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Abstract: The wide range of Blockchain (BC) applications and BC’s ubiquity come from the fact
that BC, as a collection of records linked to each other, is strongly resistant to alteration, protected
using cryptography, and maintained autonomously. All these benefits come with a cost, which in
BC is expressed by a very high use of energy needed to execute consensus protocols. Traditionally,
consensus protocols based on Proof-of-Work (PoW) ensure fairness, but are not very useful. The
paradigm proposed in the recent literature, known as Proof-of-Useful-Work (PoUW), assumes the
completion of additional useful work for the same amount of resources (energy) used. However,
the majority of the proposed PoUW approaches do not adequately consider fairness in balancing
and controlling the difficulty of the work miners need to perform. A minority of the studies that do
address fairness in miners’ work utilize PoW as a tool to ensure it. Therefore, a general framework
to provide a structure for understanding the difficulty of useful work and how it can be used to
fine-tune the complexity of miners’ effort in PoUW-based consensus protocols is proposed in this
paper. The main characteristic of the proposed framework is that controlling the difficulty and
fairness of miners’ work in PoUW-based consensus protocols is achieved exclusively through the
useful work. The modules of the framework are discussed, and many research challenges and
opportunities are articulated. The benefits of the proposed approach are illustrated taking as an
example two optimization algorithms for a variant of the scheduling problem. In addition, the steps
that should be taken to make this general framework applicable to any PoUW-based consensus
protocols are identified.

Keywords: balancing workload; energy efficiency; machine learning; heuristic optimization; dis-
tributed computing

1. Introduction

Blockchain (BC) consensus protocols based on the Proof-of-Useful-Work (PoUW)
paradigm [1–4] were developed to ensure the efficient exploration of resources. They
capitalize on the effort of BC participants, called miners, who solve problems useful to
some other participants or the community in general. For example, useful work considered
in [1–8], consists of solving the real-life instances of some Combinatorial Optimization (CO)
problems. At the same time, PoUW-based consensus protocols should provide security,
consistency, reliability, and immutability of the maintained transaction ledger. A common
concern for these approaches is the inability to control the difficulty of the said useful work
and the inevitable impact of this issue on the system’s fairness and security. The fairness in
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balancing miners’ work is related to providing miners with equal chances to add blocks in
a timely manner (also called liveness), rather than guaranteeing that miners would spend
an equal amount of time mining the blocks.

There are two main reasons to keep very similar the complexities of all work given to
miners (expressed by the expected instance solving times). The first is to ensure fairness
in rewarding miners. For example, if some of the submitted CO instances are too easy,
miners who solved them would gain an unfair advantage. At the same time, some of the
CO instances are never solved. The second reason is to accommodate for similar Block
Insertion Times (BITs) depending on the complexity of the performed useful work. Some
of the submitted CO problem instances may be quite difficult, which could result in miners
not being able to solve them efficiently. As a consequence, latency may appear in the PoUW
consensus protocols.

The difficulty controlling is not the problem-specific to PoUW-based consensus pro-
tocols. A special parameter called difficulty target (difficulty for short) has been introduced
in BC systems based on the traditional Proof-of-Work (PoW) to control the BITs [9,10]. In
PoW-based BCs, the BITs depend on two parameters: the hashrate of the entire network
and the difficulty of the current block. The hashrate parameter measures the number of
calculations that can be performed per second. It depends on the computational power
currently available in the BC system, i.e., on the number of active miners. To keep the BIT
stable as the number of miners changes, it is important for the difficulty to correspond to
the total hashrate. Therefore, the difficulty adjustment refers to changing the value of the
difficulty parameter with respect to the change of the number of miners.

