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Abstract: In this study, we probe the weak lensing by a Reissner–Nordström black hole corrected
by bounce parameter in plasma and dark matter mediums. For this, the optical geometry and the
Gibbons–Werner approach are utilized to obtain the bending angle in the weak field limitations. We
examine that the impact of these mediums increases the black hole’s bending angle. In addition, we
graphically study the deflection angle of light with respect to the impact parameter and examine
that the bounce parameter directly affects the angle. Further, we compute the Hawking radiation
via a topological method involving two invariants and verify our obtained result with the standard
method of calculating the Hawking temperature. In addition, we compute the greybody factor’s
bound of the black hole. Moreover, we analyze the bound graphically and observe that the bound
shows convergent behavior. We also study that our attained results reduce the results of the Reissner–
Nordström and Schwarzschild black holes by reducing the parameters. Finally, we probe how the
bounce parameter affected the shadow radius and compared it to the shadow produced if the black
hole is immersed in plasma. It is revealed that the rate at which the shadow radius changes with
respect to r easily tends to zero under the effect of the bounce parameter, while the plasma merely
increases the shadow radius.

Keywords: general relativity; bending angle; Gauss–Bonnet theorem; plasma medium; black hole;
greybody; Hawking temperature

PACS: 95.30.Sf; 98.62.Sb; 97.60.Lf

1. Introduction

General relativity (GR) is the theory of gravity proposed by Einstein in 1916. In GR,
Einstein gave the idea of black holes (BHs) [1]. Acknowledging Newton’s corpuscular
theory of light, which assumed that photons are ultra-light particles, geologist Michell
proposed the presence of dark stars. Today, these dark stars are known as BHs. Black holes
are fascinating astronomical objects with a gravitational attraction so powerful that nothing
can escape them, not even light. According to the no-hair theorem, all astrophysical BHs are
fully defined by their masses and spins. A BH has two main components: the singularity
and the event horizon. The question which attains the most attention in GR is about the
inner structure of a BH. However, because of the presence of the spacetime singularity,
where the curvature deviates continuously, and GR breaks down, this question cannot
be answered easily. The singularity theorems, presented by Penrose and Hawking [2],
state that gravitational collapse with physically valid circumstances always results in the
formation of a singularity. Even in some scenarios (such as a cosmological constant in
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the spacetime area), the singularity theorem’s assumptions may not be applied. Black
holes having regular centers or, in other words, having no singularity are called regular
BHs or non-singular BHs. The first regular BH with horizons and no core singularity [3]
was proposed by Bardeen [4]. Near the origin, the Bardeen BH behaves like a de Sitter
spacetime, however, for r → ∞, it acts like a Schwarzschild BH [3]. Later, Ayon-Beato and
Garcia [5] showed that Bardeen’s model is an accurate solution of GR connected to non-
linear electrodynamics. There has been significant progress in the study and application of
regular BHs [6–8], as well as regular rotating black holes [8,9]. Most of these solutions are
based on Bardeen’s concept, which uses non-linear electrodynamics as a source.

According to Hawking [10], a BH can emit heat radiation by taking into account the
quantum consequences, and Hawking radiation is a term used to describe this type of
heat radiation. The production and annihilation of particles are theoretically feasible in
the context of quantum field theory. When pair creation occurs near the BH’s horizon, one
of the particles from the pair falls back to the BH while the other particles depart from
the BH’s horizon. The particles that exit are observed by an outside observer as Hawking
radiation [11–13]. According to GR, the spacetime bend by a BH acts as a gravitational
potential inside which the particles move. Some Hawking radiation is returned to the BH
while the remainder passes through the potential at infinity. In this aspect, the transmission
probability is known as the greybody factor. Several methods for obtaining Hawking
radiation have been proposed. Using a topological method, Zhang, Wei, and Liu [14]
investigated the Hawking temperature of the BTZ BH. Övgün et al. [15] computed the
Hawking temperature for BHs by applying the topological strategy. Kruglov [16] explored
the Hawking temperature of a magnetically charged BH through surface gravity and
horizon in the context of non-linear electrodynamics. The greybody factor can be calculated
in a variety of ways. The matching approach can be used to derive an estimated greybody
factor [17–19]. The WKB approximation may be used to calculate the greybody factor if the
gravitational potential is high enough [20,21]. The greybody factor may also be calculated
using the rigorous bound, which is an alternative to approximation. The bound can be used
to describe a BH qualitatively. Visser [22] inspected some extremely wide reflected and
transmitted coefficient constraints for one-dimensional potential scattering. Boonserm and
Visser [23] calculated the greybody factor’s bound for Schwarzschild BHs by examining the
Regge-Wheeler equation for wave phase angular momentum and arbitrary particle spin.
Javed, Hussain, and Övgün [24] worked out the boundaries of the Kazakov Solodukhin
BH’s greybody factor.

The gravitational lensing (GL) effect states that a light beam would be distorted while
passing by a huge object, which is one of GR’s most important predictions. For determining
the mass of galaxies and clusters [25,26], as well as discovering dark energy and dark
matter (DM) [27], GL has become one of the most powerful instruments in astronomy and
cosmology. Since the first measurements of the Sun’s gravitational bending of light, the
lens equation has been used to examine the GL effects for BHs, wormholes, cosmic strings,
and other objects. Strong GL and weak GL are the types of GL. Strong GL is a GL effect
that is intense enough to generate many pictures, such as arcs or Einstein’s rings. In this
type of GL, geometry is favorable and bending is rather large, whereas the weak GL is a
GL impact that is not intense to create multiple pictures, and the geometry is less suitable.
Since the 19th century, various studies on the GL have been done not only for the BHs but
also for the wormholes, cosmic strings, global monopoles, and neutron stars [28–35].

Gibbons and Werner (GW) presented a technique for calculating the deflection angle
in 2008. The Gauss-Bonnet theorem (GBT) and the optical geometry of the BH’s spacetime,
where the source and viewer are in asymptotic areas, were used to develop their technique.
Werner [36] soon expanded this approach to stationary spacetimes. In GBT, one can utilize
the domain GS confined by the light ray as well as a circular boundary curve CS placed at
the lens’s center where the light ray intersects at the source and receiver. The source and
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receiver are considered at the same coordinate distance S from the lens. The GBT in optical
metric and by using weak field approximation can be expressed as follows∫ ∫

GS

K̃dS +
∮

∂GS

kdt + ∑
i

εi = 2πX (GS), (1)

wherein K̃ indicates the Gaussian optical curvature, k stands for geodesic curvature, dS
is a surface element of optical geometry, and GS is a region accommodates the light rays
source, the referential of the observer and the lens’s center. At ith vertex, εi represents the
exterior angles. Just for simplicity, we suppose that as long as radial distance S→ ∞, the
sum of the external angles θi becomes π for the observer. The asymptotic deflection angle α̃
can be calculated as:

α̃ = −
∫ π

0

∫ ∞

b
sin(φ)

K̃dS, (2)

where b represents the impact parameter. The integral of GBT may be solved in an infinite
region confined by a ray of light. Instead of utilizing the asymptotic receiver and source,
Ishihara et al. [37,38] modified this approach for finite distances. The finite-distances
approach was then applied to the axisymmetric spacetimes by Ono et al. [39]. In the plasma
medium, the GBT was used by Crisnejo, and Gallo [40] to determine the gravitational
bending of light. Using massive particles and the Jacobi–Maupertuis Randers–Finsler
metric inside GBT, Li et al. [41,42] investigated the finite-distance impacts on the weak
bending angle.

