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Abstract: Applications in medical technology have a massive contribution to the treatment of patients.
One of the attractive tools is ball bearings. These balls support the load of the application as well as
minimize friction between the surfaces. If a heavy load is applied to a ball bearing, there is the risk
that the balls may be damaged and cause the bearing to fail earlier. Hence, we aim to study the model
of the failure times of ball bearings. A hybrid Type-II censoring scheme is recommended to minimize
the experimental time and cost where the components are following alpha power inverse Weibull
distribution. A ball bearing is one example; the other is the resistance of guinea pigs exposed to
dosages of virulent tubercle bacilli. We use different estimation methods to obtain point and interval
estimates of the unknown parameters of the distribution; consequently, estimating statistical functions
such as the hazard rate and the survival functions are observed. The maximum likelihood method
and the maximum product spacing methods are used, in addition to the Bayesian estimation method,
in which symmetric and asymmetric loss functions are utilized. Interval estimators are obtained
for the unknown parameters using three different criteria: approximate, credible, and bootstrap
confidence intervals. The performance of the parameters’ estimation is accomplished via simulation
analysis and numerical methods such as Newton–Raphson and Monte Carlo Markov chains. Finally,
results and conclusions support the suitability of alpha power inverse Weibull distribution under a
hybrid Type-II censoring scheme for modeling real biomedical data.

Keywords: alpha power inverse Weibull distribution; hybrid Type-II censoring; ball bearing; maximum
likelihood estimator; Bayes estimator; symmetric and asymmetric loss functions; Monte Carlo Markov
chain; maximum product spacing

1. Introduction

Many bearing types and styles provide an extensive range of solutions that are useful
for applications across various industries, including mechanical, medical, global aerospace,
and others. In biomaterials, ball bearing technology is used for “Hip Joint Replacement”,
where it is necessary for a patient’s life suffering from arthritis; for more details, refer to [1].
When ball bearings are operating, they can be inclined to spoil for different reasons; it
can be due to lack of lubrication, changeable load, vibration, or pollutants. All can cause
a fast failure time of the bearings. Accordingly, modeling components’ lifetimes have
considerable attention in many applied sciences.
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Another important application in the biomedical area is studying the resistance of
living organs to a certain kind of bacteria. Tuberculosis is still considered one of the main
health problems, taking millions of lives annually. The World Health Organization reported
that 30% of the world’s population had been infected with the tubercle bacillus, and the
risk of infection is still increasing; see [2]. We considered a sample of guinea pigs that were
exposed to dosages of virulent tubercle bacilli (VTB), and their resistance was recorded with
respect to their living times. Modeling the lifetimes of guinea pigs is our second purpose in
this work.

Dealing with samples in real-life experiments may confront obstacles such as missing
or eliminating components during the experiment and/or lack of money and time; therefore,
statisticians are spending considerable effort in investigating components’ breakdown times
(failures) as the main structure of the performing systems in industry and mechanics. The
researchers usually analyze the observation of operating unit failure, the recorded lifetimes
of those units, and their application of statistical analysis methods from data obtained
to data collected for the whole system. However, certain experimental units are costly
and highly efficient, requiring to decrease in the number of tested components and their
lifetimes. A measurement system that can save time and resources for all outputs is the
main requirement. It will subsequently be taken into consideration because the composite
data show the exact times of failure of such damaged components. Failure data should
be fitted to an appropriate parametric statistical distribution to estimate its unknown
parameters and furthermore to estimate its reliability and hazard functions. Estimating
the reliability and hazard functions helps statisticians predict and make the right decision
about the survival factor or hazard factor of these models in probabilistic meaning with a
high level of confidence that may reach 95%.

In this paper, some statistical inference approaches are handled, such as the maximum
likelihood, the maximum product spacing, and the Bayesian methods.

A system of censoring schemes that can balance (i) the total experimental time spent,
(ii) the number of test components, and (iii) the efficiency of the experimental statistical
inference is of great concern and is highly evaluated. A hybrid censoring scheme (HCS) is
a consolidation between the two types of censoring schemes (Type-I and Type-II), which
may be explained by using similar elements. The analysis is decided with the failure of r
units, or reaching a specified time T in the experiment. If the i-th ordered failure time is
symbolized by Xi:n, the test may be ended at T1 = min{Xr:n, T} or at T2 = max{Xr:n, T}.
Time T1 means the end of the experiment for hybrid Type-I censoring (HT1CS ) test units.
T2 is the end time for hybrid Type-II censored (HT2CS) test units. Epstein [3] suggested the
HT1CS and studied a lifetime experiment that assumes the life cycle of every component
to be exponentially distributed.

Many researchers have worked on HT1CS , such as Ebrahimi [4]. One of the disad-
vantages of HT1CS is that a small number of failures may occur until after a fixed period T
under HT1CS . Childs et al. [5] developed HT2CS, which assures a minimum of r failures.
If r failures actually occurred before T, the experiment would remain until the r-th failure
occurred, and we would see r failures of the data exactly at this point. The applications of
the HT2CS have been discussed by several authors, and the reader can refer to Mansour
and Ramadan [6], Salah et al. [7], Yousef et al. [8], Yadav et al. [9], Mahmoud et al. [10],
Aldahlan et al. [11], Mohamed et al. [12], Ramadan et al. [13] and Nassr et al. [14].

In this article, alpha power inverse Weibull (APIW) distribution is used to model the
ball-bearing lifetimes and the resistance of VTB. APIW distribution was first proposed
by [15]. Let X be a random variable with an APIW distribution; then, the cumulative
distribution function (CDF) and the probability density function (pd f ) are determined as

FAPIW(x; α, β, λ) = αe−λx−β
−1

α−1 ; α 6= 1, x, α, λ, β > 0 (1)
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and

fAPIW(x; α, β, λ) = log α
α−1 λ β x−(β+1)e−λx−β

αe−λx−β

; α 6= 1, x, α, λ, β > 0, (2)

respectively. The survival and the hazard functions of APIW distribution are

S(x) =
α− αe−λx−β

α− 1
; α 6= 1, x, α, λ, β > 0 (3)

and

h(x) =
log(α) λ β x−(β+1) e−λx−β

αe−λx−β

α− αe−λx−β
; α 6= 1, x, α, λ, β > 0, (4)

respectively. The APIW statistical characteristics were discussed recently by [15]. It was
shown that the pd f of APIW is unimodal; it can be either symmetric or skewed to the
right depending on the parameter values. In addition, the hazard rate function can be
an increasing or decreasing curve. Hence, this model is a good candidate for describing
several real data which can be symmetric or asymmetric (positively skewed).

Point and interval estimation of the unknown parameters were explored on the basis
of a complete sample. Not much work handled the hybrid Type-II censoring for the alpha
power family of distribution and used it for modeling biological issues; hence, we aim to
study the APIW lifetimes under HT2CS using classical estimation methods in addition to
the Bayesian method based on informative priors with symmetric and asymmetric loss
functions. A simulation analysis using R software is performed to compare the different
methods of estimation and test the quality of the new model under HT2CS sampling
when fitting it to some real-life data. The Newton–Raphson method of maximization is
used in the “maxLik” software to compute the MLE and MPS. Additionally, the ‘CODA’
package, which analyzes Markov chain Monte Carlo (MCMC) outputs and diagnoses lack
of convergence, is used to compute the Bayesian estimation.

The rest of this article is prepared accordingly: In Section 2, the maximum likelihood
estimators are obtained for the APIW parameters, and hence, estimations of the hazard
rate and reliability functions are obtained. In Section 3, estimates are observed using the
MPS method. Bayesian estimation is derived in Section 4 under various loss functions,
including the squared error loss function (SEL) and the linear exponential loss function
(LINEX). Confidence intervals are evaluated in Section 5. In Section 6, the actual data set is
tested and analyzed. Simulation analysis is observed in Section 7 to study and evaluate the
quality of the various estimators studied in this research. Conclusions and related results
are reported in Section 8.

2. The Maximum Likelihood Estimator

The classical well-known maximum likelihood estimation (MLE) method is used in
this section. Point estimations of the parameters are performed assuming the censoring
HT2CS. Hence, let n be identical components that are placed in an experiment and assume
their lifetimes follow the APIW distribution with pd f as in Equation (2). The experiment is
stopped at the pre-fixed time (T) and at a pre-specified number of failures (r ≤ n) whichever
comes later; therefore, the experiment is stopped at the max(xr:n,T ), in which xr:n denotes
the r-th failure. Under HT2CS, the random failures are achieved according to the cases:

Case 1: {x1:n < . . . < xr:n} if T < xr:n;
Case 2: {x1:n < . . . < xr+1:n < . . . < xm:n < T} if T > xr:n;
m: The number of units that fail before time T and r ≤ m ≤ n.
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The likelihood function for case 1 is

L1(α , β , λ |data) =
n!

(n− r)!

 (log α)r λrβr

(α− 1)r

r

∏
i=1

x−(β+1)
i:n e

−λ
r
∑

i=1
x−β

i:n
α

r
∑

i=1
e−λx−β

i:n


 (α− 1)− α−1+e−λ x −β

r:n

α− 1

n−r

.

For case 2, the likelihood function is

L2(α, β, λ|data) =
n!

(n−m)!

 (log α)m λmβm

(α− 1)N

m

∏
i=1

x−(β+1)
i:n e

−λ
m
∑

i=1
x−β

i:n
α

m
∑

i=1
e−λx−β

i:n


α− 1− α−1+e−

−λx−β
m:n

α− 1


n−m

.