There are two main differences between the difficulty adjustment in PoW and con-
trolling the difficulty in PoUW. The fairness of rewarding miners is explicitly taken into
consideration in PoUW-based BC systems, while it is implicitly assumed in PoW. The diffi-
culty adjustment in PoW is closely related to the number of active miners, while in PoUW,
controlling the difficulty of the workload of each miner corresponds only to BIT. On the
other hand, the workload of miners has to be balanced throughout the whole BC system’s
lifetime in both types of consensus protocols. Additionally, the robustness to the luck of
some miners in solving the cryptographic puzzle should match the robustness of mining
in PoUW-based BC systems with respect to the difficulty of the CO problem instances.
Therefore, we believe that the treatment of difficulty in the two mentioned BC systems is
equally important and should be addressed adequately. Our main goals in this paper are to
contribute to controlling the difficulty of miners’ work in PoUW-based consensus protocols
and to ensure that fairness is achieved exclusively through the useful work.

The early approaches to controlling the difficulty of miners’ work proposed in the liter-
ature were usually based on the size of the CO problem instances needed to be solved [6–8].
However, it is well known that the size of the instance does not always directly correspond
to the runtime of the selected optimization algorithm [11,12]. Therefore, some of the later
approaches included a request to provide the proof that a certain amount of work had
been invested in the instance solving process [2,3,13–15]. The proof was based on the
PoW concept, i.e., the miners were requested to solve both a CO problem instance and
a cryptographic puzzle. The motivation for our study is our belief that fairness can be
controlled more efficiently without solving cryptographic puzzles, i.e., that there is no
reason to apply PoW in any part of PoUW-based consensus protocols.

Our main contributions are the development of a general framework for difficulty
estimation, a case study simulation, and a discussion of the applicability of the proposed
framework to any PoUW-based consensus protocol. The proposed framework considers
the issue of controlling and balancing the work of miners with the aims to ensure the
fairness in their reward and to keep the BIT stable. We address the ways to estimate the
computational effort invested in solving CO problem instances using the modified CRoss-
Industry Standard Process for Data Mining (CRISP-DM) model [16], Artificial Intelligence
(AI), Machine Learning (ML), and data science methods. After the estimation, our frame-
work also balances the amount of work for miners by grouping CO problem instances into
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equally difficult work elements executed by the miners. The novelty of our approach with
respect to the existing methodology is the development of a framework that controls the
difficulty of miners’ work and ensures fairness in their reward exclusively through the
useful work.

The proposed difficulty estimation procedure is considered to be general because it
can be applied to any CO problem, any optimization method, and any set of the corre-
sponding problem instances. In the relevant literature, the difficulty estimation has been
performed for various CO problems: propositional Satisfiability (SAT), the Traveling Sales-
men Problem (TSP), the Maximum Flow Problem (MFP), the Job Shop Scheduling Problem
(JSSP), 0-1 Knapsack, the Strip Packing Problem (SPP), etc. [12,17–20]. To the best of our
knowledge, the difficulty estimation of the P||Cmax scheduling problem [21] instances in the
general case has not been considered so far. Therefore, we selected this problem as a case
study simulation performed for two optimization methods. More precisely, the proposed
difficulty estimation model is applied to predict the execution time of the ArcFlow exact
solver [22] and the Greedy Iterative Stochastic Transformation (GIST) heuristic proposed
in [23] on benchmark instances for P||Cmax. As an illustrative example, the estimated values
for 20 randomly selected instances are used in the grouping module to pack instances into
equally sized bins representing the workload of the miners.

Finally, the proposed framework could easily be adapted to address controlling the
balance of the miners’ work in any consensus protocol that requires the miners to perform
useful work. Especially, PoUW-based consensus protocols that apply PoW in part could
be modified to adjust the difficulty with our framework and, thus, make all components
of their framework useful, as well as fair and stable. Additionally, the learning process of
the developed difficulty estimation procedure could be executed online and within PoUW
consensus protocol, yielding a self-contained BC system.

This paper is organized in the following manner. In Section 2, we explain the BC users’
activities and present a brief survey of papers to explain the evolution from the difficulty
adjustment in PoW to controlling the difficulty in PoUW and papers considering the
difficulty estimation of CO problems. A description of the methodology for the proposed
difficulty controlling framework is presented in Section 3. The performed case studies are
described in Section 4. In Section 5, the takeaways from the case studies and the discussion
of the proposed solution framework are provided. Finally, Section 6 concludes the paper
with a summary of the contributions and suggestions for future research.