Beginning from the first startling discoveries by Oort [43] of missing matter in the
Galactic disk, which modern observations have not confirmed, and by Zwicky, [44] the
discovery of missing matter in the Coma cluster, much later understood to be “DM". Dark
matter comprises particles that do not absorb, reflect, or emit light, making it impossible
to detect them using electromagnetic radiation. Only gravitational interactions can detect
DM, and we know that DM is non-baryonic, non-relativistic, and possesses weak non-
gravitational interactions. Weakly interacting massive particles (WIMPs), super-WIMPs,
axions, and sterile neutrinos are the four candidates of DM [45]. Dark matter constitutes
about 85% of the total mass of the Universe [46] and is used to explain the strange behavior
of stars and galaxy dynamics. In DM medium, Pantig and Övgün [47–51] studied the weak
GL by wormholes and BHs.

The light that passes close to the BH is refracted by the gravitational field, creating
the BH’s shadow. The BH’s shadow is a dark area frequently surrounded by a luminous
ring. The BH’s mass and angular momentum determine its size and form. Many scientists
have attempted to predict how the observable appearance of a BH surrounded by bright
material would seem before the spectacular finding of the BH’s shadow produced by Event
Horizon Telescope Collaboration [52,53]. For instance, Bardeen et al. [54] examined the
shadows of Kerr BH’s, while Synge [55] studied the shadows of Schwarzschild spacetime.
The bright accretion disc surrounding the BH was manually drawn by Luminet [56]. In
addition, due to the transparent emissions close to the BH, it is predicted that a BH would
display its shadow, which is brought on by gravitational light deflection and photons
captured at its event horizon. The photon ring, a geometric characteristic of spacetime,
determines the shadow radius [57]. To our knowledge, few studies about RN black hole
with bounce parameter have been conducted. For instance, [58] has considered the photon
rings and shadows. In this study, we ought to analyze such a metric under the influence
of plasma and dark matter. With the shadow cast, it can also determine imprints of
spacetime, and several studies were also conducted about using the black hole for dark
matter detection [50,51,59–68].

This paper aims to study the weak GL of black bounce Reissner–Nordström spacetime
utilizing optical geometry and GBT in plasma and DM mediums. Moreover, it would be
interesting to calculate the Hawking temperature and greybody bound of the BH. We will
also study the graphical behavior of the deflection angle and greybody bound. We will
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focus on how the bounce parameter (introduced in Reissner–Nordström BH) affects the
bending angle, Hawking temperature, and the bound.

The layout of our paper is given as follows. Section 2 is based on the discussion about
the black bounce Reissner–Nordström spacetime. In Section 3, we obtain the optical metric
from a four-dimensional spherically symmetric metric and then compute the deflection
angle of the BH with plasma medium by using GBT, and analyze its graphical behavior.
The computation of the bending angle in the case of DM medium is given in Section 4.
Section 5, is devoted to investigating the Hawking temperature of black bounce Reissner–
Nordström BH via GBT. The computation of the greybody factor’s bound of black bounce
Reissner–Nordström BH, and the graphical behavior of the bound is addressed in Section 6.
Finally, Section 7 discusses the shadow behavior. The purpose of Section 8 is to sum up the
findings of this research and propose a research direction. Throughout the paper, we used
natural units G = c = 1 and metric signature (−,+,+,+).

2. Black Bounce Reissner–Nordström Spacetime

One of the most significant problems is the prediction of the spacetime singularity
within a BH or at the start of the universe, which implies that the GR theory fails there. To
address the singularity issue, Bardeen [4] was the first who put up the idea of regular BHs,
which has continuously attracted scientific interest. It is convenient to consider the regular
BH due to the problematic nature of spacetime’s singularities. Regular BHs are solutions of
the gravity equations that have an event horizon but no singularities in spacetime. Based
on the bounce and quantum corrections, a wide range of regular black hole solutions
have been attained [69–71]. The black bounce spacetime smoothly interpolates among
ordinary Schwarzschild BH and Morris–Thorne traversable wormhole [72]. It is noteworthy
to remark that throughout the geometry is regular and one can have a distinct type of
“regular BH”, where the “origin” r = 0 can either be spacelike, null, or timelike, as long as
the parameter a 6= 0. Additionally, it was demonstrated that the spacetime metric may be
utilized to characterize several interesting physical circumstances, such as a developing
black-bounce, a wormhole to black-bounce transfer, and the opposite black-bounce to
wormhole transition. In Reissner–Nordström BH, a regularizing process was recently
proposed [71], which does not produce a standard regular BH [73], such as the Bardeen or
Hayward BHs, rather, it produces a charged regular BH called a black bounce Reissner–
Nordström or charged black bounce. In a static spherically symmetric spacetime, the
line-element for the black bounce Reissner–Nordström BH can be described as [74]

ds2 = − f (r)dt2 +
dr2

f (r)
+ h(r)2(dθ2 + sin2 θdφ2), (3)

where the metric function f (r) and h(r)2 are defined as

f (r) = 1− 2m√
r2 + a2

+
Q2

r2 + a2 and h(r)2 = r2 + a2.

In the metric function, m stands for the mass of the BH, Q indicates the charge,
and a represents the bounce parameter of black bounce Reissner–Nordström. Several
characteristics of the black bounce family have been thoroughly investigated [75,76]. Some
properties are that the curvature singularities are absent from the black bounce family on a
global scale and satisfy all observable weak field tests. Based on the values of charge Q and
bounce parameter a, one can easily interpolate the Reissner–Nordström and Schwarzschild
BHs. By taking charge Q 6= 0 and bounce parameter a = 0, one can obtain the Reissner–
Nordström BH. If we consider the charge Q = 0 and bounce parameter a = 0, then we can
obtain the Schwarzschild BH. The event horizon of the Reissner–Nordström BH corrected
by bounce parameter can be computed by taking f (r) = 0.

rh =

√
(m +

√
m2 −Q2)2 − a2.
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One can observe that a coordinate speed of light may be described in terms of radial
null curves (ds2 = dθ = dφ = 0), since the radial coordinate r ∈ (−∞,+∞) [74]:

C(r) =
∣∣∣∣dr

dt

∣∣∣∣ = f (r) = 1− 2m√
r2 + a2

+
Q2

r2 + a2 . (4)

Thus in this spacetime, a sphere’s area at r (radial coordinate) has the following form
A(r) = 4πh(r)2. The wormhole throat is where the area is minimized, and by observing
the state, one may determine where the throat is A′(ro) = 0, where the throat’s location
is represented by r0. The wormhole throat’s radius is thus given by h0 = h(r0). We now
divide this geometry into three categories [74]:

1. The outer and inner horizon exist at rh for a < (m +
√

m2 −Q2) and | Q |< m. In
this instance, ∃ rh ∈ R∗ and c(rh) = 0. Since light has a zero coordinate speed, it cannot
escape the horizon. This geometry indicates a charged regular black hole with usual outer
and inner horizons.