The combined likelihood function can be represented as

L(α, β, λ|data) = C

 (log α)H λH βH

(α− 1)H

H

∏
i=1

x−(β+1)
i:n e

−λ
H
∑

i=1
x−β

i:n
α

H
∑

i=1
e−λx−β

i:n


α− 1− α−1+e

−λu−β

α− 1

n−H

, (5)

where C = n!
(n−H)! , H indicates the number of failures, u = xr:n if H = r and u = xm:n if

H = m.
By taking the logarithm of Equation (5), we obtain Equation (6)

log L(α , β , λ|data) = log(C) + H log(log(α)) + H log(λ) + H log(β)− (n− H) log(α− 1)

−(β + 1)
H

∑
i=1

log(xi:n)− λ
H

∑
i=1

x−β
i:n + log(α)

H

∑
i=1

e−λx−β
i:n (6)

+(n− H) log(α− 1− α−1+e−λu−β

).

The MLEs of the parameters denoted by α̂, β̂ and λ̂ can be attained by solving the
simultaneous nonlinear log-likelihood equations as follows, respectively:

H
α log(α)

− n− H
α− 1

+ α−1
H

∑
i=1

e−λx−β
i:n +

(n− H)

[
1− α−2+e−λu−β

(−1 + e−λu−β
)

]
(

α− 1− α−1+e−λu−β
) = 0, (7)

H
β −

H
∑

i=1
log(xi:n) + λ

H
∑

i=1
x−β

i:n log(xi:n) + λ log(α)
[

∑H
i=1 x−β

i log(xi:n)e−λx−β
i:n

]
− (n−H)λ u−β log(u) log(α) e−λu−β

α−1+e−λu−β(
α−1−α−1+e−λu−β

) = 0
(8)

and
H
λ
−

H

∑
i=1

x−β
i:n − log(α)

[
H

∑
i=1

x−β
i:n e−λx−β

i:n

]
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+
(n− H) u−β log(α) e−λu−β

α−1+e−λu−β(
α− 1− α−1+e−λu−β

) = 0. (9)

An implicit solution is not an easy task for solving the above system. Hence, some
numerical techniques will be helpful to find a numerical approximate solution. The Newton–
Raphson technique is used to find a numerical solution. The Newton–Raphson algorithm
is described in detail in EL-Sagheer [16].

Furthermore, using the invariant property of the MLEs, we can find the MLEs of S(x)
and h(x), after replacing α, β and λ by α̂, β̂ and λ̂ in Equations (3) and (4); hence, we obtain

Ŝ(x) =
α̂− α̂e−λ̂x−β̂

α̂− 1
; α 6= 1, x , α, λ, β > 0 (10)

and

ĥ(x) =
log(α̂) λ̂ β̂ x−(β̂+1)e−λ̂x−β̂

α̂e−λ̂x−β̂

α̂− α̂e−λ̂x−β̂
; α 6= 1, x, α, λ, β > 0. (11)

3. Maximum Product Spacing

The maximum product spacing method (MPS) is an alternative efficient estimation
method that demonstrates improvements compared with other point estimation methods;
one may refer to Cheng and Amin [17] for more details. The MPS is performed to estimate
the unknown parameters of APIW distribution. Once again, it is necessary to deal with a
system of nonlinear equations; these equations are emanated from the partial derivatives
of the logarithm of the product spacing function Φ(α, λ, β), which is written as:

Φ(α, λ, β) =

(
n+1

∏
i=1

Di

) 1
n+1

, (12)

where Φ is the geometric mean of the product spacing function Di that is defined as

D1 = F(x1)
Di = F(xi)− F(xi−1); i = 2, . . . , n

Dn+1 = 1− F(xn).
(13)

The MPS function under HT2CS is written as:

Φ(xi; α, λ, β) = CF(x1)(1− F(u))n−H
H

∏
i=2

(F(xi)− F(xi−1)) (14)

where u is defined similarly as in Section 2. Using the CDF in Equation (1) and substituting
in Equation (14), we obtain the MPS function as:

Φ(xi; α, λ, β) = C
1

(α− 1)n (α
e−λx−β

1 − 1)(α− αe−λu−β

)n−H
H

∏
i=2

[
αe−λx−β

i − αe−λx−β
i−1

]
(15)

consequently,

log Φ(xi; α, λ, β) = log c− n log(α− 1) + log(αe−λx−β
1 − 1)+

(n− H) log(α− αe−λu−β

) +
H

∑
i=2

log[αe−λx−β
i − αe−λx−β

i−1
]

(16)
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The estimators under the MPS method are attained by taking the partial derivatives of
Equation (16) and then solving the system of nonlinear equations numerically; this can be
executed by using the Newton–Raphson method. The numerical results are later exposed
in Section 7.

4. Bayes Estimation

A Bayesian approach, which is highly effective in reliability analysis, is created by the
capacity to combine prior information within the test, as the restricted availability of data is
a significant difficulty in relation with reliability analysis. The unknown α, β, and λ param-
eters versus the functions of loss for SEL and LINEX are estimates of Bayesian. Suppose
that the unknown parameters α, β and λ have Gamma prior distributions independently.

π1(α) ∝ αa1−1e−b1α, α > 0, a1 > 0, b1 > 0,

π2(β) ∝ βa2−1e−b2β, β > 0, a2 > 0, b2 > 0, (17)

π3(λ) ∝ λa3−1e−b3λ, λ > 0, a3 > 0, b3 > 0.

where the hyper-parameters ai and bi, i = 1, 2, 3 are the hyper-parameters that contain the
prior information. Many authors, such as Kundu and Howlader [18], Dey and Dey [19],
Dey et al. [20] and Dey et al. [21] developed Bayesian estimation for their parameter models
using informative gamma priors. The posterior distribution of α, β and λ is defined by
π∗(α, β, λ| data) and can be procured by combining the likelihood function Equation (5)
with the prior Equation (17) and can be written as

π∗(α, β, λ | data) =
L(α, β, λ | data) π1(α) π2(β) π3(λ)

∞∫
0

∞∫
0

∞∫
0

L(α, β, λ | data) π1(α) π2(β) π3(λ) dα dβ dλ

. (18)

A square error loss (SEL) function, which is a commonly used function, is a symmetric
loss function, which is defined as

L(φ, φ̂) = (φ̂− φ), (19)

here, φ̂ is an estimate of φ.
The Bayes estimate of any function of α, β and λ, say g(α, β, λ) under the SEL function

can be determined as
ĝBS(α, β, λ|x) = Eα,β,λ|x(g(α, β, λ)), (20)

where

Eα,β,λ|data(g(α, β, λ)) =

∞∫
0

∞∫
0

∞∫
0

g(α, β, λ) π1(α) π2(β) π3(λ) L(α, β, λ | data) dα dβ dλ

∞∫
0

∞∫
0

∞∫
0

π1(α) π2(β) π3(λ) L(α, β, λ | data) dα dβ dλ

. (21)

The LINEX function is the most universally used asymmetric loss function. The asym-
metric loss function is considered more comprehensive in many respects; see Varian [22].
It is

L(4) =
(

eε4 − ε4− 1
)

, ε 6= 0, 4 = φ̂− φ, (22)

where ε is a loss function scale parameter. The LINEX loss function is nearly the same as
the SEL function for the option of positive or negative values of ε (close to zero).

The Bayes estimate of any function of α, β and λ, say g(α, β, λ) under the LINEX
function can be determined as

ĝBL(α, β, λ | data) = −1
ε

log
[

E
(

e−εg(α,β,λ) | data
)]

, ε 6= 0, (23)
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E
(

e−εg(α,β,λ) | data
)
=

∞∫
0

∞∫
0

∞∫
0

e−εg(α,β,λ) π1(α) π2(β) π3(λ) L(α, β, λ | data)dαdβdλ

∞∫
0

∞∫
0

∞∫
0

π1(α) π2(β) π3(λ) L(α, β, λ | data) dαdβdλ

. (24)

It is noticed that the ratio of multiple integrals in Equations (21) and (24) cannot be
obtained in an explicit form.

MCMC is developed to create samples of the joint posterior function in Equation (18).
The MCMC mechanism is primarily concerned with calculating an estimated integral value.
We consider the Gibbs in the Metropolis–Hasting sampler approach in order to implement
the MCMC technique. From Equations (5) and (17), the joint posterior distribution can be
written as

π∗(α, β, λ |x) ∝ αa1−1βH+a2−1λH+a3−1e−αb1−βb2−λb3
n!

(n− H)!
(log α)H

(α− 1)H H

∏
i=1

x−(β+1)
i:n

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n


 (α− 1)− α−1+e−

−λu−β

α− 1

n−H

. (25)

We rewrite conditionals for α, β and λ as follows:

π∗1 (α| β, λ, x) ∝
n!

(n− H)!
αa1−1(log α)H

(α− 1)H e−αb1 α

H
∑

i=1
e
−λx−β

i:n
 (α− 1)− α−1+e−

−λu−β

α− 1

n−H

, (26)

π∗2 (β| α, λ, x) ∝
n!

(n− H)!
βa2−H−1e−βb2

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n
(

H

∏
i=1

x−(β+1)
i:n

)
 (α− 1)− α−1+e−

−λu−β

α− 1

n−H

(27)

and

π∗3 (λ| α, β, x) ∝
n!

(n− H)!
λa3−H−1e−λb3

H

∑
i=1

e−λx−β
i:n α

H
∑

i=1
e
−λx−β

i:n

 (α− 1)− α−1+e−
−λu−β

α− 1

n−H

. (28)

The conditional posteriors of α, β and λ in Equations (26)–(28) thus do not have normal
forms. As a result, the MCMC method will be used to compute the Bayesian estimates of
α, β and λ in addition to the Bayesian estimates of the survival function and hazard function
as well as the related credible intervals. See Robert [23,24] for a detailed description of the
MCMC method.