2. Related Work

In this section we briefly survey the BC consensus protocols literature, focusing on
papers that consider controlling the difficulty of miners’ workload. In addition, we examine
how to achieve difficulty control for CO problems.

2.1. Controlling the Difficulty in PoW and PoUW Protocols from the Literature

To support autonomy of the BC systems and their management based on the demo-
cratic principles, participants take different roles, shown in Figure 1. Basic users are par-
ticipants that want to store some data (in the form of transactions) in BC. Occasionally,
they submit these data to the transaction pool and wait for it to be included in one of the
forthcoming blocks. One of the most important role is the role of miners, who compose
blocks out of transactions, perform some predefined tasks and, if successful, announce
the composed block. The miner whose block is appended to the BC gets reward for the
performed mining process. All announced blocks have to pass the verification phase,
performed by the participants who choose the role of verifiers. Verifiers select one of the
announced blocks, check its validity and, if the block is valid (correct), they support its
insertion in BC. Otherwise, they announce that the block is invalid and should be discarded
from the BC system. Clients do not exist in the PoW-based consensus protocols, but it can be
assumed that BC system plays a role of a client. Specifically, as the difficulty of the miners’
work needs to be adjusted to ensure a fair rewarding scheme, the client/system adjusts the
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difficulty of the cryptographic puzzle for miners to solve. In case of PoUW-based consensus
protocols, clients submit tasks as the useful work that miners need to solve, while the
system should control the difficulty of the miners’ work composed of these tasks. To better
explain the evolution from the difficulty adjustment to controlling the difficulty, we divided
this section into parts that focus on the difficulty adjustment, utilization of AI, ML and
Deep Learning (DL) as a useful work, and PoUW-based protocols that utilize combinatorial
optimization and could directly benefit from the framework proposed in this work.

Start

Switch user_role

case basic_user case miner case verifier case client

Submit transaction
to pool

Compose block Select block Submit task for
insertion into pool/

Difficulty adjustment
Execute task Check validity

Successful

Announce block

End

Correct

Vote for block
Append it to BC

Announce that
block is invalid

no no no

yes yes yes yes

yes

no

yes

no

Figure 1. Flow-chart of BC users activities.

2.1.1. PoW Difficulty Adjustment

Classical PoW, which uses computational puzzles defined in [24], is proposed in [25]
along with a difficulty update procedure. That procedure was established under the
assumption that honest participants possess the biggest portion of computing power. A
formal proof that PoW satisfies consistency and liveness is established in [26,27] with the
additional assumptions. The first is that honest participants control the computational
power. The second assumption states that the difficulty is expressed by a function that
depends on both the maximum delay of messages in the network and the network’s
computational power, and finally that a random oracle is used to model the computational
puzzle.

Difficulty adjustment in PoW-based BC systems is necessary to stabilize mean latency
between blocks and make it robust to changes in available computational power (utilized
for solving the puzzles) caused by participants joining and leaving the system. The authors
in [28] proposed the difficulty adjustment procedure to address two problems. The first
is the significant variance in computational power. The second is the prevention of coin-
hopping strategy, i.e., malicious uses of the changes in difficulty. An economic paradigm
for PoW-based BC environment was proposed in [29]. The authors claim that instability of
the difficulty adjustment algorithms works in favor of miners by increasing their profits.
Additionally, the authors in [30] explore financial incentives of the difficulty adjustment
algorithms and further confirm their influence on the miners’ profits. The authors of [31]
proposed a general difficulty control algorithm and discuss the difficulty adjustment
guidelines for PoW-based BCs. Their algorithm can maintain fast-updating and low
volatility demands for the difficulty adjustment. In addition, it is capable of identifying
an anomaly and handle abnormal cases. A prediction-based difficulty control algorithm
was developed by the authors in [32] to track the hashrate of a network and to adjust
the difficulty.
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The importance of the difficulty adjustment and a good literature overview of the
methods in the PoW consensus protocol that address them along with a Non-dominated
Sorting Genetic Algorithm II (NSGA-II) to improve those methods are presented in [33].
The authors wanted to make sure that the BC could adapt quickly to an unexpected event,
like a significant drop or surge in hashrate, by modifying the difficulty and BIT. Using
NSGA-II to optimize both the BIT and the adjustment of the difficulty interval can help
BC to achieve a lower standard deviation of those measures compared to the default BC
network without NSGA-II.