2. One can obtain one extremal horizon rh = 0, when a = (m +
√

m2 −Q2) and
| Q |< m, and we know ∃ rh = 0 and c(rh) = 0. For this case, the geometry represents the
extremal charged regular BH, which is the one-way charged traversable wormhole with
single extremal null throat at rh = 0.

3. For the case when, a > (m +
√

m2 −Q2) and whether | Q |< m or | Q |> m , there
is no horizons. So, we have ∀ radial coordinate r ∈ (−∞,+∞) and c(r) 6= 0. This case
represents a two-way charged traversable wormhole and the light can travel throughout
the domain.

3. Plasma-Influenced Deflection Angle

Guo and Miao [74] have calculated the deflection angle by Reissner–Nordström BH
corrected by bounce parameter in non-plasma medium utilizing GBT. Now, in this section,
we see how the presence of a plasma affects the bending of light by black bounce Reissner–
Nordström BH specified by charge Q and bounce parameter a. In the scenario of plasma
medium, the refractive index for the black bounce Reissner–Nordström is described as [40].

n(r) =

√
1− δ

(
1− 2m√

r2 + a2
+

Q2

r2 + a2

)
, (5)

where, δ = ω2
e

ω2
∞

and the plasma parameters ωe and ω∞ represents electron plasma frequency
and photon frequency as marked by the static investigator at infinity. For static spherically
symmetric metric in Equation (3) assuming that the source of light and viewer are on the
equatorial region (θ = π

2 ). Because we are working with null geodesics, we use (ds2 = 0)
to find the appropriate optical metric.

opticalmetric = n2dt2 = gpqdxpdxq = n2(r)
[

1
( f (r))2 dr2 +

h(r)2

f (r)
dφ2
]

, (6)

where, p,q ∈ {1, 2}. In order to determine the optical Gaussian curvature K̃ from the optical
metric Equation (6), we use the following expression

K̃ =
R
2

, (7)

where R is the Ricci scalar calculated using the optical metric. Utilizing Equation (7) the
Gaussian optical curvature of the black bounce Reissner–Nordström BH in plasma medium
is calculated as
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K̃ ' −2m
r3 +

3Q2

r4 −
6mQ2

r5 +
5Q2ω2

e
r4ω2

∞
− 3mω2

e
r3ω2

∞

− 26mQ2ω2
e

r5ω2
∞
− 12a2Q2

r6 − a2

r4 +
28a2mQ2

r7 +
10a2m

r5 − 20a2Q2ω2
e

r6ω2
∞

− a2ω2
e

r4ω2
∞
+

115a2mQ2ω2
e

r7ω2
∞

+
31a2mω2

e
2r5ω2

∞
+O(m2, a4, Q4). (8)

The obtained value of Gaussian optical curvature in Equation (8) will be used later
to compute the bending angle. Now, to acquire the deflection angle of the black bounce
Reissner–Nordström BH in a plasma medium, we make use of the GBT, which is defined
as follows [77] ∫ ∫

GS

K̃dS +
∮

∂GS

kdt + ∑
i

εi = 2πX (GS). (9)

As in above equation, k describes the geodesic curvature which is defined as k =
g(∇γ̇γ̇, γ̈) wherein g(γ̇, γ̇) = 1, γ̈ illustrates the unit acceleration vector. At ith vertex, εi
represents the external angle. As S → ∞, the jump angles becomes π

2 so that we obtain
θo + θS → π. Since GS is a non-singular region, the Euler characteristic X (GS) is equal to 1,
and the following result is obtained∫ ∫

GS

K̃dS +
∮

∂GS

kdt + εi = 2πX (GS), (10)

where εi = π denotes the total angle of jumps, and since S → 0, the effective element is
acquired as

k(ES) =| ∇ĖS
ĖS | . (11)

The geodesic curvature’s radial component is expressed as follows [77]:

(∇ĖS
ĖS)

r = Ėφ
S ∂φĖr

S + Γr
φφ(Ėφ

S )
2. (12)

For very large S, we obtain

(∇Ėr
S
Ėr

S)
r → 1

S
. (13)

It is asserted that the geodesic curvature is independent of topological defects, im-
plying that k(ES) → 1

S . Utilizing the optical metric given in Equation (6), one can write
dt = Sdφ and have k(ES)dt = dφ. Now, using all the above-obtained results and the
straight line approximation r = b

sinφ . The bending angle α̃ can be calculated by using the
formula below:

α̃ = −
∫ π

0

∫ ∞

b/ sin φ
K̃dS, (14)

where dS =
√

detgdrdφ. Using Equation (14) and the value of optical Gaussian curvature
Equation (8), the bending angle α̃ of the black bounce Reissner–Nordström in plasma
medium up to the leading order terms is calculated as

α̃ ' 4m
b

+
2mω2

e
bω2

∞
− 8mQ2

3b3 −
3πQ2

4b2 +
2mQ2ω2

e
b3ω2

∞

− πQ2ω2
e

2b2ω2
∞
− 8a2m

3b3 +
a2π

4b2 +
64a2mQ2

15b5 +
27a2πQ2

32b4

− 4a2mω2
e

3b3ω2
∞
− 16a2mQ2ω2

e
5b5ω2

∞
+

9a2πQ2ω2
e

16b4ω2
∞

+O(m2, a4, Q4). (15)

The above deflection angle depends on the mass m, charge Q, bounce parameter a,
impact parameter b and the plasma parameters i.e., ωe and ω∞. The terms without the
bounce parameter a and which contain charge are due to the charged nature of the BH.
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The remaining terms are due to the corrections with the bounce parameter a. For a = 0,
one can find the bending angle α̃ of a Reissner–Nordström BH in a plasma medium. By
neglecting the charge and bounce parameter, the obtained angle α̃ reduces to the bending
angle of the Schwarzschild BH. We also observe that the effect of the plasma increases the
deflection angle. The bending angle is inversely proportional to the photon frequency, so
the bending angle increase by lowering the photon frequency and assuming the electron
frequency is fixed. Moreover, one can attain the bending angle in the case of non-plasma
medium [74] if we take ωe = 0 or (δ→ 0) in the derived deflection angle in Equation (15).
We also observe that the obtained deflection angle Equation (15) is directly proportional
to the mass m, charge Q, bounce parameter a, and inversely proportional to the impact
parameter b.

