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Abstract: In this paper, we introduce a new quadruple number sequence by means of Leonardo
numbers, which we call ordered Leonardo quadruple numbers. We determine the properties of
ordered Leonardo quadruple numbers including relations with Leonardo, Fibonacci, and Lucas
numbers. Symmetric and antisymmetric properties of Fibonacci numbers are used in the proofs. We
attain some well-known identities, the Binet formula, and a generating function for these numbers.
Finally, we provide illustrations of the identities.
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1. Introduction

Two attractive subjects in integer sequences are Fibonacci and Lucas sequences. Math-
ematicians have studied them for a long time and continue to be attracted by their broad
applications. Fibonacci numbers were discovered by Italian mathematician Leonardo Fi-
bonacci in 1202. One of his books was Liber Abaci, which focused on elementary algebra
and arithmetic. This book includes many ordinary problems, such as the famous rabbit
problem (see [1]). A table was created for this problem, and the numbers 1, 1, 2, 3, 5,... in the
bottom row of the table are called Fibonacci numbers. Moreover, the Fibonacci sequence
is constituted by these numbers. Francois Edouard Anatole Lucas named this sequence
in 1876, and although Fibonacci had several mathematical contributions, he is known for
this sequence above all. The Fibonacci numbers arise throughout nature, for example, in
flowers, trees, sunflowers, pinecones, artichokes, and pineapples. The number of petals in
many flowers is often a Fibonacci number. The pentagonal shape with five pods is disclosed
in the cross section of an apple. The Fibonacci number is also exhibited in a starfish, which
has five limbs. Some spiral systems of leaves on the twigs of plants and trees hold Fibonacci
numbers. Ripe sunflowers present Fibonacci numbers in a salient way, as the number of
seeds from the center of the head to the exterior edge are wrapped in two different spirals
in a clockwise and counterclockwise direction. With some exceptions, the number of spirals
follows Fibonacci numbers. The spiral patterns on pineapples, pinecones, and artichokes
are Fibonacci number examples. As can be seen, we encounter these numbers in numerous
places. One other example is concerned with the Earth. The equatorial diameter of the
Earth in miles and in kilometers is approximately the product of two alternate Fibonacci
numbers and consecutive Fibonacci numbers, respectively (see [1]).

On the other hand, there is a relation between the golden ratio and Fibonacci numbers.
The irrational number 1+

√
5

2 , which has the value 1.61803..., is defined as the golden ratio,
and it is observed in many areas in mathematics and art. The relationship between the
golden ratio and Fibonacci numbers is that as n increases in the ratio of successive Fibonacci
numbers Fn

Fn−1
, the result approaches the golden ratio.

The Fibonacci sequence comprises the numbers

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
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The n-th Fibonacci number Fn has the recursive definition as

Fn = Fn−1 + Fn−2 , n ≥ 3,

with the initial conditions F1 = F2 = 1.
Lucas numbers are intimately related to Fibonacci numbers and were discovered by

Francois Edouard Anatole Lucas in the late nineteenth century. The numbers of the Lucas
sequence are

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, ...,

with the initial conditions L0 = 2 and L1 = 1. The n-th Lucas number is indicated by Ln and
satisfies the same recurrence relation of Fibonacci numbers. There are many relationships
between Fibonacci and Lucas numbers, which can be seen in [1–3].

Falcon and Plaza generalized Fibonacci numbers and called them k-Fibonacci num-
bers in [4]. These numbers are connected with complex valued fuctions, and they give a
generalization of the Pell sequence and Fibonacci sequence. After this study, mathemati-
cians worked on this issue in [5,6]. Then, generalized Fibonacci numbers and k-Fibonacci
numbers were studied with matrices in [7–11]. The descriptions and several properties of
these matrices were given.

In more recent times, Catarino and Borges defined a new type of number related
to Fibonacci numbers, called Leonardo numbers, in [12]. They proved some properties
comprising this new sequence. Some sum and product statements, including elements
of this sequence, were presented. New identities of Leonardo numbers were obtained by
Alp and Koçer in [13]. The same authors identified hybrid Leonardo numbers and found
well-known properties for them in [14]. Additionally, Leonardo numbers were generalized
by Shannon in [15], and using the Leonardo Pisano numbers and hybrid numbers, Kürüz
et al. investigated Leonardo Pisano polynomials and hybrinomials [16].