2.1.2. PoUW-Based Protocols that Utilize Difficulty Adjustment

The problem of controlling the difficulty of miners’ work appears also in the PoUW-
based consensus protocols [1–5], known in the literature as an energy efficient alternative
to PoW. Some of the early attempts to implement PoUW-based consensus protocols in-
volve [6–8]. The authors consider solving NP-hard optimization problems and illustrate
their approaches on the well known TSP.

Wei Li [6] was among the first authors who tried to replace the cryptographic puzzle
of PoW with hard optimization problems. Considering the problem of controlling the
difficulty of miners’ work, he suggested the utilization of the decomposition strategy.
For example in TSP, the local optimization phase tries to improve only kTSP coordinates
(locations, nodes) while the remaining nTSP − kTSP are fixed. The justification of the
proposed approach lies in the fact the TSP represents a NP-hard problem whose complexity
grows exponentially with the increase in the number of nodes nTSP. The hash value of
the block is used to determine which kTSP nodes should be optimized and to establish the
connection between the block and the sub-problem miners need to solve. The main idea
related to balancing miners’ work is that all miners need to solve sub-problems of the same
size. That should directly correspond to the PoW case when all miners have to solve the
cryptographic puzzle of the same difficulty, i.e., to find the nonce corresponding to the
same number of zeros in the resulting hash value. However, it is well known that the size
of instances is not the only criterion for determining their difficulty [34]. Therefore, fixing
the value of kTSP may not be enough to achieve fairness in balancing miners’ work.

In the hybrid scheme developed in [7], the authors combine PoW with solving CO
problem instances. The first stage of this hybrid scheme, consists of solving cryptographic
puzzle for a given amount of time. In the second stage, an artificial instance of TSP is
generated using the reported nonce values to determine the coordinates of locations. With
respect to difficulty controlling, the authors limit the number of locations to nTSP = 5000
that corresponds to a 4 min solution time of Concorde exact solver [35] estimated on the
well-known TSPLIB instances. Besides the questionable usefulness in solving artificial TSP
instances, the fairness in balancing miners’ work should also be under suspicion due to the
fact that the instances of the same size can significantly differ in difficulty.

Another paper involving TSP in the PoUW-based scheme is [8]. To add a new block to
BC, a miner has to find the new best solution of the considered TSP instance. The difficulty
of the problem is controlled by adding new cities to TSP once the sub-instance of the
problem is solved. Specifically, the algorithm starts with a hard TSP instance with NTSP
locations that represents the goal of miners’ useful work. The solution of this instance is
obtained by an iterative process involving the random selection of some small enough
subsets of nTSP locations (nTSP � NTSP), for which the applied solver can find good
enough solutions. “Good enough” actually means that the objective function value is
smaller than a given threshold T1. The new block requires an extension of the current
sub-problem by a randomly selected new location from the initial TSP instance. The hash
value of the previous block and TSP input data influence the selection of a new location.
As the size of instances does not uniquely determine their difficulty, it is not clear if the
fairness in balancing miners’ work is achieved.

The approach proposed in [5] guarantees balanced work between miners as they are
always working on the same clustering instance. The authors considered a BC system
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applied in maritime transport to store the information about the transportation requests.
As the useful work in block mining process, a set of transportation requests that share
origin and destination is identified and clustered in such a way that each cluster is to be
transported by a single vessel and the transportation cost is minimized. The corresponding
cost savings are used to reward the miner who provided the best solution of the clustering
problem. All transportation requests included in the problem instances, together with the
best obtained solution, are kept in a block’s header to enable block verification process and
to serve as a connection between the clustering problem instance and the block itself. The
authors claim that the instance difficulty, and consequently, the BIT, can be controlled by
the number of transportation requests. Here again, we have to comment that the size of
CO problem instance is not the only characteristic that influences its difficulty. However, in
this case, the solution time impacts only the block insertion frequency, while the fairness in
balancing miners’ work is similar to the PoW case.