5. Confidence Intervals

In this section, we study three types of confidence intervals. A numerical analysis is
performed to compare the efficacy of these intervals with respect to interval length and
coverage probability.
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5.1. Approximate Confidence Intervals

This subsection will present the observed Fisher’s information matrix, which is fre-
quently used to construct asymptotic confidence intervals (ACIs). The principle of missing
information is as follows:

Observed information = Complete information −Missing information.
The MLEs (α̂, β̂, λ̂) are approximately bivariate normal with a mean (α̂, β̂, λ̂) and

variance matrix I−1(α̂, β̂, λ̂). Here, Î(α, β, λ) is the observed Fisher information matrix, and
it is defined as

Î(α, β, λ) =


− ∂2`

∂α2 − ∂2`
∂α∂β − ∂2`

∂α∂λ

− ∂2`
∂β∂α − ∂2`

∂β2 − ∂2`
∂β∂λ

− ∂2`
∂λ∂α − ∂2`

∂λ∂β − ∂2`
∂λ2


(α,β,λ)=(α̂,β̂,λ̂)

, (29)

where

∂2`

∂α2 =
−H

(α log(α))2 +
n− H

(α− 1)2 + α−2
H

∑
i=1

e−λx−β
i:n

+(n− H)

(
α− 1− α−1+e−λu−β

)−2

×


(

1− α−2+e−λu−β

(−1 + e−λu−β
)

)2
−(

α− 1− α−1+e−λu−β
)(
−2 + e−λu−β

)
(−1 + e−λu−β

)α−3+e−λu−β

,

∂2`

∂α∂β
=

λ

α

H

∑
i=1

x−β
i:n log(xi:n) e−λx−β

i:n

+(n− H)λu−βe−2λu−β
log(u)α−1+e−λu−β

(
α− α2 + αe−λu−β

)−2

×
[

e−λu−β
(

α− α2 + αe−λu−β
)
+ α log(α)(1− α + (2α− 1)e−λu−β

)

]
,

∂2`

∂α∂λ
=
−1
α

H

∑
i=1

x−β
i:n e−λx−β

i:n + (n− H)u−βe−2λu−β
α−1+e−λu−β

(
α− α2 + αe−λu−β

)−2

×
[
−eλu−β

(
α− α2 + αe−λu−β

)
− α log(α)(1− α + eλu−β

)

]
,

∂2`

∂β2 =
−H
β2 − λ

H

∑
i=1

x−β
i:n (log(xi:n))

2

+λ log(α)
H

∑
i=1

(x−β
i:n log(xi:n))

2 e−λx−β
i:n [λ− 1]

−(n− H)λ u−2β(log(u))2 log(α) e−2λu−β
αe−λu−β

(
α− α2 + αe−λu−β

)−2

×
[
(λ− uβ)eλu−β

(
α− α2 + αe−λu−β

)
− (α− 1)αλ log(α)

]
,
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∂2`

∂β∂λ
=

H

∑
i=1

x−β
i:n log(xi:n)− log(α)

H

∑
i=1

x−β
i log(xi:n) e−λx−β

i:n

[
1− λx−β

i:n

]
+(n− H) u−2β log(u) log(α) e−2λu−β

αe−λu−β
(

α− α2 + αe−λu−β
)−2

×
[
(uβ − λ)eλu−β

(
α− α2 + αe−λu−β

)
+ (α− 1)αλ log(α)

]
and

∂2`

∂λ2 =
−H
λ2 −

H

∑
i=1

x−β
i:n − log(α)

H

∑
i=1

(
x−β

i:n

)2
e−λx−β

i:n

+(n− H) u−2β log(α) e−2λu−β
αe−λu−β

(
α− α2 + αe−λu−β

)−2

×
[

eλu−β
(

α− α2 + αe−λu−β
)
+ (α− 1)α log(α)

]
.

As a result, the approximate (or observed) asymptotic variance-covariance matrix
[
V̂
]
,

for MLEs is derived by inverting the observed information matrix Î(α, β, λ) or equivalent

[
V̂
]
= Î−1(α, β, λ) =

 V̂ar(α̂) cov(α̂, β̂) cov(α̂, λ̂)

cov(α̂, β̂) V̂ar
(

β̂
)

cov(β̂, λ̂)

cov(α̂, λ̂) cov(β̂, λ̂) V̂ar
(
λ̂
)
. (30)

It is well known that
(
α̂, β̂, λ̂

)
is approximately distributed as multivariate normal

with mean (α, β, λ) and covariance matrix I−1(α, β, λ) under some regularity conditions,
see Lawless [25]. The 100(1− γ)% two-sided confidence intervals can be given by

α̂± Z γ
2

√
V̂ar(α̂), β̂± Z γ

2

√
V̂ar

(
β̂
)

and λ̂± Z γ
2

√
V̂ar

(
λ̂
)
. (31)

where Z γ
2

is the percentile of the standard normal distribution with right-tail probability γ
2 .

The delta method is used to obtain approximate estimates of the variances of Ŝ(t) and
ĥ(t). Greene [26] explained a general approach to computing CIs for functions of MLEs.
The variance of Ŝ(t) and ĥ(t) can be estimated using this method, respectively.

σ̂2
Ŝ(t) =

[
∇Ŝ(t)

]T[V̂][∇Ŝ(t)
]

and σ̂2
ĥ(t) =

[
∇ĥ(t)

]T[
V̂
][
∇ĥ(t)

]
,

where ∇Ŝ(t) and ∇ĥ(t) are, respectively, the gradient of Ŝ(t) and ĥ(t) with respect
to α, β and λ as follows:

∇Ŝ(t) =


∂S(t)

∂α
∂S(t)

∂β
∂S(t)

∂λ


and

∇ĥ(t) =


∂h(t)

∂α
∂h(t)

∂β
∂h(t)

∂λ
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where

∂S(t)
∂α

=

e−λt−β

(
(1− α)αe−λt−β

+ αeλt−β

(
−1 + αe−λt−β

))
α(α− 1)2 ,

∂S(t)
∂β

=
−λt−βe−λt−β

αe−λt−β

log(α) log(t)
α− 1

,

∂S(t)
∂λ

=
t−βe−λt−β

αe−λt−β

log(α)
α− 1

,

∂h(t)
∂α

=
− λ β t−(β+1)e−2λt−β

αe−λt−β−1

(α− αe−λt−β
)2

[
eλt−β

(−α + αe−λt−β

) + α log(α)(eλt−β − 1)
]

,

∂h(t)
∂β

=
λ log(α) t−(2β+1)e−2λt−β

αe−λt−β

(α− αe−λt−β
)2

 tβeλt−β
(α− αe−λt−β

)

+β log(t)
(

eλt−β
(tβ − λ)(−α + αe−λt−β

) + αλ log(α)
) 

and

∂h(t)
∂λ

=
− β log(α) t−(2β+1)e−2λt−β

αe−λt−β

(α− αe−λt−β
)2

[
eλt−β

(tβ − λ)(−α + αe−λt−β

) + αλ log(α)
]

.

Then, the 100(1− γ)% two-sided confidence intervals of S(t) and h(t) can be given,
respectively, by

Ŝ(t)± Z γ
2

√
σ̂2

Ŝ(t)
and ĥ(t)± Z γ

2

√
σ̂2

ĥ(t)
. (32)

A disadvantage of an approximate 100(1− γ)% confidence interval is that it can
produce a negative lower bound even if the parameter only accepts positive values. The
negative value is modified by zero in this case. Optionally, Meeker and Escobar [27] pro-
posed using a log transformation to obtain approximate confidence intervals for parameters
with positive values. Thus, the approximate two-sided 100(1− γ)% confidence interval
derived in this manner for ϕ = (α, β, λ, S(t), h(t)) is provided byϕ̂ exp

−Z γ
2

V̂ar(ϕ̂)

ϕ

, ϕ̂ exp

Z γ
2

V̂ar(ϕ̂)

ϕ

, (33)

where ϕ̂ =
(

α̂, β̂, λ̂, Ŝ(t), ĥ(t)
)

.

5.2. Credible CI

The credible confidence interval (CCI) is obtained by using the algorithm of Metropolis-
Hastings within the Gibbs sampling technique. We summarized these algorithm steps
as follows:

(1) Start with initial guess
(

α(0), β(0), λ(0)
)

.

(2) Set j = 1.

(3) From the normal proposal distributions N
(

α(j−1), var(α)
)

, N
(

β(j−1), var(β)
)

and

N
(

λ(j−1), var(λ)
)

, generate α(j), β(j) and λ(j) from π∗1

(
α(j−1)| β(j−1), λ(j−1), data

)
,

π∗2

(
β(j−1)| α(j), λ(j−1), data

)
and π∗3

(
λ(j−1)| α(j), β(j), data

)
and from the main cross-

ways in inverse Fisher information matrix can be obtained var(α), var(β) and var(λ).
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(4) From N
(

α(j−1), var(α)
)

, N
(

β(j−1), var(β)
)

and N
(

λ(j−1), var(λ)
)

, generate pro-
posals α∗, β∗ and λ∗.

(i) Evaluate the acceptance probabilities

ηα = min
[

1,
π∗1(α∗ | β(j−1),λ(j−1),data)

π∗1(α(j−1) | β(j−1),λ(j−1),data)

]
,

ηβ = min
[

1,
π∗2(β∗ | α(j),λ(j−1),data)

π∗2(β(j−1) | α(j),λ(j−1),data)

]
,

ηλ = min
[

1,
π∗3(λ∗ | α(j),β(j),data)

π∗3(λ(j−1) | α(j),β(j),data)

]
.