Graphical Behaviour: Now we look into the graphical behavior of the black bounce
Reissner–Nordström BH’s deflection angle α̃ relative to the impact parameter b, for the
fixed value of mass m and charge Q, while varying bounce parameter a and plasma term.

For fixed values of mass m and charge Q, ωe
ω∞

= 0.1 and varying the values of bounce
parameter a, Figure 1 depicts the graph of deflection angle α̃ vs impact parameter b. For
a ≥ 0, we investigate that at the small values of impact parameter b, one can obtain the
maximum value of the bending angle α̃. A the value of b increases, the bending angle
α̃ exponentially decreases and approaches zero. It is observed that for the small values
of b, one can obtain the positive angle (deflection in the upward direction). Further, we
examine that the bending angle α̃ shows the inverse relationship with the impact parameter
b. Moreover, physically the bending angle α̃ represents the stable behavior.

a=0m

a=0.2m

a=0.3m

a=0.4m

a=0.5m

0 20 40 60 80 100

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

b

m

α˜

m=1,Q=0.5m

Figure 1. Bending angle’s variation α̃ as a function of impact parameter b.

Figure 2 depicts the behaviour of deflection angle α̃ with respect to the impact param-
eter b for Q = a = 0.5 and 0 ≤ ωe

ω∞
≤ 1. We examine that the deflection angle α̃ decreases

exponentially and almost approaches to zero as the value of impact parameter b goes to
infinity. Furthermore, in this case, bending angle α̃ shows the inverse relation with the
impact parameter b.

Figure 3 exhibits the behaviour of deflection angle α̃ with respect to impact parameter
b for Q = a = 1 and 0 ≤ ωe

ω∞
≤ 1. We examine that the deflection angle α̃ decreases

exponentially and almost approaches to zero as the value of impact parameter b goes to
infinity. In both cases (Q = a = 0.5, 1), angle behavior is stable. It is observed that the for
Q = 1 deflection angle α̃ relative to the impact parameter b by varying bounce parameter a
shows that similar behavior as for the Q = 0.5.
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ωe
ω∞

=0

ωe
ω∞

=0.2

ωe
ω∞

=0.4

ωe
ω∞

=0.6

ωe
ω∞

=1

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

m

α˜

m=1,Q=a=0.5m

Figure 2. Bending angle’s variation α̃ as a function of impact parameter b, for Q = a = 0.5m.

ωe
ω∞

=0

ωe
ω∞

=0.2

ωe
ω∞

=0.4

ωe
ω∞

=0.6

ωe
ω∞

=1

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b

m

α˜

m=1,Q=a=1m

Figure 3. Bending angle’s variation α̃ as a function of impact parameter b, Q = a = m.

4. Dark Matter’s Influence on Deflection Angle

This section primarily concerns the calculations of black bounce Reissner–Nordström
BH’s deflection angle in DM medium. The dark-atom concept has been offered as a
composite of DM, which we study here using light’s bending phenomenon. Dark matter
possesses electromagnetic interactions due to its frequency-dependent refractive index [78],
and this medium has particular optical characteristics that a traveling photon may detect.
The refractive index determines how fast a wave moves through a medium. In this regard,
the refractive index for the black bounce Reissner–Nordström BH is defined as [78].

n(ω) = 1 + βA0 + A2ω2. (16)

The frequency of a photon is represented by ω. Here, it is examined that β = ρ0
4m2ω2 ,

where ρ0 represents the mass density of dispersed particles of DM, A0 = −2ε2e2 and
A2 ≥ 0. The optical Gaussian curvature K̃ of the black bounce Reissner–Nordström BH in
DM medium up to the leading order terms by using the Equation (7) can be calculated as

K̃ ' 3Q2

r4(1 + A2ω2 + A0β)2 −
a2

r4(1 + A2ω2 + A0β)2 −
12Q2a2

r6(1 + A2ω2 + A0β)2

− 2m
r3(1 + A2ω2 + A0β)2 −

6Q2m
r5(1 + A2ω2 + A0β)2

+
10a2m

r5(1 + A2ω2 + A0β)2 +
28Q2a2m

r7(1 + A2ω2 + A0β)2 +O(m2, a4, Q4). (17)

The bending angle α̃ black bounce Reissner–Nordström BH in DM medium by using
Equations (17) and (14) up to the leading order terms can be computed as
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α̃ ' 4m
b(1 + A2ω2 + A0β)2 −

8a2m
3b3(1 + A2ω2 + A0β)2 +

a2π

4b2(1 + A2ω2 + A0β)2

+
64a2mQ2

15b5(1 + A2ω2 + A0β)2 −
8mQ2

3b3(1 + A2ω2 + A0β)2 +
27a2πQ2

32b4(1 + A2ω2 + A0β)2

− 3πQ2

4b2(1 + A2ω2 + A0β)2 −
16a2mA2ω2

3b3(1 + A2ω2 + A0β)2 +
8mA2ω2

b(1 + A2ω2 + A0β)2

+
a2πA2ω2

2b2(1 + A2ω2 + A0β)2 +
128a2mQ2 A2ω2

15b5(1 + A2ω2 + A0β)2 −
16mQ2 A2ω2

3b3(1 + A2ω2 + A0β)2

+
27a2πQ2 A2ω2

16b4(1 + A2ω2 + A0β)2 −
3πQ2 A2ω2

2b2(1 + A2ω2 + A0β)2 (18)

+ O(m2, a4, Q4, A2
2, ω4).

The BH’s mass m, charge Q, bounce parameter a, impact parameter b, and DM pa-
rameters all are the parameters of the measured deflection angle in Equation (18). It
is to be observed that the photon deflected through the DM around the black bounce
Reissner–Nordström BH has a large bending angle as compared to the vacuum case [74].
By eliminating the DM effect, the angle Equation (18) reduces to the bending angle in the
case of vacuum. By considering Q 6= 0 and a = 0 in Equation (18), one can obtain the
expression of the Reissner–Nordström BH’s deflection angle. We also find that taking
charge Q = 0 and a = 0 in Equation (18) the obtained angle reduces to the Schwarzschild
BH’s deflection angle in DM medium.

5. Hawking Radiation

Plot is needed here according to the 3rd referee. In this part, we use a topological
technique based on the GBT and Euler characteristic to derive the Hawking temperature
of a black bounce Reissner–Nordström BH. To derive the Hawking temperature using the
topological approach, one can utilize the Wick rotation [79] to use the Euclidean geometry
of the two-dimensional spacetime without missing any facts from the four-dimensional
spacetime. The spherically static symmetric spacetime of black bounce Reissner–Nordström
BH is defined in Equation (3).