2.1.3. PoUW-Based Protocols Considering AI, ML, and DL

To the best of our knowledge, only several papers describing the development of new
PoUW-based consensus protocols that involve training of ML and DL models consider
difficulty adjustment or estimation [13–15,36,37].

In the PoUW-based on training distributed DL models [13], a block is mined only
when the performance of these models exceeds a threshold. The authors successfully
addressed neural architecture search, a technique for automating DL design. However, DL
models are complex and follow non-linear stochastic behaviors. Thus, it is possible that
controlling the learning threshold leads to unsolvable problems and prevents finishing the
mining process. Their solution to unsolvability involves raising the threshold after each
block is mined, and then lowering it at a slower pace as time goes on. This approach might
ensure the continuation of mining process but does not guarantee the fairness.

In [14], the authors introduced a PoUW consensus protocol that satisfies PoW proper-
ties and offers an additional reward by clients for the useful work miners had performed.
However, miners need to do both the useful work training ML models and PoW with a
small difficulty. Moreover, only one BIT variant (10 min) is used and it is not clear how the
protocol could be used with a smaller BIT.

Deep Learning-Based Consensus protocol (DLBC), another variant of PoUW, is con-
sidered in [15]. The useful work performed by miners consists of training DL models. The
miner whose model is verified to have the best performance is allowed to insert a block.
The developed mechanism handles multiple DL tasks, larger model, and training datasets
in comparison with other similar approaches in the literature. The authors introduce a
ranking mechanism that considers tasks difficulty, but it is not clear how or why they
include model complexity, network burden, data size, and queue length. Moreover, the
authors did not provide analysis of the mechanism’s fairness and it stays unclear whether
it is achieved.

Proof-of-Learning (PoLe) introduced in [36,37], similarly to PoUW-based consensus
protocols, leverages the DL training as the useful work. The PoLe-based BC systems
contain two kinds of participants: Data node, which announces a task with a reward, and
the consensus node, which can accept the task and seek a model that meets the required
training accuracy. When a valid block is generated by a user, it gets the reward supplied
by the data node for training and a fixed reward for adding a block. The consensus nodes
choose solutions according to their performance and distribute the reward correspondingly
after the data node has released the test set. The authors introduced a secure mapping layer
implemented as a linear neural network to link adjacent blocks together. The Secure Media
Library encryption was found to detect tampering behavior without affecting the model
performance significantly. Even though PoLe is capable of producing a reliable stream of
blocks, it is not clear whether controlling difficulty is possible and whether this protocol
could be applied for any BIT values.
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2.1.4. Controlling the Difficulty in PoUW

In the PoUW consensus protocol proposed in [1], hard optimization problems are
considered, especially those that can be represented by Orthogonal Vectors. To control the
difficulty of miner’s work, the authors strongly rely on the theoretically proven complexity
of the Orthogonal Vectors scheme.

Another PoUW considering optimization problems, named the Proof-of-Search (PoS),
is proposed in [2]. The newly introduced BC participants, called clients, submit instances of
some optimization problem, the corresponding optimization algorithms, and an evaluation
function used to calculate the objective function value. To add a new block to the BC, miners
need to provide high quality solution for some of the submitted CO problem instances. The
validation of a miner’s hard work is performed in the following way. Each visited solution
is coded and used as a nonce in the classical PoW sense. The optimization algorithm is
executed until a coded solution corresponds to a proper nonce (yielding a given number of
zeros at the beginning of the block hash value). In such a way, it can be guaranteed that
the miner visited an adequate number of candidate solutions and performed hard enough
work when mining the composed block.