(ii) From a uniform (0, 1) distribution, generate u1, u2 and u3 .
(iii) If u1 < ηα, accept and set α(j) = α∗; else, set α(j) = α(j−1).
(iv) If u2 < ηβ, accept and set β(j) = β∗; else, set β(j) = β(j−1).
(v) If u3 < ηλ, accept and set λ(j) = λ∗; else, set λ(j) = λ(j−1).

(5) Set j = j + 1.
(6) Repeat Steps (3)–(5) N times and obtain α(i), β(i) and λ(i), i = 1, 2, . . . N.

(7) To compute the CRs of ψ
(i)
k , k = 1, 2, 3, (ψ1, ψ2, ψ3) = (α, β, λ)

as ψ
(1)
k < ψ

(2)
k . . . < ψ

(N)
k ; then, the 100(1− γ)% CRIs of ψk is

(
ψk(Nγ/2), ψk(N (1−γ/2))

)
.

The first simulated M variations will be eliminated in order to promote convergence
and devote attention to the selection of initial values. The samples have chosen ψ

(j)
k ,

j = M + 1, . . . N, an approximate posterior sample generated for sufficiently large N, which
may be required to develop the inferences of Bayes.

The approximate Bayes estimates of ψk based on the SEL function are obtained by

ψ̂k =
1

N −M

N

∑
j=M+1

ψ
(j)
k , (34)

The approximate Bayes estimates for ψk based on the LINEX loss function are ob-
tained by

ψ̂k =
−1
c

ln

[
1

N −M

N

∑
j=M+1

e−c ψ
(j)
k

]
, k = 1, 2, 3. (35)

5.3. Bootstrap CI

When the sample size is small, the percentile bootstrap (Boot-p) and the bootstrap-t
(Boot-t) confidence interval presented by [28–31] allows for the computation of the con-
fidence interval for the parameters of interest. Two parametric bootstrap algorithms are
offered to calculate the bootstrap confidence intervals of α, β, λ, S(t) and h(t). Bootstrap-t
was created using a studentized ‘pivot’ and requires an estimator of the variance of the
MLE of α, β, λ, S(t) and h(t).

5.3.1. Parametric Boot-p

(1) Based on x = x1:m:n, x2:m:n, . . . , xm:m:n, obtain α̂, β̂ and λ̂ by maximizing Equations (7)–(9).
(2) Generate x∗ = x∗1:m:n, x∗2:m:n, . . . , x∗m:m:n from the APIW distribution with parameters

α̂, β̂ and λ̂ based on hybrid Type-II censoring, using the algorithm described in [32].
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(3) Obtain the bootstrap estimate ψ̂∗i =
(

α̂∗i , β̂∗i , λ̂∗i , Ŝ∗i (t), ĥ∗i (t)
)

, i = 1, 2, 3, . . . , N boot by
the MLEs under the bootstrap sample.

(4) Repeat Steps (2) and (3) N boot times, and obtain ψ̂∗1 , ψ̂∗2 , . . . , ψ̂∗N boot, where

ψ̂∗i =
(

α̂∗i , β̂∗i , λ̂∗i , Ŝ∗i (t), ĥ∗i (t)
)

, i = 1, 2, 3, . . . , N boot.

(5) Obtain ψ̂∗(1), ψ̂∗(2), . . . , ψ̂∗(N boot) by arrange ψ̂∗i , i = 1, 2, 3, . . . , N boot in ascending orders.

Define ψ̂boot−p = G−1
1 (z) for given z, where G1(z) = P(ψ̂∗ ≤ z) is the cumulative

distribution function of ψ̂∗. The approximate bootstrap-p 100(1− γ)% CI of ψ̂ is given by[
ψ̂boot−p

(γ

2

)
, ψ̂boot−p

(
1− γ

2

)]
. (36)

5.3.2. Parametric Boot-t

(1) Repeat the steps of the parametric Boot-p from (1) to (3).

(2) The variance–covariance matrix I−1∗
(

∂`
∂α , ∂`

∂β , ∂`
∂λ

)
and the approximate estimates of

the variance S(t) and h(t) based on the asymptotic variance–covariance matrix and
delta method are computed.

(3) The T∗ψ statistic is defined as

T∗ψ =

(
ψ̂∗ − ψ̂

)√
̂var
(
ψ̂∗
)

(4) Obtain T∗ψ1 , T∗ψ2 , . . . , T∗ψN boot from repeating steps 2–5, NBoot times
(5) Obtain the ordered sequences T∗ψ

(1), T∗ψ
(2), . . . , T∗ψ

(N boot) by arranging ψ̂∗i , i = 1, 2, 3, . . . , N

boot in T∗ψ1 , T∗ψ2 , . . . , T∗ψN boot in ascending order.

Define ψ̂boot−t = ψ̂ + G−1
2 (z)

√
̂var
(
ψ̂∗
)
, where G2(z) = P(T∗ ≤ z) is the cumulative

distribution function of T∗ for a given z.
Then, the approximate bootstrap-t 100(1− γ)% CI of ψ̂ is obtained by[

ψ̂boot−t

(γ

2

)
, ψ̂boot−t

(
1− γ

2

)]
. (37)

6. Application to Real-Life Data

Two real data examples are discussed in this section. We aim to model the failure times
of a sample of ball bearings using APIW distribution, and the resistances in a sample of
guinea pigs are modeled using APIW distribution. A goodness of fit measure is utilized for
that purpose. Point and interval estimations are performed via numerical methods using
suitable R-codes.

6.1. Data Set I

Leiblein et al. [33] employ the suggested approaches in this section to determine how
many millions of spins a large sample of 23 ball bearings can withstand before failing. The
data are shown in Table 1. The difference between the empirical Kolmogorov–Smirnov
(KSD) distribution and the CDF for the APIW distribution is 0.0937, and the p-value (PVKS)
is 0.9876, which indicates the goodness of fit using the APIW model. Therefore, the APIW
distribution is consistent with the information supplied.

Table 1. Failure times for a group of 23 ball bearings in a life endurance test.

17.88 28.92 33.00 41.52 42.12 45.60
48.48 51.84 51.96 54.12 55.56 67.80
68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40
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Table 2 details the MLE, the MPS, and the Bayesian estimates of the parameters with
the standard errors (SE) and describes the Kolmogorov–Smirnov goodness of fit test for
data set I. While analyzing data set I, it was discovered that the Bayesian estimates have
lower SE values for estimating α, while the MPS has less SE when estimating β and λ. The
best goodness of fit with respect to KSD is attained for its minimum value, and this is
achieved under Bayesian estimation; similarly, the highest PVKS is obtained under Bayesian
estimation. Therefore, according to Bayesian estimations, the APIW distribution offers a
better fit. Figure 1 illustrates the APIW distribution’s theoretical and empirical pd f , CDF, and
P-P plot using data set I, and it can be seen that the APIW is fitting data set I very well.

Table 2. MLE, MPS, and Bayesian estimates with SE values and KS test.

Estimates SE KSD PVKS

MLE

α 64.1705 154.1028

0.0937 0.9876β 2.3255 0.3061

λ 2556.7180 3050.7065

MPS

α 74.6228 49.1516

0.1136 0.9281β 2.0332 0.0634

λ 745.7198 16.0139

Bayesian

α 64.1103 15.4170

0.0924 0.9894β 2.3246 0.3057

λ 2558.2005 305.4596
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Figure 1. Estimated CDF, pdf, and pp-plot: data set I.

To check the performance of the MLE, we plot the profile likelihood function, where
the x-label is one parameter with different values and the y-label is the log-likelihood value
keeping the other parameters to be fixed. The profile likelihood of data set I is sketched in
Figure 2, where the blue line is a log-likelihood values with different value of parameter
and dot is the MLE estimator of parameter with max log-likelihood value, and it confirms
that the MLE estimates have maximum values for data set I, which is consistent with the
values of MLE observed in Table 2, and it is also clear that data set I behave very well as
the three roots of the parameter are global maxima.
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Figure 2. The Profile likelihood curve with maximum point for data set I.

The plots of the MCMC trace, the auto-correlation (ACF) tests, the posterior sample
histogram, and the convergence of MCMC are all performed to diagnose the issues related
to MCMC samples. An essential tool for evaluating a chain’s mixing is a trace plot. The auto-
correlation plot, also known as the ACF plot, shows the serial correlation in time-varying
data. Therefore, we plot MCMC trace, ACF plot, and a histogram of posterior density of
MCMC results, and the convergence of the MCMC results for data set I are presented in
Figures 3–6, respectively.
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Figure 3. MCMC trace: data set I.
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Figure 4. Auto-correlation test: data set I.
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Figure 5. Histogram of posterior density: data set I.

0 2000 4000 6000 8000 10000

6
0

6
2

6
4

6
6

6
8

7
0

Iterations

m
e

a
n
(α

)

0 2000 4000 6000 8000 10000

2
.2

0
2

.2
5

2
.3

0

Iterations

m
e

a
n
(β

)

0 2000 4000 6000 8000 10000

2
3

5
0

2
4

0
0

2
4

5
0

2
5

0
0

2
5

5
0

2
6

0
0

Iterations

m
e

a
n
(λ

)

Figure 6. Convergence of MCMC results: data set I.

Figures 3, 5, and 6 confirm that the MCMC trace has normal results and convergence
measures for data set I. Furthermore, this shows the histograms for the marginal posterior
density estimates of the parameters based on 5000 chain values and the Gaussian kernel.
The estimation in Figure 5 clearly indicates that all generated posteriors are symmetric with
respect to the theoretical posterior density function. Figure 4 explores the auto-correlation
test which revealed that the auto-correlation test for the MCMC is the correlation between
an iteration series with a decreased version of itself. The auto-correlation function started
to slow down at zero, which represents the correlation of the iteration series with itself, and
then, it resulted in a correlation of one.