Rewriting the four-dimensional metric into the two-dimensional coordinates by using
the Wick rotation condition i.e., (θ = π

2 ) and (τ = it)

ds2 =

(
1− 2m√

r2 + a2
+

Q2

r2 + a2

)
dτ2 +

1(
1− 2m√

r2+a2 +
Q2

r2+a2

)dr2. (19)

The formula to compute the Hawking temperature TH of black bounce Reissner–
Nordström BH after using all the values of the physical constants is defined as [15]

TH =
1

4πX

∫
rh

√
gRdr, (20)

where, g = 1 is the determinant of Equation (19) and rh is the event horizon. Using the
values of Ricci scalar R, Euler characteristic X = 1 and integrating along the event horizon,
the Hawking temperature TH of black bounce Reissner–Nordström BH is calculated as

TH =

√(
m+
√

m2−Q2
)2
−a2
√

m2−Q2

2π
(

m+
√

m2−Q2
)3 . (21)

One can observe that the obtained expression of the Hawking temperature TH black
bounce Reissner–Nordström BH depends on the mass m, charge Q of the BH, and bounce
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parameter a similarly with [71]. We also notice that the Hawking temperature via standard
technique gives the same expression as the topological technique. For the case Q 6= 0
and a = 0, the obtained Hawking temperature in Equation (21) reduces to the Hawking
temperature of Reissner–Nordström BH. Moreover, the attained Hawking temperature
Equation (21) reduces to the Schwarzschild–Hawking temperature, i.e., TH = 1

8mπ by
taking Q = a = 0. To observe the behavior of Hawking temperature graphically, we plot
the graph between Hawking temperature TH and bounce parameter a in Figure 4. We
observe that for Q = 0.5 the Hawking temperature decreases exponentially.

Q=0.5

0.0 0.1 0.2 0.3 0.4 0.5

0.0385

0.0390

0.0395

a

T
H

m=1

Figure 4. Hawking Temperature TH vs the bounce parameter a.

6. Greybody Factor

This section mainly examines the greybody factor bound of the black bounce Reissner–
Nordström BH. Much research has been dedicated to estimating the greybody factors. There
is, however, a distinct analytic approach for obtaining bounds on the greybody components.
The line-element for the Reissner–Nordström BH corrected by bounce parameter in a
static spherically symmetric spacetime is defined in Equation (3) The lower bounds on
transmission probability T can be defined as [22,80,81].

T ≥ sech2
(

1
2ω

∫ ∞

−∞
$dr∗

)
, (22)

where

$ =

√
[g′(r∗)]2 + [ω2 − V(r∗)− g2(r∗)]2

2g(r∗)
.

where r∗ represents the tortoise coordinate, and g is a positive function. For the radial part,
the equation of motion is given as

1
h(r)2

d
dr

[
h(r)2 f (r)

du(r)
dr

]
+

[
ω2

f (r)
− l(l + 1)

h(r)2

]
u(r) = 0, (23)

where u(r) indicates the the scalar or vector field oscillating. Taking dr∗ = 1
f (r)dr, while the

potential is defined as [82]

V(r) = l(l + 1) f (r)
h(r)2 . (24)

The lower bounds on the transmission probability T for g = ω are given by

T ≥ sech2
(

1
2ω

∫ ∞

rh

V(r)dr∗

)
. (25)
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After substitutin in the values of V and dr∗, we obtain the following expression

T ≥ sech2
(

1
2ω

∫ ∞

rh

l(l + 1)
h(r)2 dr

)
. (26)

The greybody bound Tb of the black bounce Reissner–Nordström BH after putting the
value of h(r)2 and integrating along rh is calculated as

Tb = T ≥ sech2

 1
2ω

 l(l + 1)π
2a

−
l(l + 1) arctan

[√
(m+
√

m2−Q2)2−a2

a

]
a


 (27)

The bound Tb of the black bounce Reissner–Nordström BH depends upon the mass m,
charge Q, and bounce parameter a of the BH. Guo and Miao [74] have also calculated the
greybody factor of perturbation fields of the black bounce Reissner–Nordström BH. It is
observed from the graphs that when the potential of the black bounce Reissner–Nordström
BH is higher, then the bound will be lower.

Graphical Analysis

The purpose of this section is to explain the graphical behavior of greybody bound Tb
and the potential of the black bounce Reissner–Nordström BH. For this purpose, we take
the fixed values of charge Q, angular momentum l = 1, 2, and varying bounce parameter a.

Figure 5 depicts the graphical behavior of the potential V relative to the r, and greybody
factor bound Tb relative to the ω. For 0 < a < 2, the potential V increases, and attains
its maximum value. However, as the value of bounce parameter a → 0, the potential
exponentially decreases and approaches zero. It is also observed that as the r → 0, the
value of potential is high and attains its maximum value, while for the large values of
r the potential starts decreasing from the maximum value and almost approaches zero.
Nevertheless, as the value of a increases, the corresponding bound becomes lower, making
it more difficult for the waves to pass through the higher potential. However, the bound Tb
shows the convergent behavior by converging to 1.

0 5 10 15 20
0.00

0.01

0.02

0.03

0.04

0.05

r

V

m=1,Q=0.5 a

0.50

0.75

1.00

1.25

1.50

1.75

0 5 10 15 20
0.94

0.95

0.96

0.97

0.98

0.99

1.00

ω

T
b

m=1,Q=0.5
a

0.50

0.75

1.00

1.25

1.50

1.75

Figure 5. The left panel shows the potential with l = 1 and corresponding bound Tb is shown in
right panel.

Figure 6 represents the graphical behavior of the potential V with respect to the r and
greybody factor bound T with respect to the ω. For 0 < a < 2, the bound T shows a similar
behavior as for the l = 1.
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1.00
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0.6
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1.25

1.50

1.75

Figure 6. The left panel shows the potential with l = 2 and corresponding bound Tb is shown in
right panel.

7. Shadow Behavior

We now turn our attention to the explore the shadow behavior of the black bounce RN
black hole. Let us consider the Hamiltonian for light rays where a non-magnetized cold
plasma with plasma frequency ωp(r) is included [83]:

H =
1
2

(
gik pi pk + ωp(r)2

)
=

1
2

(
− p2

t
A(r)

+
p2

r
B(r)

+
p2

φ

C(r)
+ ωp(r)2

)
. (28)

In the equation above, note that C(r) = h(r)2 due to Equation (3). Furthermore, we
should also note that A(r) = f (r), and B(r) = A(r)−1. Without compromising generality,
we can also restrict ourselves along the equatorial plane (θ = π/2) due to spherical
symmetry and derive the equations of motions (EoS) through the following

ẋi =
∂H
∂pi

, ṗi = −
∂H
∂xi , (29)

which reveals two constants of motion:

E = A(r)
dt
dλ

, L = h(r)2 dφ

dλ
. (30)

With the above equation, we can define the impact parameter as

b ≡ L
E
=

h(r)2

A(r)
dφ

dt
, (31)

and the condition that ds2 = 0, gives the rate of change of the r-coordinate with respect to
the azimuthal angle φ: (

dr
dφ

)2
=

h(r)2

B(r)

