM), we have

([(X)(p, u))(p, v) = (iX(p,u)g)(v) = gp(X(p, u), v)

(](α)(p, u))(p, β) = (iα(p,u)g
−1
p )(β) = g−1

p (α(p, u), β)
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for (p, v) ∈ Tp M and (p, β) ∈ T∗p M.
For sections along τM in general, X ∈ X(τM), α ∈ Ω1(τM), and (p, u) ∈ Tp M, we

have:
[(X)(p, u) = iX(p,u)gp ∈ T∗p M, ](α)(p, u) = iα(p,u)g

−1 ∈ Tp M ,

and there is a duality relation between X(τM) and Ω1(τM) given by

〈α, X〉 : TM //R , 〈α, X〉(p, u) = 〈α(p, u), X(p, u)〉 .

Appendix A.2. External Forces Depending on Velocities

The use we make of the above notions is the following: the elements of Ω1(τM) are
the forms of force, or external forces, acting on a system in the case they depend not only
on the positions but on the velocities also. Then the elements of X(τM) are the vector forces
depending on the positions and velocities. The musical isomorphisms give the way to pass
from one to the other depending on the form of the equations we use.

For the Lagrangian formulation, in the phase space TM, we use expressions with
Ω1(τM), but for Riemannian expressions, in the configuration manifold M, is more suitable
to use X(τM). Musical isomorphisms and the duality relation helps us to pass form one
formulation to the other.

Observe that if γ : R //M is a curve, γ̇ : R // TM its tangent prolongation and
X ∈ X(τM), then X ◦ γ̇ : R // TM is a vector field along γ, that is X ◦ γ̇ ∈ X(γ),
because τM ◦ γ̇ = γ.

On the same way we have that if α ∈ Ω1(τM), then α ◦ γ̇ ∈ Ω1(γ).

Appendix A.3. External Forces as Semibasic Forms on TM

Usually in the study of Lagrangian systems we say that an external force is a semibasic
one-form on TM, that is α ∈ Ω1(TM) such that iXα = 0 for any vertical vector field on TM.
The local expression of such kind of forces is

α = αj(x, v)dxj ,

in a natural coordinate system (x, v) of TM. In the case that the coordinates αj(x, v) of
α do not depend on the velocities, αj(x), then the form α is basic and there exists a one-
form α̂ ∈ Ω1(M) such that α = τ∗Mα̂. The set of semibasic one-forms on TM is denoted
by Ω1

1(TM) with the subindex indicating that the contraction with a vertical vector field
is null.

Is there any relation between the sets Ω1
1(TM), of semibasic one-forms and Ω1(τM),

the set of one-forms along the map τM : TM //M? Let see how it goes:
Let α ∈ Ω1

1(TM) and (p, u) ∈ TM. Then α(p, u) ∈ T∗(p,u)(TM). We can consider that
α(p, u) acts on Tp M as

ᾱ(p, u) : (p, v) // α(p, u)((p, u), W), W ∈ T(p,u)(TM), (τM)∗(W) = v .

Observe that this is well defined because α is semibasic, hence if (τM)∗(W) = (τM)∗(W̄) =
v, then W − W̄ is vertical hence α(p, u)((p, u), W) = α(p, u)((p, u), W̄).

On the other side τM ◦ ᾱ(p, u) = τM(p, u), hence we have defined a map ᾱ : TM //T∗M
which is an element of Ω1(τM), that is, we have a map:

Ω1
1(TM) //Ω1(τM) ,

which is C∞(TM)-linear. This map is an isomorphism with inverse given by the following
map: if β ∈ Ω1(τM), and ((p, u), W) ∈ T(p,u)(TM), then take

β̂((p, u), W) = β(p, u)((τM)∗(W)) ,
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then, clearly, β̂ ∈ Ω1
1(TM). That this last one is the inverse of the other is easy to prove.

Hence we have proven that both C∞(TM)-modules are canonically isomorphic.
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