Quaternions are a four dimensional number system, invented as an extension of
complex numbers by Irish mathematician W. R. Hamilton in 1843 [17]. Quaternions are
noncommutative with multiplication operations; in addition, they are associative and
constitute a group recognized as a quaternion group. Quaternions correspond to rotation in
three dimensional space, are used in vectorial studies, and help to interpret some physical
equations and spherical geometry. Especially in recent years, the utilization of quaternions
has broadened, including geometry, physics, mechanics, kinematics, vectorial analysis,
animation, computer graphics, and the technology of robots.

Many types of quaternions, just as dual quaternions, split quaternions, bi-quaternions,
hyperbolic quaternions, segre quaternions, ellipsoidal quaternions, hyperboloidal quater-
nions, degenerate quaternions, degenerate pseudo quaternions, null quaternions, and
generalized quaternions have been studied by researchers. Split quaternions were in-
troduced firstly by Cockle [18] in 1849. Bi-quaternions were given by Clifford in [19].
Quaternions of Fibonacci type and generalized Fibonacci quaternions were investigated
in [20–22]. Kula and Yaylı studied split quaternions in semi-Euclidean space E4

2 in [23].
Moreover, split Fibonacci quaternions and their properties were given by Akyiğit et al.
in [24]. Dual quaternions with real number coefficients were defined by Majernik in [25].
Additionally, Majernik expressed the special Galilean transformation in the algebraic ring
of the dual four-component numbers in [26]. Nurkan and Güven identified dual Fibonacci
and Lucas quaternions with dual number coefficients in [27]. After that, from a different
viewpoint, Yüce and Aydın gave dual Fibonacci and Lucas quaternions with real number
coefficients in [28]. In addition, quaternion-like structures have been a popular topic of
study in recent years. Özdemir defined a new noncommutative number system called hy-
brid numbers in [29]. Kızılateş and Kone dealt with developing a new class of quaternions,
octonions, and sedenions called higher order Fibonacci 2m -ions (or-higher order Fibonacci
hyper complex numbers) whose components were higher order Fibonacci numbers in [30].
Gu discussed algebraic equations and obtained some interesting relations by means of
hypercomplex numbers in [31].
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To summarize, number systems play a special role in defining different types of quater-
nions. Combining the fundamental properties of numbers and quaternions enables the
determination of new features. Considering the numbers mentioned above, the quaternions
with different number components have been studied by several authors from many points
of view.

Motivated by these ideas, in this work, we combined Leonardo numbers and dual
quaternions. Since dual quaternions are a four dimensional number system, we were in-
spired by dual quaternions, and we called these new numbers “ordered Leonardo quadru-
ple numbers”, which are ordered quadruple numbers with Leonardo number components.
We imputed the properties of ordered Leonardo quadruple numbers and established
some relations between quadruple numbers and Leonardo numbers. Additionally, special
identities, which are Cassini identities, and Binet’s formula were obtained. Moreover, a
generating function for these quadruple numbers was given. Finally, we illustrated the
identities with examples.

2. Preliminaries

In this part, some basic terms are recollected in relation to dual quaternions and
Leonardo numbers.

In [12], the authors stated that Leonardo numbers are terms of the Leonardo sequence,
which is expressed as {Len}∞

n=0. The n-th Leonardo number is denoted by Len. The
following recurrence relation

Len = Len−1 + Len−2 + 1, n ≥ 2 (1)

defines this sequence, and Le0 = Le1 = 1 are the initial conditions. The Leonardo numbers
of the Leonardo sequence are

1, 1, 3, 5, 9, 15, 25, 41, 67, 109, 177, 287, 465, ...

In deference to the n-th Fibonacci number Fn, the relation between Fibonacci numbers
and Leonardo numbers is given by

Len = 2Fn+1 − 1, (2)

for n ≥ 0.
Quaternions are a four dimensional number system discovered by W. R. Hamilton in

1843 and are given as the elements of the set [17]

H = {q = q0 + iq1 + jq2 + kq3 | q0, q1, q2, q3 ∈ R},

where i, j, and k are the standard orthonormal basis in R3 and

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

A dual quaternion, as an extension of a dual number in four dimensions, is defined by
the same form with different multiplication conditions for quaternionic units as in [25]

i2 = j2 = k2 = ijk = 0, ij = −ji = jk = −kj = ki = −ik = 0.