(
p(r)2

b2 − 1
)

, (32)

where [83]

p(r)2 =
h(r)2

A(r)
n(r)2 =

h(r)2

A(r)

(
1− ω2

e
ω2

∞
A(r)

)
(33)

since the non-gravitating plasma is assumed to be non-homogenous. With our metric
functions, the condition p′(r) = 0 allows one to find the photonsphere radius [83], and for
our case, (

ω2
e

ω2
0

A(r)2 − A(r)

)
h′(r)2 + h(r)2 A′(r) = 0. (34)
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With the inclusion of the plasma parameter, finding the analytical expression for rph
can be quite lengthy. However, for the case where there is no plasma (i.e., n(r) = 1), we
simply found the physical solutions as

rph =

√
18M2 − 8Q2 − 4a2 + 6

√
9M4 − 8M2Q2

2
. (35)

A static observer at a distance robs from the black bounce black hole can obtain the
angular radius αsh of the shadow. From the black hole’s center to robs, simple geometry
shows that ∆x =

√
B(r)dr and ∆y = h(r)dφ [83]:

tan(αsh) = lim
∆x→0

∆y
∆x

= h(r)
(

1
B(r)

)1/2 dφ

dr

∣∣∣∣
r=robs

, (36)

which can be simplified in terms of the critical impact parameter as

sin2(αsh) =
b2

crit
p(robs)2 . (37)

Here, the bcrit can be obtained using the orbit equation [84]:

b2
crit =

p(rph)
(

2h(rph)
2B(rph)p′(rph)− h(rph)

2B′(rph)p(rph) + B(rph)h′(rph)
2 p(rph)

)
B(rph)h′(rph)2 − h(rph)2B′(rph)

(38)

The critical impact parameter’s analytical expression with n(r) is somewhat compli-
cated, but for the case n(r) = 1, we find

b2
crit =

2h(rph)
3

h(rph)−m
. (39)

Finally, it can be easily shown that, in terms of robs and rph, we obtain the shadow
radius as (n(r) = 1)

Rsh =

[
2h(rph)

3(h(robs)
2 − 2mh(robs) + Q2)

h(robs)2(h(rph)−m)

]1/2

. (40)

Next, we plotted Equation (40), which is indicated by the dotted lines in Figure 7. We
also included in the plot the case where the black hole bounce is surrounded by plasma
(solid lines). For immediate comparison, we also plotted the Schwarzschild and RN cases.

0 5 10 15 20 25
robs/m

1

0

1

2

3

4

5

6

R s
h/m Schw

RN, Q = 0.25m
a = 0.25, = 10 1

a = 0.50
a = 0.75
a = 1.00
a = 0.25, = 0
a = 0.50
a = 0.75
a = 1.00

5.0 5.5
3.8

4.0

4.2

Figure 7. behavior of the shadow radius due to a static observer with varying location from the black
bounce RN BH. Here, we used Q = 0.25m.
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Furthermore, while it is understood that the shadow cast by a non-spinning black hole
is a circle, we can see in the plot the behavior of the shadow radius. First, without the bounce
parameter, the RN case with Q = 0.25m decreases the shadow radius while following the
general trend of the Schwarzschild case. For the Schwarzschild case, Rsh = 3

√
3m as robs

becomes larger, but at robs = 25m, we observe that it is still lower than this value of Rsh.
The effect of the bounce parameter is to produce lower values of Rsh and make its rate
of change with respect to r → 0 at lower values of robs. It means that the observer does
not need to go so far away to observe a constant shadow radius. Furthermore, the bounce
parameter allows the formation of the shadow near the event horizon. With the plasma
medium δ = 10−1, we observe that robs follows the general trend for δ = 0, but increases
the shadow slightly. Such an increase depends on the value of the plasma parameter.

For completion, let us analyze the effect of the dark matter refractive index n(ω) in
Equation (16) instead of the plasma. The photonsphere can be found via

n(ω)2[h′(r)A(r)− A′(r)h(r)] = 0, (41)

which reveals that the photonsphere radius is independent of the dark matter parameter.
It is easy to see that through the orbit equation, one can verify that the critical impact
parameter in this case is

b2
crit =

2n(ω)2h(rph)
3

h(rph)−m
. (42)

Then, the shadow is given by

Rsh = n(ω)h(rph)

[
2h(rph)(h(robs)

2 − 2mh(robs) + Q2)

h(robs)2(h(rph)−m)

]1/2

, (43)

where the shadow radius is increased by a factor of n(ω).

8. Conclusions

In this work, we have discussed the Reissner–Nordström BH corrected by bounce
parameter and its properties, i.e., the curvature singularities are absent from the black
bounce family on a global scale and satisfy all observable weak field tests. In the case of
plasma and DM mediums, the attained bending angle Equation (15) depended on the mass
m, charge Q of the BH, bounce parameter a, impact parameter, and medium’s parameters.
It is noted that in bending angle Equation (15) the terms without the bounce parameter a
and which contain charge are due to the charged nature of the BH and the remaining terms
are due to the corrections with the bounce parameter a. It is also found that the effect of the
plasma increases the deflection angle. The bending angle is inversely proportional to the
photon frequency, so the bending angle increases by lowering the photon frequency and
assuming the electron frequency is fixed. It is to be observed that black bounce Reissner–
Nordström BH’s bending angle increases due to the DM medium effect compared to the
vacuum case.

In above both mediums, we have examined that in the absence of a bounce parameter,
one can obtain the bending angle of Reissner–Nordström BH and the bending angle of
Schwarzschild’s BH by neglecting the charge and bounce parameter of the BH. Moreover,
one can attain the bending angle of a non-plasma medium by taking ωe = 0 in a plasma
medium. It is noticed that also that, by ignoring the DM effect in the angle of deflection in
Equation (15), the angle reduces to the angle of a non-plasma medium. We also observed
that the obtained bending angle in both mediums is directly proportional to the mass m,
charge Q, bounce parameter a, and inversely proportional to the impact parameter b.

Following that, we have analyzed the graphical behavior of the bending angle α̃ with
respect to the b for fixed values of mass m, charge Q, ωe

ω∞
= 0.1 and varying the value of

bounce parameter a. We have examined that for at the small values of impact parameter b,
the value of the bending angle α̃ is maximum and as the value of b increases, the bending
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angle α̃ exponentially decreases and approaches to zero. Moreover, we have investigated
the deflection angle α̃ with respect to the impact parameter b by fixing m, Q, taking a = 0.5, 1
and varying the plasma factor. For Q = a = 0.5, 1, we have studied that the deflection angle
α̃ decreases exponentially and almost approaches zero as the value of impact parameter b
goes to infinity. In all the above cases, graphically we have observed that the deflection
angle α̃ shows the inverse relationship with the impact parameter b and also the behavior
of angle is physically stable.