Table 3 provides the MLE, the MPS, and the Bayesian estimates for parameters of
APIW distribution based on hybrid censored samples for data set I. Table 4 presents the
survival and hazard of APIW distribution based on hybrid censored samples with data
set I.

It is observed from the numerical results in Table 3 that the Bayesian estimators act
better than alternative methods for estimating the parameter α, while the MPS is the best
choice for estimating the parameters β and λ. Table 4 demonstrates the efficiency of the
MPS estimation method since the survival estimation is maximized and the hazard rate
estimation is minimized under the MPS estimation method.
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Table 3. MLE, MPS, and Bayesian estimates based on hybrid censored samples: data set I.

T r
MLE MPS Bayesian

Estimates SE Estimates SE Estimates SE

68

12

α 46.3400 163.7701 83.8863 351.3109 46.3076 3.9134

β 1.9705 0.4337 1.6145 0.4176 1.9692 0.4331

λ 747.1634 1407.1232 156.5471 329.6032 747.8127 156.7151

16

α 46.0169 162.8815 74.4494 322.0154 45.9893 3.2896

β 1.9650 0.4308 2.0330 0.2510 1.9637 0.4302

λ 733.8110 1375.322 745.4669 10.3476 734.6510 131.6786

110

16

α 55.8774 166.4168 79.4264 16.2216 55.8488 3.2118

β 2.1265 0.3848 1.8119 0.0638 2.1254 0.3742

λ 1246.7484 2026.3962 320.7453 8.6051 1247.550 169.1073

20

α 60.7348 157.5242 75.2723 10.3590 60.7075 3.0404

β 2.2491 0.3624 1.9606 0.0645 2.2480 0.3319

λ 1935.9909 1875.5629 565.5794 10.3615 1937.155 139.9357

Table 4. Survival and hazard based on hybrid censored samples: data set I.

T r MLE MPS Bayesian

68

12
survival 0.4857 0.5113 0.4877

hazard 0.0188 0.0150 0.0188

16
survival 0.4850 0.5107 0.4869

hazard 0.0188 0.0150 0.0187

110

16
survival 0.3253 0.3563 0.3268

hazard 0.0197 0.0163 0.0197

20
survival 0.1978 0.2277 0.1988

hazard 0.0185 0.0158 0.0185

6.2. Data Set II

A real data set II from Okash et al. [34] is considered. To demonstrate the reliability of
the APIW distribution to fit these data, 72 observations of resistance in guinea pigs were
exposed to various dosages of virulent tubercle bacilli. The observed data set II has been
shown in Table 5.

Table 5. Survival times (in days) of resistance in guinea pigs exposed to various dosages of virulent
tubercle bacilli.

12
38
55
60
70
85
121
211

15
38
56
61
72
87

127
233

22
43
57
62
73
91

129
258

24
44
58
63
75
95
131
258

24
48
58
65
76
96
143
263

32
52
59
65
76
98

146
297

32
53
60
67
81
99

146
341

33
54
60
68
83
109
175
341

Table 6 details MLE, MPS, and Bayesian estimates with SE and DKS goodness of fit
test for data set II. While analyzing data set II, it is realized that the MPS estimates have
lower SE values for the estimated APIW parameters. For modeling purposes, the Bayesian
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estimation has the minimum KSD (0.1091) and highest PVKS (0.3581); hence, the APIW
distribution offers a better fit under Bayesian estimation. Figure 7 illustrates the APIW
distribution’s theoretical and empirical pd f , CDF, and P-P plot using data set II, and it can
be seen that the APIW is suitable and reliable for fitting data set II.

Table 6. MLE, MPS, and Bayesian estimates with SE values and KS test: data set II.

Estimates SE Lower Upper KSD PVKS

MLE

α 99.0793 46.2628 8.4043 189.7544

0.1096 0.3524β 1.7889 0.1558 1.4835 2.0944

λ 344.2289 143.1508 63.6533 624.8045

MPS

α 122.7002 4.7472 113.3957 132.0046

0.1186 0.2637β 1.6840 0.0358 1.6139 1.7542

λ 210.6960 2.5855 205.6284 215.7635

Bayesian

α 98.9326 15.7863 68.4324 129.4730

0.1091 0.3581β 1.7885 0.1556 1.4991 2.1047

λ 344.2667 24.3636 295.4979 392.3949

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 100 200 300

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

) Emprical CDF
Estimated CDF

x

f(
x
)

0 100 200 300 400

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

Data
Estimated PDF

P−P plot

probability(x)

F
(x

)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 7. Estimated CDF, pdf and pp-plot: data set II.

Figure 8 confirms that the MLE estimates have the maximum likelihood values for
data set II for the estimated parameter values that coincide with the MLE estimates in
Table 6. Figure 9, describing the trace of the MCMC and its convergence. Figure 10 states
that there is no auto-correlation for the MCMC series; the values started with zero and end
up with one. In Figure 11, it is emphasized that the MCMC results have a normal curve
with symmetric histograms of the posterior density, while Figure 12 shows that the MCMC
trace has convergence results. Table 7 summarizes the MLE, the MPS, and the Bayesian
estimates for parameters of APIW distribution based on hybrid censored samples for data
set II with different values of T and r. The Bayesian estimators are better for estimating
the parameter α, while the MPS is the best choice for estimating the parameters β and λ.
Table 8 shows the estimated values of the survival and the hazard of APIW distribution
based on the hybrid censored samples with data set II with different values of T and r. It is
clear that the maximum survival is attained under MPS estimation and also the minimum
hazard rate is obtained under MPS estimation, which supports the selection of the MPS
method for efficient failure data analysis.
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Figure 8. The Profile likelihood curve with the maximum point for data set II .
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Figure 9. MCMC trace: data set II.
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Figure 10. Auto-correlation test: data set II.

α

F
re

q
u
e
n
c
y

40 60 80 100 120 140 160

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

β

F
re

q
u
e
n
c
y

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

λ

F
re

q
u
e
n
c
y

250 300 350 400

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

Figure 11. Histogram of posterior density: data set II.
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Figure 12. Convergence of MCMC results: data set II.

Table 7. MLE, MPS, and Bayesian estimates based on hybrid censored samples: data set II.

T r
MLE MPS Bayesian

Estimates SE Estimates SE Estimates SE

100

50

α 101.0733 164.6184 125.1150 67.7176 101.0304 3.9380

β 1.7786 0.1811 1.6609 0.0656 1.7781 0.1809

λ 327.2383 259.4398 191.2807 22.0057 327.2877 28.8832

60

α 103.0959 164.5881 126.4073 9.2812 103.0530 3.9373

β 1.7976 0.1786 1.6819 0.0363 1.7970 0.1783

λ 349.4182 271.6575 206.2780 5.2838 349.4698 30.2434

110

50

α 101.0733 164.6184 125.1150 67.7176 101.0304 3.9380

β 1.7786 0.1811 1.6609 0.0656 1.7781 0.1809

λ 327.2383 259.4398 191.2807 22.0057 327.2877 28.8832

60

α 101.2719 164.0169 125.7735 16.0496 101.2291 3.9237

β 1.7814 0.1748 1.6686 0.0365 1.7808 0.1745

λ 330.4588 255.2788 196.5964 4.9556 330.5050 28.4200

Table 8. Survival and hazard based on hybrid censored samples: data set II.

T r MLE MPS Bayesian

100

50
survival 0.3523 0.3647 0.3530

hazard 0.0141 0.0130 0.0141

60
survival 0.3286 0.3412 0.3293

hazard 0.0140 0.0130 0.0140

110

50
survival 0.3523 0.3647 0.3530

hazard 0.0141 0.0130 0.0141

60
survival 0.2906 0.3040 0.2912

hazard 0.0131 0.0121 0.0131

7. A Simulation Study

A simulation analysis was carried out using 5000 iterations for hybrid Type-II censored
samples. For the generated simulated sample from APIW distribution, descriptive statistics
are computed to evaluate the consistency of this simulated data, Table 9 summarizes some
measures in addition to skewness and kurtosis measures. Each simulation compares the
APIW distribution parameter estimators by likelihood, product spacing, and Bayesian.
Censored APIW samples are with the initial values:

In Table 10: α = 0.6, β = 0.6, λ = 0.7 and α = 1.3, β = 0.6, λ = 0.7.



Symmetry 2023, 15, 161 20 of 29

In Table 11: α = 0.6, β = 0.6, λ = 2 and α = 2, β = 0.6, λ = 2.
In Table 12: α = 0.8, β = 2, λ = 2 and α = 2, β = 2, λ = 2.

For the development of a hybrid censored sample, we selected different sample sizes
as n = 50 and 100 and different censored sample sizes as r = 30, 40, and 50 for n = 50, r = 70,
90, and 100 for n = 100.

The relative bias (RB), mean square error (MSE), length of asymptotic confidence
intervals (LACI), length of bootstrap-p (LBP), and length of bootstrap-t (LBT) are calcu-
lated, and a comparison was considered between the different approaches of the resulting
estimators with respect to the RB of α, β, and λ. In addition, the MSE was utilized for the

same purpose such that MSE(ψk) =
1
M ∑M

i=1

(
ψ̂
(i)
k − ψk

)2
, where M = 5000 is the number

of simulated samples, and (ψ1 = α, ψ2 = β, ψ3 = λ) . Overall, 95% of the CIs are obtained
from asymptotic distributions from MLEs and CRIs and are also compared with a further
criterion. The comparison is between the average confidence interval length (ACL). In
order to assess the type of prior, estimates of the parameters in the Bayes technique are
computed from informative priors. The hyperparameters in the case of informative priors
are chosen by elective hyperparameters using MLE information to show the results of
estimated parameters.