The set of dual quaternions

HD = {q = a + ib + jc + kd | a, b, c, d ∈ R},

which is isomorphic to Galilean 4-space, forms a commutative division algebra under
addition and multiplication. Furthermore, using the dual quaternions, one can express the
Galilean transformation in one quaternionic equation [25].
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3. Ordered Leonardo Quadruple Numbers

In this part, by inspiring dual quaternions and Leonardo numbers, ordered Leonardo
quadruple numbers are given. We define an ordered Leonardo quadruple number set as

QL = {Qn | Qn = Len + iLen+1 + jLen+2 + kLen+3 and Len, n-th Leonardo number}, (3)

where
i2 = j2 = k2 = ijk = 0, ij = −ji = jk = −kj = ki = −ik = 0. (4)

Note that throughout this paper, we denote the n-th ordered Leonardo quadruple
number with Qn.

Lemma 1. Let the set A =
{
(Len, Len+1, Len+2, Len+3) | Len ∈ {Len}∞

n=0
}

be a set contain-
ing ordered quadruple numbers. The function F : A −→ QL given as

F(Len, Len+1, Len+2, Len+3) = Len + iLen+1 + jLen+2 + kLen+3

is an isomorphism.

Proof. Formally, an isomorphism is a bijective morphism. In other words, the term isomor-
phism is mainly used for algebraic structures. In this case, mappings are called homomor-
phisms, and a homomorphism is an isomorphism if and only if it is bijective. It can be easily
seen that the function F is bijective. So F is an isomorphism, and the ordered quadruple
number set A and ordered Leonardo quadruple number set QL are isomorphic.

Remark 1. The n-th ordered Leonardo quadruple number Qn = Len + iLen+1 + jLen+2 + kLen+3
can be represented as the quadruple number Qn = (Len, Len+1, Len+2, Len+3).

Let us take two ordered Leonardo quadruple numbers from QL as follows:

Qn = Len + iLen+1 + jLen+2 + kLen+3

and
Qm = Lem + iLem+1 + jLem+2 + kLem+3.

The addition and subtraction operations of the ordered Leonardo quadruple numbers
are defined by

Qn ±Qm = (Len ± Lem) + i(Len+1 ± Lem+1) + j(Len+2 ± Lem+2)

+k(Len+3 ± Lem+3). (5)

Multiplication of two ordered Leonardo quadruple numbers is defined by

QnQm = (LenLem) + i(LenLem+1 + Len+1Lem)

+j(LenLem+2 + Len+2Lem) + k(LenLem+3 + Len+3Lem). (6)

The scalar and vector part of the n-th term Qn of the ordered Leonardo quadruple
number sequence are given as

SQn = Len and VQn = iLen+1 + jLen+2 + kLen+3. (7)

So, Qn can be given as Qn = SQn + VQn , and the multiplication in Equation (6) is
denoted by

QnQm = SQn SQm + SQn VQm + SQm VQn .

Moreover, it can easily be seen that VQn ×VQm = 0.
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The conjugate of Qn is given by

Qn = Len − iLen+1 − jLen+2 − kLen+3, (8)

and the norm of Qn is given by

NQn = ‖Qn‖ = QnQn = (Len)
2. (9)

Now, we state the following theorems including the properties of ordered Leonardo
quadruple numbers.

Remark 2. The ordered quadruple Q = 1 + i + j + k will be represented in this paper as "Q".

Theorem 1. Let the n-th terms of the Leonardo sequence (Len) and ordered Leonardo quadruple
number sequence (Qn) be Len and Qn, respectively. For n ≥ 0 and m ≥ 1, the following
equations hold:

Qn + Qn+1 + Q = Qn+2 (10)

Qn − iQn+1 − jQn+2 − kQn+3 = Len (11)

QnQm + Qn+1Qm+1 = 2(2Qn+m+2 + 1)−Qn+2 −Qm+2 (12)

−2Len+m+2 − (i + j + k)(Len+2 + Lem+2 − 4).