Furthermore, we have computed the Hawking temperature using a topological method
involving two invariants, namely the two-dimensional Euler characteristic and the GBT.
We have examined that the obtained expression of the Hawking temperature TH in Equa-
tion (21) black bounce Reissner–Nordström BH depends on the mass m, charge Q of the
BH and bounce parameter a. We also noticed that the Hawking temperature expression
is similar to the topological technique. It is to be mentioned here that for the case Q 6= 0
and a = 0, the Hawking temperature Equation (21) reduces to the Hawking temperature of
Reissner–Nordström BH, and for Q = a = 0, the acquired Hawking temperature converts
to the Schwarzschild Hawking temperature, i.e., TH = 1

8mπ . Furthermore, we graphically
investigated that the Hawking temperature decreases exponentially.

We have also calculated the greybody bound Tb and examined that the bound Tb of
the black bounce Reissner–Nordström BH depends on the mass m, charge Q of the BH, and
bounce parameter a. Moreover, we have observed that the potential V increases and attains
its maximum value for l = 1, 2. As the value of a increases, the potential exponentially
decreases and approaches zero. It is to be mentioned here that when r → 0, one can attain
the high value of potential, and for the large value of r the potential approaches zero.
It is observed that the corresponding bound becomes lower as the value of a increases.
Furthermore, it is examined that the greybody factor’s bound exhibits the convergent
behavior and converges to 1. We also observed that for large values of a and small r, the
potential is higher, making it difficult for the waves to pass through that potential.

Finally, we also explored the effect of the bounce parameter on the behavior of the
shadow radius and when it is surrounded by plasma. First, the effect of the bounce
parameter is to allow shadow formation closer to the black hole shadow and at a larger
radius than the Schwarzschild or RN cases. Here, the rate at which the shadow increases is
also larger. Moreover, we observe that the bounce parameter quickly makes the shadow
radius rate of change tend to zero even at low values of robs. Finally, the effect of the plasma
is just to increase the shadow radius of the black hole affected by the bounce parameter.
These parameters can indeed change the shadow radius, which sophisticated astronomical
devices can detect.
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https://doi.org/10.1103/PhysRevD.80.024036.

32. Nandi, K.K.; Zhang, Y.Z.; Zakharov, A.V. Gravitational lensing by wormholes. Phys. Rev. D 2006, 74, 024020.
https://doi.org/10.1103/PhysRevD.74.024020.

33. Eiroa, E.F.; Romero, G.E.; Torres, D.F. Reissner-Nordström black hole lensing. Phys. Rev. D 2002, 66, 024010.
https://doi.org/10.1103/PhysRevD.66.024010.

34. Kumaran, Y.; Övgün, A. Weak Deflection Angle of Extended Uncertainty Principle Black Holes. Chin. Phys. C 2020, 44, 025101.
https://doi.org/10.1088/1674-1137/44/2/025101.

35. Kumaran, Y.; Övgün, A. Deflection Angle and Shadow of the Reissner-Nordström Black Hole with Higher-Order Magnetic
Correction in Einstein-Nonlinear-Maxwell Fields. Symmetry 2022, 14, 2054.

36. Werner, M.C. Gravitational lensing in the Kerr-Randers optical geometry. Gen. Relat. Gravi. 2012, 44, 3047.
37. Ishihara, A.; Suzuki, Y.; Ono, T.; Kitamura, T.; Asada, H. Gravitational bending angle of light for finite distance and the

Gauss-Bonnet theorem. Phys. Rev. D 2016, 94, 084015. https://doi.org/10.1103/PhysRevD.94.084015.
38. Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravitational bending angle of light in the strong

deflection limit. Phys. Rev. D 2017, 95, 044017. https://doi.org/10.1103/PhysRevD.95.044017.
39. Ono, T.; Ishihara, A.; Asada, H. Gravitomagnetic bending angle of light with finite-distance corrections in stationary axisymmetric

spacetimes. Phys. Rev. D 2017, 96, 104037. https://doi.org/10.1103/PhysRevD.96.104037.
40. Crisnejo, G.; Gallo, E. Weak lensing in a plasma medium and gravitational deflection of massive particles using the Gauss-Bonnet

theorem. A unified treatment. Phys. Rev. D 2018, 97, 124016. https://doi.org/10.1103/PhysRevD.97.124016.
41. Li, Z.; Övgün, A. Finite-distance gravitational deflection of massive particles by a Kerr-like black hole in the bumblebee gravity

model. Phys. Rev. D 2020, 101, 024040. https://doi.org/10.1103/PhysRevD.101.024040.
42. Li, Z.; Zhang, G.; Övgün, A. Circular orbit of a particle and weak gravitational lensing. Phys. Rev. D 2020, 101, 124058.

https://doi.org/10.1103/PhysRevD.101.124058.
43. Oort, J.H. The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems.

Astron. Inst. Netherlands 1932, 6, 249.
44. Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J. 1937, 86, 217.
45. Feng, J.L. Dark Matter Candidates from Particle Physics and Methods of Detection. Astrophys. J. Supple. Ser. 2010, 48, 495–545.
46. Jarosik, N.; Bennett, C.L.; Dunkley, J.; Gold, B.; Greason, M.R.; Halpern, M.; Hill, R.S.; Hinshaw, G.; Kogut, A.; Komatsu, E.; et

al. Seven-year wilkinson microwave anisotropy probe (WMAP*) observations: sky maps, systematic errors, and basic results.
Astrophys. J. Suppl. Ser. 2011, 192, 14.

47. Övgün, A. Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem.
Universe 2019, 5, 115. https://doi.org/10.3390/universe5050115.

48. Pantig, R.C.; Övgün, A. Dark matter effect on the weak deflection angle by black holes at the center of Milky Way and M87
galaxies. Eur. Phys. J. C 2022, 82, 391. https://doi.org/10.1140/epjc/s10052-022-10319-8.

49. Pantig, R.C.; Rodulfo, E.T. Weak deflection angle of a dirty black hole. Chin. J. Phys. 2020, 66, 691–702.
https://doi.org/10.1016/j.cjph.2020.06.015.

50. Pantig, R.C.; Övgün, A. Black hole in quantum wave dark matter. Fortsch. Phys. 2022, 2022, 2200164.
https://doi.org/10.1002/prop.202200164.

51. Pantig, R.C.; Övgün, A. Dehnen halo effect on a black hole in an ultra-faint dwarf galaxy. JCAP 2022, 08, 056.
https://doi.org/10.1088/1475-7516/2022/08/056.

52. Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; Azuly, R. First M87 Event Horizon Telescope Results. I. The Shadow of the
Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1,17. https://doi.org/10.3847/2041-8213/ab0ec7.

53. Akiyama, K.; Alberdi, A.; Alef, W.; Algaba, J.C.; Anantua, R.; Asada, K.; Azulay, R.; Bach, U.; Baczko, A.K.; Ball, D.; et al. First
Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way.
Astrophys. J. Lett. 2022, 930, L12. https://doi.org/10.3847/2041-8213/ac6674.