Table 9. Summary of simulated data from APIW distribution.

α β λ Minimum Q1 Q2 Mean Q3 Maximum SD SK KT

0.6

0.6

0.2 0.0019 0.0375 0.0968 9.3625 0.3837 2525.81 117.8092 17.2574 320.5176

0.7 0.0341 0.2744 0.781 28.6615 3.2646 3533.482 188.5746 12.4815 188.0099

1.2 0.0504 0.564 1.6943 554.9259 6.8621 373,379.5 12,016.08 30.0298 929.0447

1.7 0.1445 1.1408 3.2773 112.0147 12.4232 25308.46 988.7543 18.8949 440.0531

2.2 0.1183 1.7701 4.6629 758.7959 18.144 254,110.1 9603.757 21.2078 516.2217

2.7 0.136 2.4891 7.0995 12,403.68 29.2255 621,3521 244,427.2 22.5586 527.7023

1.5

0.2 0.0817 0.2689 0.3929 0.7271 0.6817 22.9594 1.492 9.6082 119.4912

0.7 0.2587 0.5961 0.9059 1.6512 1.6052 26.2592 2.4575 4.8751 34.0851

1.2 0.3026 0.7953 1.2348 2.449 2.1606 169.3792 7.1983 15.4838 314.6141

1.7 0.4613 1.0541 1.6077 2.8005 2.7396 57.7173 4.1289 6.1401 56.8222

2.2 0.4258 1.2566 1.8512 3.8492 3.1878 145.2141 8.8066 9.0808 110.2727

2.7 0.4502 1.4402 2.1902 5.3273 3.8574 521.597 24.5777 16.9134 322.1059

3

0.2 0.2859 0.5186 0.6269 0.7411 0.8256 4.7916 0.4218 4.1298 29.9656

0.7 0.5087 0.7721 0.9518 1.1322 1.267 5.1244 0.608 2.6053 11.9396

1.2 0.5501 0.8918 1.1112 1.3201 1.4699 13.0146 0.8409 5.8075 58.3727

1.7 0.6792 1.0267 1.268 1.4908 1.6552 7.5972 0.7606 2.7864 14.7529

2.2 0.6526 1.121 1.3606 1.662 1.7854 12.0505 1.0431 4.2566 29.2693

2.7 0.671 1.2001 1.4799 1.8111 1.964 22.8385 1.4315 8.0332 97.9213
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Table 9. Cont.

α β λ Minimum Q1 Q2 Mean Q3 Maximum SD SK KT

1.5

0.6

0.2 0.0021 0.0576 0.1675 20.1354 0.7441 5453.285 254.3222 17.2608 320.6308

0.7 0.0395 0.4161 1.3517 61.1988 6.3512 7620.369 406.3593 12.502 188.5294

1.2 0.0561 0.8339 2.8926 1196.982 13.2257 806,474.1 25,953.44 30.0314 929.1182

1.7 0.167 1.7169 5.6449 239.0572 23.9633 54,604.49 2132.057 18.9211 441.0744

2.2 0.1306 2.6675 7.9627 1633.918 34.8865 548,731.3 20,735.8 21.2142 516.483

2.7 0.1484 3.7507 12.2307 26,786.65 56.6635 13,422,188 527,997 22.5588 527.7134

1.5

0.2 0.0989 0.343 0.5117 0.9127 0.8951 25.1911 1.6971 8.8703 105.0283

0.7 0.2976 0.7198 1.1197 1.9816 2.0002 28.5589 2.7859 4.5374 30.0123

1.2 0.3396 0.9341 1.4893 2.8184 2.6335 164.0482 7.2539 14.1928 271.0224

1.7 0.5111 1.2247 1.9137 3.2503 3.291 59.7669 4.4974 5.6013 48.348

2.2 0.4661 1.4447 2.1772 4.3322 3.7888 141.9907 8.9929 8.4079 96.0569

2.7 0.4889 1.6417 2.5574 5.7369 4.5445 470.9055 22.6724 16.1496 299.0034

3

0.2 0.2912 0.5651 0.6995 0.8348 0.9426 5.589 0.502 4.0018 28.582

0.7 0.5239 0.8392 1.0621 1.2755 1.4473 5.9758 0.7261 2.5326 11.4722

1.2 0.5622 0.9643 1.2367 1.4842 1.676 15.1816 0.9981 5.6295 55.6979

1.7 0.6991 1.1142 1.4136 1.6778 1.8876 8.8602 0.9095 2.6968 14.0562

2.2 0.6655 1.2168 1.5143 1.8717 2.0348 14.0563 1.2387 4.1458 28.1226

2.7 0.6828 1.3026 1.65 2.0412 2.2421 26.6419 1.6898 7.8521 94.6963

3

0.6

0.2 0.0023 0.0837 0.2587 33.3614 1.1989 9044.133 421.7753 17.2616 320.6565

0.7 0.0453 0.5991 2.0877 101.2154 10.2436 12,634.96 673.6439 12.5066 188.6474

1.2 0.062 1.1807 4.4402 1984.686 21.2686 1,337,645 43,047.07 30.0318 929.1349

1.7 0.191 2.4597 8.6994 395.314 38.5459 90,546.07 3534.951 18.9271 441.3064

2.2 0.1428 3.825 12.2242 2708.01 56.0588 910,095.2 34,390.2 21.2156 516.5424

2.7 0.1605 5.3781 18.8508 44,427.34 91.2935 22,263,025 875,773 22.5589 527.7159

1.5

0.2 0.102 0.3945 0.6023 1.0877 1.0704 30.4535 2.0548 8.8479 104.636

0.7 0.3133 0.8252 1.3179 2.3613 2.3929 34.5215 3.3769 4.5215 29.8511

1.2 0.3524 1.0643 1.7489 3.3579 3.147 198.3252 8.7774 14.1699 270.3686

1.7 0.5375 1.4015 2.2507 3.869 3.9332 72.248 5.4519 5.5778 48.0366

2.2 0.4819 1.6538 2.5569 5.1663 4.5263 171.6554 10.8861 8.3911 95.7611

2.7 0.5035 1.8793 3.0078 6.855 5.4345 569.3038 27.4201 16.1402 298.7514

3

0.2 0.296 0.6089 0.7631 0.9119 1.037 6.1841 0.5605 3.9338 27.9076

0.7 0.5385 0.9026 1.1586 1.3933 1.5925 6.6117 0.8119 2.4899 11.2289

1.2 0.5734 1.0338 1.3473 1.6196 1.8431 16.7984 1.1133 5.5364 54.3872

1.7 0.7182 1.1972 1.5413 1.8319 2.0758 9.8033 1.0177 2.6452 13.7014

2.2 0.6775 1.3078 1.6498 2.0443 2.2373 15.5531 1.3815 4.0881 27.5711

2.7 0.6935 1.4 1.7991 2.2299 2.4665 29.4793 1.8797 7.7641 93.1916
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Table 10. Bayesian and non-Bayesian estimation for parameters of APIW distribution based on hybrid censored samples where β = 0.6, θ = 0.7.

β = 0.6, θ = 0.7 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

1.3

50

1.4 30

α 0.0012 0.0791 1.1039 0.0476 0.0483 −0.0249 0.0679 1.0143 0.0437 0.0464 0.0748 0.0256 0.5025

β 0.0365 0.0108 0.3989 0.0199 0.0199 −0.0496 0.0100 0.3743 0.0167 0.0167 −0.2786 0.0091 0.4369

λ 0.0200 0.0255 0.6239 0.0298 0.0298 0.0520 0.0264 0.6212 0.0302 0.0318 −0.2234 0.0240 0.4759

7 40

α 0.0010 0.0619 1.0723 0.0479 0.0479 −0.0024 0.0176 1.0065 0.0372 0.0371 0.0627 0.0178 0.4171

β 0.0267 0.0070 0.3228 0.0146 0.0148 −0.0412 0.0066 0.3030 0.0139 0.0135 −0.2631 0.0061 0.3763

λ 0.0182 0.0219 0.5790 0.0244 0.0239 0.0309 0.0235 0.5961 0.0249 0.0248 −0.2190 0.0140 0.3908

999 50

α −0.0014 0.0507 0.9554 0.0386 0.0468 −0.0019 0.0125 0.9899 0.0287 0.0288 0.0313 0.0073 0.2778

β 0.0102 0.0053 0.2839 0.0119 0.0120 −0.0416 0.0058 0.2590 0.0107 0.0108 −0.2344 0.0046 0.2703

λ 0.0162 0.0204 0.4719 0.0233 0.0233 0.0291 0.0214 0.5761 0.0237 0.0237 −0.2109 0.0128 0.2981

100

1.4 70

α 0.0360 0.2776 2.0930 0.1478 0.1481 −0.0577 0.1186 1.3516 0.0622 0.0625 0.1368 0.0470 0.4726

β 0.0195 0.0043 0.2520 0.0119 0.0119 −0.0311 0.0045 0.2529 0.0116 0.0115 −0.3606 0.0016 0.3682

λ 0.0083 0.0211 0.4019 0.0273 0.0172 0.0316 0.0143 0.4616 0.0211 0.0212 −0.3061 0.0155 0.3704

7 90

α 0.0308 0.2697 1.9132 0.1309 0.0908 0.0405 0.1041 1.2503 0.0611 0.0611 0.1163 0.0344 0.4199

β 0.0101 0.0039 0.2443 0.0101 0.0101 −0.0304 0.0042 0.2455 0.0111 0.0109 −0.4388 0.0015 0.3200

λ 0.0318 0.0197 0.3944 0.0234 0.0162 0.0314 0.0123 0.3602 0.0202 0.0209 −0.4305 0.0150 0.3220

999 100

α 0.0428 0.2500 1.7648 0.1216 0.0812 −0.0401 0.0985 1.2854 0.0513 0.0513 0.0623 0.0114 0.2600

β −0.0045 0.0038 0.2419 0.0091 0.0100 −0.0316 0.0042 0.2354 0.0107 0.0106 −0.3557 0.0009 0.2399

λ 0.0263 0.0137 0.3735 0.0213 0.0133 0.0291 0.0106 0.3488 0.0200 0.0237 −0.3547 0.0114 0.2948
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Table 10. Cont.