Proof. (10): By using the n-th and (n + 1)− th terms in Equations (3) and (1), we have

Qn + Qn+1 = (Len+2 − 1) + i(Len+3 − 1) + j(Len+4 − 1) + k(Len+5 − 1)

= Len+2 + iLen+3 + jLen+4 + kLen+5 − (1 + i + j + k)

= Qn+2 −Q.

(11): By Equation (3), we directly obtain

Qn − iQn+1 − jQn+2 − kQn+3 = Len + iLen+1 + jLen+2 + kLen+3

−i(Len+1 + iLen+2 + jLen+3 + kLen+4)

−j(Len+2 + iLen+3 + jLen+4 + kLen+5)

−k(Len+3 + iLen+4 + jLen+5 + kLen+6)

= Len.

(12): By Equation (3), we first obtain

QnQm = LenLem + i(LenLem+1 + Len+1Lem) (13)

+j(LenLem+2 + Len+2Lem) + k(LenLem+3 + Len+3Lem)

and

Qn+1Qm+1 = Len+1Lem+1 + i(Len+1Lem+2 + Len+2Lem+1) (14)

+j(Len+1Lem+3 + Len+3Lem+1) + k(Len+1Lem+4 + Len+4Lem+1).

Taking into account Equations (13) and (14) and the property LenLem + Len+1Lem+1 =
2(Len+m+2 + 1)− Len+2 − Lem+2 given in [13], we obtain
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QnQm + Qn+1Qm+1 = 4(Len+m+2 + iLen+m+3 + jLen+m+4 + kLen+m+5)

−2Len+m+2 + 2 + 4i + 4j + 4k

−(Len+2 + iLen+3 + jLen+4 + kLen+5)

−(Lem+2 + iLem+3 + jLem+4 + kLem+5)

−(i + j + k)Len+2 − (i + j + k)Lem+2

= 4Qn+m+2 − 2Len+m+2 + 2 + 4i + 4j + 4k

−Qn+2 −Qm+2 − (i + j + k)(Len+2 + Lem+2)

= 2(2Qn+m+2 + 1)−Qn+2 −Qm+2 − 2Len+m+2

−(i + j + k)(Len+2 + Lem+2 − 4).

Theorem 2. Let the n-th terms of the dual Lucas quaternion sequence (Tn) and ordered Leonardo
quadruple number sequence (Qn) be Tn and Qn, respectively. For Equation (15), n ≥ 1, and for
Equation (16), n ≥ 2, the following equations hold:

Qn−1 + Qn+1 = 2(Tn+1 −Q) (15)

Qn+2 −Qn−2 = 2Tn+1. (16)

Proof. From Equation (3), the property Len−1 + Len+1 = 2Ln+1 − 2 given in [13], and the
dual Lucas quaternion Tn = Ln + iLn+1 + jLn+2 + kLn+3 in [28], we obtain

Qn−1 + Qn+1 = (Len−1 + Len+1) + i(Len + Len+2)

+j(Len+1 + Len+3) + k(Len+2 + Len+4)

= 2(Ln+1 + iLn+2 + jLn+3 + kLn+4)− 2− 2i− 2j− 2k

= 2(Tn+1 −Q).

Taking m = 2 in the equation Len+m − (−1)mLen−m = Ln+1(Lem−1 + 1)− 1 + (−1)m

given in [13], we have
Len+2 − Len−2 = 2Ln+1. (17)

By using Equations (3) and (17), we obtain

Qn+2 −Qn−2 = (Len+2 − Len−2) + i(Len+3 − Len−1)

+j(Len+4 − Len) + k(Len+5 − Len+1)

= 2(Ln+1 + iLn+2 + jLn+3 + kLn+4)

= 2Tn+1.

Theorem 3. Let the n-th term of the ordered Leonardo quadruple number sequence (Qn) be Qn
and the conjugate of Qn be Qn. For n ≥ 1, the following equations hold:



Symmetry 2023, 15, 149 7 of 15

Qn + Qn = 2Len

Q2
n = 2QnLen − Le2

n

QnQn + Qn−1Qn−1 = 2(1 + Le2n − Len+1)

QnQn + Qn+1Qn+1 = 2(1 + Le2n+2 − Len+2) (18)

Qn+1Qn+1 −Qn−1Qn−1 = 2(Le2n+1 − Len)

Q2
n + Q2

n−1 = 4Q2n − 2Qn+1 + Q(4− 2Len+1)

−2(1 + Le2n − Len+1).