54. Bardeen, J.M.; Press, W.H.; Teukolsky, S.A. Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar
Synchrotron Radiation. Astrophys. J. 1972, 178, 347–370. https://doi.org/10.1086/151796.

55. Synge, J.L. The Escape of Photons from Gravitationally Intense Stars. Mon. Not. Roy. Astron. Soc. 1966, 131, 463–466.
https://doi.org/10.1093/mnras/131.3.463.

56. Luminet, J.P. Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 1979, 75, 228–235.
57. Narayan, R.; Johnson, M.D.; Gammie, C.F. The Shadow of a Spherically Accreting Black Hole. Astrophys. J. 2019, 885, L33.

https://doi.org/10.3847/2041-8213/ab518c.
58. Guo, Y.; Miao, Y.G. Charged black-bounce spacetimes: Photon rings, shadows and observational appearances. Nucl. Phys. B 2022,

983, 115938. https://doi.org/10.1016/j.nuclphysb.2022.115938.
59. Pantig, R.C.; Yu, P.K.; Rodulfo, E.T.; Övgün, A. Shadow and weak deflection angle of extended uncertainty principle black hole

surrounded with dark matter. Ann. Phys. 2022, 436, 168722. https://doi.org/10.1016/j.aop.2021.168722.
60. Konoplya, R.A.; Zhidenko, A. Solutions of the Einstein Equations for a Black Hole Surrounded by a Galactic Halo. Astrophys. J.

2022, 933, 166 . https://doi.org/10.3847/1538-4357/ac76bc.



Symmetry 2023, 15, 148 18 of 18

61. Konoplya, R.A. Shadow of a black hole surrounded by dark matter. Phys. Lett. B 2019, 795, 1–6.
https://doi.org/10.1016/j.physletb.2019.05.043.

62. Xu, Z.; Hou, X.; Gong, X.; Wang, J. Black Hole Space-time In Dark Matter Halo. JCAP 2018, 09, 038.
63. Xu, Z.; Gong, X.; Zhang, S.N. Black hole immersed dark matter halo. Phys. Rev. D 2020, 101, 024029.
64. Pantig, R.C.; Rodulfo, E.T. Rotating dirty black hole and its shadow. Chin. J. Phys. 2020, 68, 236–257.

https://doi.org/10.1016/j.cjph.2020.08.001.
65. Javed, W.; Irshad, H.; Pantig, R.C.; Övgün, A. Weak Deflection Angle by Kalb-Ramond Traversable Wormhole in Plasma and

Dark Matter Mediums. Universe 2022, 8, 599. https://doi.org/10.3390/universe8110599.
66. Javed, W.; Riaz, S.; Pantig, R.C.; Övgün, A. Weak gravitational lensing in dark matter and plasma mediums for wormhole-like

static aether solution. Eur. Phys. J. C 2022, 82, 1057. https://doi.org/10.1140/epjc/s10052-022-11030-4.
67. Jusufi, K.; Jamil, M.; Zhu, T. Shadows of Sgr A∗ black hole surrounded by superfluid dark matter halo. Eur. Phys. J. C 2020,

80, 354. https://doi.org/10.1140/epjc/s10052-020-7899-5.
68. Nampalliwar, S.; Kumar, S.; Jusufi, K.; Wu, Q.; Jamil, M.; Salucci, P. Modeling the Sgr A* Black Hole Immersed in a Dark Matter

Spike. Astrophys. J. 2021, 916, 116. https://doi.org/10.3847/1538-4357/ac05cc.
69. Berry, Thomas, A.S.; Visser, M. General class of “quantum deformed” regular black holes. Universe 2021, 7, 165.
70. Huang, H.; Yang, J. Charged Ellis wormhole and black bounce. Phys. Rev. D 2019, 100, 124063.
71. Franzin, E.; Liberati, S.; Mazza, J.; Simpson, A.; Visser, M. Charged black-bounce spacetimes. J. Cosmo. Astropart. Phys. 2021, 2021,

036.
72. Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am.

J. Phys. 1988, 56, 395–412. https://doi.org/doi.org/10.1119/1.15620.
73. Hayward, S.A. Formation and Evaporation of Nonsingular Black Holes. Phys. Rev. Lett. 2006, 96, 031103.

https://doi.org/10.1103/PhysRevLett.96.031103.
74. Guo, Y.; Miao, Y.G. Bounce corrections to gravitational lensing, quasinormal spectral stability and gray-body factors of Reissner-

Nordström black holes. arXiv 2022, arXiv:2201.02971.
75. Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.d.S.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity,

energy conditions, and causal structure. Phys. Rev. D 2021, 103, 084052. https://doi.org/10.1103/PhysRevD.103.084052.
76. Simpson, A.; Martín-Moruno, P.; Visser, M. Vaidya spacetimes, black-bounces, and traversable wormholes. Class. Quantum

Gravity 2019, 36, 145007. https://doi.org/10.1088/1361-6382/ab28a5.
77. Gibbons, G.W.; Werner, M.C. Applications of the Gauss–Bonnet theorem to gravitational lensing. Class. Quantum Grav. 2008,

25, 235009.
78. Latimer, D.C. Dispersive light propagation at cosmological distances: Matter effects. Phys. Rev. D 2013, 88, 063517.

https://doi.org/10.1103/PhysRevD.88.063517.
79. Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977,

15, 2738–2751. https://doi.org/10.1103/PhysRevD.15.2738.
80. Boonserm, P.; Visser, M. Bounding the Bogoliubov coefficients. Ann. Phys. 2008, 323, 2779–2798.

https://doi.org/10.1016/j.aop.2008.02.002.
81. P, B. Rigorous Bounds on Transmission, Reflection and Bogoliubov Coefficients. Ph.D. Thesis, Victoria University Wellington,

Wellington, New Zealand, 2009.
82. Ngampitipan, T.; Boonserm, P. Bounding the greybody factors for non-rotating black holes. J. Mod. Phys. D 2013, 22, 1350058.
83. Perlick, V.; Tsupko, O.Y.; Bisnovatyi-Kogan, G.S. Influence of a plasma on the shadow of a spherically symmetric black hole. Phys.

Rev. D 2015, 92, 104031. https://doi.org/10.1103/PhysRevD.92.104031.
84. Pantig, R.C.; Övgün, A. Testing dynamical torsion effects on the charged black hole’s shadow, deflection angle and greybody

with M87* and Sgr. A* from EHT. Ann. Phys. 2023, 448, 169197. https://doi.org/10.1016/j.aop.2022.169197.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Black Bounce Reissner–Nordström Spacetime
	Plasma-Influenced Deflection Angle
	Dark Matter's Influence on Deflection Angle
	Hawking Radiation
	Greybody Factor
	Shadow Behavior
	Conclusions
	References