β = 0.6, θ = 0.7 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

0.6

50

0.5 30

α 0.0616 0.0412 0.7829 0.0350 0.0348 −0.0301 0.0370 0.7512 0.0352 0.0355 0.1988 0.0290 0.4688

β 0.0596 0.0126 0.4182 0.0194 0.0195 −0.0571 0.0106 0.3818 0.0166 0.0166 −0.1291 0.0106 0.3893

λ −0.0187 0.0261 0.6321 0.0271 0.0272 0.0902 0.0374 0.7172 0.0312 0.0308 −0.1567 0.0128 0.5101

5 40

α 0.0577 0.0417 0.7004 0.0344 0.0315 −0.0301 0.0353 0.6903 0.0341 0.0341 0.1239 0.0283 0.3812

β 0.0320 0.0079 0.3413 0.0157 0.0159 −0.0493 0.0072 0.3116 0.0143 0.0143 −0.1234 0.0079 0.3346

λ 0.0106 0.0257 0.6404 0.0260 0.0270 0.0752 0.0330 0.6827 0.0279 0.0277 −0.1271 0.0125 0.3717

99,999 50

α 0.1308 0.0125 0.6835 0.0316 0.0259 −0.0280 0.0311 0.5259 0.0354 0.0255 0.1137 0.0121 0.2803

β 0.0335 0.0068 0.3139 0.0141 0.0144 −0.0467 0.0070 0.2986 0.0141 0.0137 −0.1197 0.0069 0.2393

λ 0.0064 0.0231 0.6191 0.0213 0.0231 0.0612 0.0349 0.6180 0.0238 0.0238 −0.1090 0.0102 0.3190

100

0.5 70

α 0.1568 0.1709 1.5798 0.0743 0.0745 −0.0893 0.1224 1.3568 0.0605 0.0605 0.3783 0.0640 0.4302

β 0.0221 0.0086 0.3598 0.0154 0.0154 −0.0714 0.0096 0.3456 0.0164 0.0161 −0.1407 0.0091 0.3560

λ 0.0357 0.0532 0.8997 0.0411 0.0408 0.1771 0.0779 0.9813 0.0448 0.0448 −0.2168 0.0351 0.4293

5 90

α 0.2180 0.1523 1.2823 0.0750 0.0682 0.0120 0.1182 1.3675 0.0607 0.0602 0.3728 0.0618 0.3257

β 0.0170 0.0044 0.2584 0.0110 0.0111 −0.0487 0.0054 0.2634 0.0123 0.0126 −0.1287 0.0036 0.2954

λ 0.0075 0.0344 0.7277 0.0330 0.0329 0.1039 0.0532 0.8592 0.0391 0.0398 −0.2042 0.0294 0.3247

99,999 100

α 0.1976 0.1224 1.2799 0.0677 0.0658 −0.0169 0.1022 1.2844 0.0585 0.0588 0.2379 0.0244 0.2489

β 0.0124 0.0042 0.2468 0.0102 0.0102 −0.0371 0.0047 0.2484 0.0123 0.0123 −0.1264 0.0035 0.2385

λ 0.0226 0.0315 0.7310 0.0318 0.0319 0.1007 0.0471 0.7933 0.0342 0.0342 −0.1321 0.0156 0.3095
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Table 11. Bayesian and non-Bayesian estimation for parameters of APIW distribution based on hybrid censored samples where β = 0.6, θ = 2.

β = 0.6, θ = 2 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

0.6

50

1.4 30

α 0.5022 0.6443 2.9192 0.1332 0.1314 0.1281 0.5495 2.8997 0.1347 0.1377 0.1649 0.0247 0.4886

β 0.0198 0.0100 0.3889 0.0179 0.0198 −0.1065 0.0135 0.3808 0.0179 0.0177 −0.3502 0.0095 0.3791

λ 0.0087 0.2139 1.8136 0.0792 0.0792 0.0566 0.2394 1.8677 0.0874 0.0867 −0.0478 0.0295 0.5636

7 40

α 0.5263 0.6337 2.8674 0.1257 0.1282 0.1210 0.4745 2.6878 0.1160 0.1163 0.1672 0.0216 0.4103

β 0.0547 0.0091 0.3410 0.0169 0.0185 −0.0678 0.0128 0.3414 0.0178 0.0181 −0.3339 0.0085 0.2883

λ −0.0097 0.1465 1.4999 0.0718 0.0725 0.0304 0.1519 1.5104 0.0703 0.0700 −0.0326 0.0241 0.4540

999 50

α 0.1792 0.1318 1.3605 0.0603 0.0607 −0.1141 0.1057 1.2317 0.0537 0.0545 0.1095 0.0096 0.2808

β 0.0535 0.0081 0.3249 0.0159 0.0172 −0.0579 0.0126 0.3246 0.0168 0.0172 −0.2406 0.0062 0.2289

λ 0.0389 0.1410 1.4413 0.0648 0.0651 0.0302 0.1495 1.4070 0.0613 0.0598 −0.0301 0.0098 0.2934

100

1.4 70

α 0.1216 0.1193 1.3246 0.0623 0.0652 −0.1856 0.0907 1.0981 0.0497 0.0497 0.2768 0.0400 0.4275

β 0.0154 0.0074 0.3355 0.0153 0.0153 −0.0829 0.0088 0.3113 0.0124 0.0125 −0.5069 0.0070 0.2629

λ 0.0214 0.0974 1.2132 0.0568 0.0604 0.0675 0.1189 1.2450 0.0545 0.0545 −0.0894 0.0496 0.5074

7 90

α 0.1407 0.1028 1.2361 0.0614 0.0620 −0.0333 0.0787 1.0978 0.0451 0.0496 0.2681 0.0384 0.3780

β 0.0190 0.0050 0.2728 0.0119 0.0120 −0.0413 0.0051 0.2624 0.0116 0.0121 −0.4668 0.0048 0.2168

λ 0.0001 0.0430 1.1381 0.0361 0.0368 0.0078 0.0413 0.7955 0.0355 0.0355 −0.0891 0.0145 0.4277

999 100

α 0.0442 0.0941 1.1989 0.0546 0.0550 −0.0220 0.0611 1.0021 0.0436 0.0456 0.1824 0.0168 0.2568

β 0.0031 0.0042 0.2554 0.0106 0.0107 −0.0181 0.0048 0.2488 0.0103 0.0112 −0.3617 0.0025 0.1912

λ 0.0275 0.0372 1.0306 0.0346 0.0346 0.0072 0.0412 0.6226 0.0305 0.0315 −0.0541 0.0138 0.3084
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Table 11. Cont.

β = 0.6, θ = 2 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

2

50

4 30

α −0.0049 0.8570 3.6322 0.1661 0.1670 −0.0257 0.8294 3.5679 0.1661 0.1658 0.0166 0.0233 0.5513

β 0.0138 0.0083 0.2758 0.0131 0.0127 −0.0575 0.0054 0.2558 0.0112 0.0152 −0.2798 0.0078 0.3962

λ 0.0657 0.1980 1.6680 0.0756 0.0754 −0.0072 0.1540 1.5390 0.0704 0.0701 −0.0401 0.0252 0.5318

22 40

α 0.0194 0.4354 2.5847 0.1154 0.1161 0.0256 0.5350 2.8432 0.1193 0.1216 0.0159 0.0131 0.4276

β 0.0253 0.0068 0.2319 0.0125 0.0121 −0.0430 0.0046 0.2305 0.0110 0.0142 −0.2492 0.0064 0.2740

λ 0.0454 0.1786 1.6195 0.0749 0.0716 −0.0092 0.1392 1.4333 0.0655 0.0653 −0.0470 0.0232 0.4449

99,999 50

α 0.0068 0.0965 1.2178 0.0534 0.0535 −0.0116 0.1648 1.5901 0.0698 0.0694 0.0132 0.0064 0.2937

β 0.0597 0.0062 0.2137 0.0116 0.0110 −0.0357 0.0030 0.2155 0.0195 0.0135 −0.2189 0.0052 0.2133

λ 0.0522 0.1581 0.8506 0.0709 0.0691 −0.0062 0.1013 1.2392 0.0558 0.0551 −0.0328 0.0106 0.3105

100

4 70

α 0.0254 0.4205 2.5368 0.1136 0.1155 −0.0166 0.2736 2.0482 0.0951 0.0953 0.0236 0.0187 0.4739

β 0.0297 0.0084 0.3525 0.0157 0.0158 −0.0443 0.0079 0.3325 0.0151 0.0152 −0.4132 0.0068 0.3206

λ 0.0263 0.0757 1.0599 0.0477 0.0474 −0.0081 0.0649 0.9977 0.0460 0.0472 −0.0764 0.0431 0.5429

22 90

α −0.0065 0.0729 1.0584 0.0463 0.0453 −0.0135 0.0375 0.7523 0.0323 0.0322 0.0210 0.0157 0.4303

β 0.0131 0.0032 0.2204 0.0099 0.0100 −0.0286 0.0033 0.2136 0.0096 0.0095 −0.4079 0.0016 0.2093

λ 0.0255 0.0650 0.9804 0.0449 0.0450 −0.0081 0.0540 0.9009 0.0405 0.0405 −0.0696 0.0410 0.4314

99,999 100

α 0.0028 0.0629 1.0104 0.0390 0.0389 0.0124 0.0246 0.5092 0.0319 0.0239 0.0213 0.0082 0.2936

β 0.0066 0.0027 0.2032 0.0097 0.0095 −0.0236 0.0033 0.2080 0.0092 0.0092 −0.3042 0.0011 0.1713

λ 0.0163 0.0579 0.9094 0.0436 0.0426 −0.0072 0.0485 0.8127 0.0353 0.0395 −0.0621 0.0215 0.3091
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Table 12. Bayesian and non-Bayesian estimation for parameters of APIW distribution based on hybrid censored samples where β = 2, θ = 2.