Proof. The first four properties in Equation (18) can be easily proved by using Equations (3) and (8).
Considering Equation (9) and Le2

n+1 − Le2
n−1 = 2(Le2n+1 − Len) given in [13], we

obtain the fifth equation as

Qn+1Qn+1 −Qn−1Qn−1 = Le2
n+1 − Le2

n−1

= 2(Le2n+1 − Len).

Lastly for the sixth equation, by using the second equation in (18) and Equation (3),

Q2
n + Q2

n−1 = 2QnLen − Le2
n + 2Qn−1Len−1 − Le2

n−1

= Le2
n + Le2

n−1 + 2i(LenLen−1 + Len+1Len)

+2j(Len−1Len+1 + LenLen+2) + 2k(Len−1Len+2 + LenLen+3).

Here, by using Le2
n+1 + Le2

n = 2(Le2n+2 − Len+2 + 1) and LenLem + Len+1Lem+1 =
2(Len+m+2 + 1)− Len+2 − Lem+2 given in [13], we have the result

Q2
n + Q2

n−1 = 2(Le2n − Len+1 + 1)

+2i(2(Le2n+1 + 1)− Len+1 − Len+2)

+2j(2(Le2n+2 + 1)− Len+1 − Len+3)

+2k(2(Le2n+3 + 1)− Len+1 − Len+4)

+2Le2n − 2Le2n

= 4(Le2n + iLe2n+1 + jLe2n+2 + kLe2n+3)

+4(1 + i + j + k)

−2(Len+1 + iLen+2 + jLen+3 + kLen+4)

−2Len+1(1 + i + j + k)− 2− 2Le2n + 2Len+1

= 4Q2n − 2Qn+1 + (1 + i + j + k)(4− 2Len+1)

−2(1 + Le2n − Len+1).

Theorem 4. Let the n-th term of the ordered Leonardo quadruple number sequence (Qn) be Qn.
Then, the following equations hold:
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n

∑
s=0

Qs = Qn+2 − (n + 2)Q− (2i + 4j + 8k) (19)

n

∑
s=0

Q2s = Q2n+1 − nQ− (2i + 2j + 4k) (20)

n

∑
s=0

Q2s+1 = Q2n+2 − nQ− (2 + 2i + 4j + 6k) (21)(
p

∑
s=0

Qn+s

)
+ Qn+1 = Qn+p+2 − (p + 1)Q. (22)

Proof. (19): From Equation (3) and
n
∑

s=0
Les = Len+2 − (n + 2) given in [12], we have

n

∑
s=0

Qs =
n

∑
s=0

(Les + iLes+1 + jLes+2 + kLes+3)

=
n

∑
s=0

Les + i

(
Len+1 − Le0 +

n

∑
s=0

Les

)

+j

(
Len+2 + Len+1 − Le0 − Le1 +

n

∑
s=0

Les

)

+k

(
Len+3 + Len+2 + Len+1 − Le0 − Le1 − Le2 +

n

∑
s=0

Les

)
= Len+2 − (n + 2) + i(Len+1 + Len+2 − Le0 − (n + 2))

j(Len+2 + Len+1 − Le0 − Le1 + Len+2 − (n + 2))

+k(Len+3 + Len+2 + Len+1 − Le0 − Le1 − Le2 + Len+2 − (n + 2)).

In this stage, by Equation (1), we obtain the result simply as

n

∑
s=0

Qs = Len+2 + iLen+3 + jLen+4 + kLen+5

−(n + 2)(1 + i + j + k)− (i + 2j + 3k)

−Le0(i + j + k)− Le1(j + k)− Le2k

= Qn+2 − (n + 2)Q− (2i + 4j + 8k).

(20): By using Equations (1) and (3), and the summation formulas
n
∑

s=0
Le2s = Le2n+1− n

and
n
∑

s=0
Le2s+1 = Le2n+2 − (n + 2) given in [12], we obtain

n

∑
s=0

Q2s =
n

∑
s=0

Le2s + i

(
n

∑
s=0

Le2s+1

)

+j

(
n

∑
s=0

Le2s+1 + Le2s + 1

)

+k

(
n

∑
s=0

2Le2s+1 + Le2s + 2

)
= Le2n+1 + iLe2n+2 + jLe2n+3 + kLe2n+4

−n− i(n + 2)− j(n + 2)− k(n + 4)

= Q2n+1 − n(1 + i + j + k)− (2i + 2j + 4k).
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(21): The proof is similiar to (20).
(22): Firstly, we have

p

∑
s=0

Qn+s = Qn + Qn+1 + ... + Qn+p (23)

and

n+p

∑
r=0

Qr −
n−1

∑
r=0

Qr = Q0 + Q1 + ... + Qn + Qn+1 + ...Qn+p

−Q0 −Q1 − ...−Qn−1

= Qn + Qn+1 + ... + Qn+p. (24)

By putting (24) into Equation (23), we obtain

p

∑
s=0

Qn+s =
n+p

∑
r=0

Qr −
n−1

∑
r=0

Qr. (25)

If we take n −→ n− 1 and n −→ n + p in Equation (19), then

n−1

∑
r=0

Qr = Qn+1 − (n + 1)(1 + i + j + k)− (2i + 4j + 8k) (26)

n+p

∑
r=0

Qr = Qn+p+2 − (n + p + 2)(1 + i + j + k)− (2i + 4j + 8k). (27)

Considering Equations (25)–(27), we find

p

∑
s=0

Qn+s = Qn+p+2 −Qn+1 − (p + 1)(1 + i + j + k). (28)

Finally, by using Equation (28), the result is obvious.

Theorem 5. (Binet’s Formula): Let the n-th term of the ordered Leonardo quadruple number
sequence (Qn) be Qn. For n ≥ 0, Binet’s formula is given by:

Qn =
2

α− β

(
ααn+1 − ββn+1

)
−Q,

where α = 1+
√

5
2 , β = 1−

√
5

2 , α = 1 + iα + jα2 + kα3, and β = 1 + iβ + jβ2 + kβ3.

Proof. Binet’s formula for Leonardo numbers was given in [12] as

Len = 2
(

αn+1 − βn+1

α− β

)
− 1. (29)

By Equations (3) and (29) and making the appropriate calculations, we obtain

Qn =
2

α− β
(αn+1(1 + iα + jα2 + kα3)− βn+1(1 + iβ + jβ2 + kβ3))

−1− i− j− k.

If we let α = 1 + iα + jα2 + kα3 and β = 1 + iβ + jβ2 + kβ3 in the last equation, we
obtain the result.
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Theorem 6. (Cassini Identity): Let the n-th term of the ordered Leonardo quadruple number
sequence (Qn) be Qn. For n ≥ 1, the Cassini identity is given by:

Qn−1Qn+1 −Q2
n = 4(−1)n+1(1 + i + 3j + 4k) + (1 + i + 2j + k)Len−2 + kLen + (j + k)−Qn−1.

Proof. By using Equation (3) and arranging the calculations, we have

Qn−1Qn+1 −Q2
n = Len−1Len+1 − Le2

n

+i(Len−1Len+2 − LenLen+1) (30)

+j(Len−1Len+3 − LenLen+2 + Len+1Len+1 − Len+2Len)

+k(Len−1Len+4 − LenLen+3 + Len+2Len+1 − Len+3Len).

The Cassini identity and the d’Ocagnes identity for the Leonardo numbers were given
in [12] as

Le2
n − Len−1Len+1 = Len−1 − Len−2 + 4(−1)n (31)

LemLen+1 − Lem+1Len = 2(−1)n+1(Lem−n−1 + 1) + Lem−1 − Len−1. (32)

Now, we use Equation (32) and replace the following indices as follows.
For m −→ n− 1 and n −→ n + 1,

Len−1Len+2 − LenLen+1 = 2(−1)n+2(Le−3 + 1) + Len−2 − Len. (33)

For m −→ n− 1 and n −→ n + 2,

Len−1Len+3 − LenLen+2 = 2(−1)n+3(Le−4 + 1) + Len−2 − Len+1. (34)