β = 2, θ = 2 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

0.8

50

1.5 30

α 0.3767 0.7387 3.1630 0.2334 0.2282 −0.1050 0.4568 2.6352 0.1943 0.1950 0.1140 0.0253 0.5532

β 0.0402 0.2281 1.8497 0.1278 0.1290 −0.1186 0.2520 1.7381 0.1227 0.1230 −0.0496 0.0303 0.5508

λ 0.0631 0.3817 2.3764 0.1554 0.1548 0.1214 0.3962 2.2821 0.1698 0.1678 −0.0505 0.0310 0.6040

3 40

α 0.3105 0.6978 3.0153 0.2033 0.2013 0.1029 0.4169 2.6153 0.1820 0.2934 0.1240 0.0211 0.4089

β 0.0495 0.1812 1.6247 0.0694 0.0687 −0.0569 0.1871 1.6375 0.0732 0.0738 −0.0484 0.0214 0.4397

λ −0.0143 0.2779 2.0654 0.0892 0.0886 0.0860 0.3350 2.2711 0.1008 0.1019 −0.0502 0.0249 0.4433

99 50

α 0.2901 0.6495 2.6126 0.1931 0.1873 0.1026 0.4053 2.5852 0.1830 0.1830 0.0791 0.0094 0.2958

β 0.0211 0.1413 1.4660 0.0672 0.0667 −0.0512 0.1822 1.5636 0.0726 0.0777 −0.0279 0.0089 0.2905

λ 0.0131 0.2533 2.0125 0.0820 0.0830 0.0092 0.2464 2.0574 0.0711 0.0710 −0.0305 0.0104 0.3250

100

1.5 70

α 0.3635 0.6536 2.9600 0.1373 0.1360 −0.0689 0.5129 2.8018 0.1278 0.1259 0.1916 0.0383 0.4662

β 0.0276 0.1214 1.3497 0.0604 0.0585 −0.0964 0.1572 1.3598 0.0586 0.0589 −0.0749 0.0426 0.5332

λ 0.0189 0.2072 1.7800 0.0849 0.0864 0.1073 0.2985 1.9715 0.0853 0.0872 −0.0803 0.0451 0.5308

3 90

α 0.3467 0.6173 2.3847 0.1241 0.1129 0.0598 0.4938 2.7555 0.1218 0.1128 0.1924 0.0453 0.3753

β 0.0129 0.0916 1.1830 0.0551 0.0553 −0.0558 0.1249 1.3158 0.0585 0.0589 −0.0718 0.0393 0.3852

λ 0.0248 0.2013 1.6856 0.0823 0.0825 0.0462 0.3020 1.9125 0.0799 0.0878 −0.0791 0.0462 0.4199

99 100

α 0.2929 0.5981 2.1152 0.1127 0.1113 0.0463 0.4866 2.3417 0.1206 0.1027 0.1378 0.0171 0.2769

β 0.0152 0.0916 1.1818 0.0523 0.0523 −0.0479 0.1140 1.3319 0.0580 0.0561 −0.0549 0.0179 0.2981

λ −0.0062 0.1928 1.6020 0.0819 0.0810 0.0458 0.3008 1.8910 0.0798 0.0799 −0.0534 0.0177 0.3142
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Table 12. Cont.

β = 2, θ = 2 MLE MPS Bayesian

α n T r RB MSE LACI LBP LBT RB MSE LACI LBP LBT RB MSE LCCI

2

50

2 30

α 0.1108 2.1771 5.7241 0.2747 0.2759 0.1555 3.6273 7.3730 0.3179 0.3503 0.0246 0.0212 0.5163

β 0.0198 0.1346 1.4314 0.0680 0.0668 −0.0698 0.1504 1.4197 0.0647 0.0647 −0.0524 0.0317 0.5489

λ 0.0679 0.2229 1.7742 0.0785 0.0785 0.0013 0.1940 1.7283 0.0803 0.0774 −0.0535 0.0339 0.5863

4 40

α 0.1034 1.0666 4.2958 0.2410 0.2312 0.1426 3.4818 6.6843 0.3142 0.3227 0.0236 0.0151 0.4241

β 0.0055 0.1049 1.2701 0.0589 0.0590 −0.0623 0.1218 1.2788 0.0587 0.0600 −0.0497 0.0220 0.4423

λ 0.0881 0.2039 1.3575 0.0711 0.0781 0.0013 0.1837 1.6395 0.0801 0.0691 −0.0524 0.0253 0.4364

99 50

α 0.0924 0.9740 4.0544 0.2419 0.2147 0.1448 3.0179 5.8231 0.2763 0.3081 0.0151 0.0075 0.3239

β −0.0106 0.1007 1.2482 0.0577 0.0575 −0.0610 0.1161 1.1344 0.0575 0.0572 −0.0312 0.0104 0.3003

λ 0.1231 0.1504 1.1614 0.0612 0.0612 0.0019 0.1853 1.4771 0.0361 0.0611 −0.0289 0.0099 0.3013

100

2 70

α 0.0622 1.2694 4.3940 0.1994 0.1961 0.0554 1.4031 4.6277 0.1925 0.1922 0.0492 0.0269 0.5138

β −0.0048 0.0576 0.9413 0.0446 0.0447 −0.0582 0.0725 0.9522 0.0446 0.0443 −0.0921 0.0513 0.5276

λ 0.0432 0.1285 1.3653 0.0648 0.0645 0.0080 0.1371 1.4517 0.0694 0.0689 −0.0955 0.0556 0.5253

4 90

α 0.0522 0.9516 2.2214 0.1909 0.1900 0.0512 0.9671 2.0285 0.1832 0.1823 0.0483 0.0211 0.4262

β −0.0227 0.0583 0.9304 0.0407 0.0400 −0.0600 0.0772 0.9828 0.0462 0.0462 −0.0868 0.0407 0.4078

λ 0.0907 0.1267 1.0897 0.0618 0.0584 0.0074 0.1285 0.1064 0.0592 0.0590 −0.1036 0.0554 0.4244

99 100

α 0.0413 0.9290 1.6319 0.1897 0.1880 0.0501 0.9155 2.0033 0.1733 0.1633 0.0277 0.0095 0.3026

β −0.0144 0.0582 0.9397 0.0394 0.0395 −0.0617 0.0695 0.9060 0.0451 0.0451 −0.0534 0.0175 0.2841

λ 0.0831 0.1133 0.9915 0.0619 0.0493 0.0041 0.1141 0.1005 0.0411 0.0401 −0.0552 0.0184 0.3156
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From the simulation analysis, we point out the following results:

1. The RB and the MSE decrease for estimated parameters of MLE and MPS as the
sample size increases and the Bayes estimates for α,β and λ attain the minimum MSE.
See Tables 10–12.

2. In almost all cases, the Bayes estimates perform better than the MLEs with respect to
RB, MSE, LACI, LBP, and LBT.

3. In most cases, the MPS estimates are better than the MLE with respect to MSE.
4. The performance increases when the censored sample size r increases, such that the

sample size n and the time of the hybrid censored sample are kept fixed.
5. The performance increases when the time of a hybrid censored sample increases when

keeping sample size n and censored sample size r as fixed values.
6. When the number of failures r is fixed and sample size n increases, the MSEs and width

of the LACI, LBP, and LBT of the MLEs, MPS, and Bayes estimations are decreased.
However, the MPS process performs well in terms of estimating the parameters of
APIW. See Tables 10–12.

7. The MSEs and the widths of the confidence intervals of the ACI, BP, and BT of the
MLEs, MPS, and Bayes estimations decrease as the number of failures r increases for
a fixed sample size n.

8. As the sample size n increases, the average length of all intervals decreases. On
average, the credible CI estimates are better than the ACI.

9. As the sample size n increases, the bootstrap CI estimates are better than the tradi-
tional CI.

8. Conclusions

Modeling some biomedical data was performed in this study, the new APIW continu-
ous distribution was utilized and the hybrid Type-II censoring scheme was recommended.
Three estimation methods were performed to estimate the unknown parameters of the
APIW distribution and hence estimate the survival and hazard functions. In real data
analysis, the classical alternative (MPS) for the well-known MLE method confirmed the
power fullness of the MPS over the MLE for estimating parameters, survival, and hazard
function. In simulation analysis, the Bayesian approach for the inference of APIW parame-
ters was relatively acting much better compared to the classical methods. A comparison
was conducted with respect to the mean squared error and relative bias, and all results
were summarized in tables and plotted in figures. The MCMC approach was employed
as estimates from Bayesian are not directly obtainable. The model was applied to two
real-life data sets, including failure statistical data for certain ball-bearing components and
the resistance in guinea pigs exposed to various dosages of virulent tubercle bacilli.
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