For m −→ n + 1 and n −→ n,

Len+1Len+1 − Len+2Len = 2(−1)n+1(Le0 + 1) + Len − Len−1. (35)

For m −→ n− 1 and n −→ n + 3,

Len−1Len+4 − LenLen+3 = 2(−1)n+4(Le−5 + 1) + Len−2 − Len+2. (36)

For m −→ n + 2 and n −→ n,

Len+2Len+1 − Len+3Len = 2(−1)n+1(Le1 + 1) + Len+1 − Len−1. (37)

Here, by using negaleonardo numbers, which are Leonardo numbers with a negative
index given in [13] and by taking into account Equations (31) and (33)–(37) in Equation (30),
we find

Qn−1Qn+1 −Q2
n = 4(−1)n+1(1 + i + 3j + 4k) + (1 + i + j + k)Len−2

+j(Len − Len−1) + k(Len+1 − Len−1)

−(Len−1 + iLen + jLen+1 + kLen+2).

Considering Equations (1) and (3) in last equation, we obtain the result as

Qn−1Qn+1 −Q2
n = 4(−1)n+1(1 + i + 3j + 4k) + (1 + i + j + k)Len−2

+j(Len−2 + 1) + k(Len + 1)−Qn−1

= 4(−1)n+1(1 + i + 3j + 4k) + (1 + i + 2j + k)Len−2

+kLen + (j + k)−Qn−1.
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4. Generating Function

In this part, generating functions for the ordered Leonardo quadruple number sequence
are attained. To correlate every number sequence via a function, we use “generating functions”.

Let { fn}∞
n=0 be a real numbers sequence. The power series

F(x) =
∞

∑
n=0

fnxn (38)

is called the generating function of the sequence { fn}∞
n=0.

In [12], the generating function of the Leonardo sequence is obtained as

gLe(t) =
1− t + t2

1− 2t + t3 .

Theorem 7. The generating function for the ordered Leonardo quadruple number sequence {Qn}∞
n=0

is given as

gQ(t) =
(1− t + t2) + i(1 + t− t2) + j(3− t− t2) + k(5− t− 3t2)

1− 2t + t3 ,

where 1− 2t + t3 6= 0.

Proof. First, we indicate the property

Qn = 2Qn−1 −Qn−3. (39)

In Equation (10), if we replace n→ n− 1, then we have

Qn+1 = Qn−1 + Qn + (1 + i + j + k). (40)

By subtracting Equation (10) from Equation (40), we obtain Qn+2 = 2Qn+1 −Qn−1. If
we take n as n− 2 in this last equality, we find Equation (39).

Now by the help of Equation (38), the generating function for the ordered Leonardo
quadruple number sequence {Qn}∞

n=0 is written by

gQ(t) =
∞

∑
n=0

Qntn. (41)

Let us open the sum in Equation (41) and calculate gQ(t).

gQ(t) = Q0 + Q1t + Q2t2 +
∞

∑
n=3

Qntn.

In this part, by using Equation (39), we have
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gQ(t) = Q0 + Q1t + Q2t2 +
∞

∑
n=3

(2Qn−1 −Qn−3)tn

= Q0 + Q1t + Q2t2 + 2
∞

∑
n=3

Qn−1tn −
∞

∑
n=3

Qn−3tn

= Q0 + Q1t + Q2t2 + 2
∞

t ∑
n=3

Qn−1tn−1 − t3
∞

∑
n=3

Qn−3tn−3

= Q0 + Q1t + Q2t2 + 2
∞

t ∑
n=2

Qntn − t3
∞

∑
n=0

Qntn

= Q0 + Q1t + Q2t2

+2t

(
∞

∑
n=2

Qntn + Q0 + Q1t−Q0 −Q1t

)
− t3

∞

∑
n=0

Qntn

= Q0 + Q1t + Q2t2 − 2Q0t− 2Q1t2

+2
∞

t ∑
n=0

Qntn − t3
∞

∑
n=0

Qntn

By using Equation (41) and arranging the last equation, we find

gQ(t)− 2tgQ(t) + t3gQ(t) = Q0 + (Q1 − 2Q0)t + (Q2 − 2Q1)t2. (42)

On the other hand, we have

Q0 = 1 + i + 3j + 5k (43)

Q1 − 2Q0 = −1 + i− j− k (44)

Q2 − 2Q1 = 1− i− j− 3k. (45)

Finally, by putting Equations (43)–(45) into Equation (42), we obtain the generating
function as

gQ(t) =
(1− t + t2) + i(1 + t− t2) + j(3− t− t2) + k(5− t− 3t2)

1− 2t + t3 .

In the last part, some examples are given.

Example 1. 1-If n = 0 and m = 1 for Equations (11) and (12), then the following expressions are
calculated, and they satisfy Theorem 1:

Q0 − iQ1 − jQ2 − kQ3 = 1 and Le0 = 1

and

Q0Q1 + Q1Q2 = 4 + 18i + 32j + 56k

2(2Q3 + 1)−Q2 −Q3 − 2Le3 − (i + j + k)(Le2 + Le3 − 4) = 4 + 18i + 32j + 56k.

2-If n = 1 and n = 2 for Equations (15) and (16) in Theorem 2, respectively, then

Q0 + Q2 = 4 + 6i + 12j + 20k

2(T2 − 1− i− j− k) = 4 + 6i + 12j + 20k
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and

Q4 −Q0 = 8 + 14i + 22j + 36k

2T3 = 8 + 14i + 22j + 36k

3-If n = 1 for Theorem 3, then the third, fourth, and fifth Equations in (18) are calculated as:

Q1Q1 + Q0Q0 = 2

2(1 + Le2 − Le2) = 2

Q1Q1 + Q2Q2 = 10

2(1 + Le4 − Le3) = 10

Q2Q2 −Q0Q0 = 8

2(Le3 − Le1) = 8

and if n = 2, for the sixth equation,

Q2
2 + Q2

1 = 10 + 36i + 64j + 108k

4Q4 − 2Q3 + (1 + i + j + k)(4− 2Le3)− 2(1 + Le4 − Le3) = 10 + 36i + 64j + 108k.

4-If n = 2 for Equation (20) in Theorem 4, then

2

∑
s=0

Q2s = Q0 + Q2 + Q4 = 13 + 21i + 37j + 61k

Q5 − 2(1 + i + j + k)− (2i + 2j + 4k) = 13 + 21i + 37j + 61k,

n = 3 for Equation (21) in Theorem 4;

3

∑
s=0

Q2s+1 = Q1 + Q3 + Q5 + Q7 = 62 + 104i + 170j + 278k

Q8 − 3(1 + i + j + k)− (2 + 2i + 4j + 6k) = 62 + 104i + 170j + 278k,

and n = 2 and p = 1 for Equation (22) in Theorem 4,(
1

∑
s=0

Q2+s

)
+ Q3 = Q2 + 2Q3 = 13 + 23i + 39j + 65k

Q5 − 2(1 + i + j + k) = 13 + 23i + 39j + 65k.

Example 2. 1-If n = 1 for the Cassini identity in Theorem 6, then

Q0Q2 −Q2
1 = 2 + 2i + 8j + 12k

4(−1)2(1 + i + 3j + 4k) + (1 + i + 2j + k)Le−1 + kLe1 + (j + k)−Q0 = 2 + 2i + 8j + 12k

and if n = 2 for the Cassini identity,

Q1Q3 −Q2
2 = −4− 6i− 14j− 20k

4(−1)3(1 + i + 3j + 4k) + (1 + i + 2j + k)Le0 + kLe2 + (j + k)−Q1 = −4− 6i− 14j− 20k.

5. Conclusions and Remarks

Inspired by the dual quaternions given in [25], we took the coefficients of the dual
quaternions as Leonardo numbers. We did not call these new notions “quaternions”,
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because the set of numbers given as the definition in (3) was not a ring, as this set was
not closed under multiplication. To not suffer the lack of closure under multiplication, we
named these numbers the “ordered Leonardo quadruple numbers” in the set QL which
was isomorphic to the set of ordered quadruple numbers.

Further study and applications of ordered Leonardo quadruple numbers will include
matrices and their theories. In addition, new number systems can be studied in hypercom-
plex numbers and quaternion-like structures, whose components are Leonardo numbers.
The results presented here have the potential to motivate further research into the subject
of the higher-order or generalized-ordered Leonardo quadruple numbers, which may also
be worth further study.
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