Similar approach was applied in [3] for the PoUW-based consensus protocol, referred
to as Ofelimos. The authors explore a general purpose stochastic local-search algorithm,
known as Doubly Parallel Local Search (DPLS). Controlling mining difficulty in Ofelimos
is performed by using the classical nonce value as a seed for a random number generator
in DPLS. After obtaining the result of DPLS, a miner calculates the hash value of the block
including nonce. If the resulting hash value of the block is below the threshold, defined by
the current mining difficulty, the miner can announce the composed block. Otherwise, the
mining process continues.

The approaches proposed in [2,3] are easily implementable, straightforward methods
for controlling difficulty of miners’ work. However, they do not take into account the
difficulty of CO problem instances. Specifically, the size of an instance is not the only
measure of its difficulty, i.e., the increase of instance dimension does not necessarily yield
the increase of the time required to obtain the desired solution [34]. On the other hand,
requiring that for each instance a certain number of solutions are to be visited in order to
prove the amount of invested work, may decrease the usefulness of the mining process.
More precisely, it may happen that, for some instances, high quality solutions are obtained
very fast. In that case, a miner is forced to examine more solutions than necessary, maybe
even to examine the same solutions multiple times, and that is highly counter productive.

In a most recent work in the literature [4], the authors also proposed a PoUW-based
consensus protocol, named CO Consensus Protocol (COCP). The main advantage of COCP
is the efficient utilization of computing resources by providing valid solutions for the real-
life instances of any CO problem. In addition to basic users, miners, and verifiers, COCP
also involves clients, the participants of a new type. Clients can be companies, organizations
or even individuals, and they join the BC system for its software and hardware resources
needed to solve their real-life CO problem instances. Submitted and yet unsolved CO
problem instances obtain a unique identification and are stored in the instance pool. After
composing a block, the miner finds corresponding unsolved instance in the instance pool
and begins the solution process by executing an available optimization algorithm. If a valid
solution is obtained, a miner can publish the created block. Solution validity is determined
by a threshold that client provided together with the instance input data. Given that
multiple miners can work on the same instance, the best solution is provided to the client.
The miners that add a new block are rewarded both for adding a new block, and by the
client for solving their CO problem instance. Those who do not provide new blocks but
solve CO instances receive rewards from the clients as well.

Regarding the control of mining difficulty, in [4] the authors considered three avenues.
They put an emphasis on the COCP usefulness stating that for the clients both hard and
easy instances are equally important. On the other hand, in COCP it is enough to obtain
a valid solution (the one with the objective function value better than a given threshold)
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and it is a reasonable assumption that these solutions are easier to obtain. Finally, the
authors proposed to use the stopping criterion for optimization algorithms as a mechanism
to prove that a certain amount of work is invested in the mining process. The usual
stopping criterion is the maximum CPU time, which should correspond to the BIT. Another
well-known stopping criterion is the number of objective function evaluations that could
correspond to the difficulty controlling approach from [2,3].

Judging by the presented literature review, it is evident that ensuring fairness in
balancing miners’ work is a very important issue in BC systems maintenance. However, it
is not adequately treated in the relevant literature, especially if one strives to implement a
useful, secure, and efficient PoUW consensus protocol. Therefore, we propose a systematic
framework that includes difficulty estimation and grouping of tasks, which should help to
increase fairness of the mining process.

2.2. Difficulty Estimation for CO Problem Instances

The CO community explores difficulty estimation for the construction of compre-
hensive and unbiased benchmark test suites for algorithm testing. Recent research has
shown that the difficulty value of CO problem instances differs with respect to the chosen
problem-specific instances features. Moreover, different algorithms may explore different
regions of the solution space. ML can be utilized to estimate the runtime of algorithms
applied to hard CO problems [11]. A comprehensive review of different instance features
and models for SAT, TSP, and Mixed Integer Programming (MIP) problems can be found
in [34]. The authors introduced new modeling techniques and features for the mentioned
instance-specific models in order to better predict runtime performance.

In [12], the need for problem understanding and reasonable feature extraction is
demonstrated through multiple problems (Knapsack, Bin Packing, Graph Coloring, TSP,
Timetabling) and their corresponding solving algorithms, e.g., feature indicating the degree
to which the costs satisfy triangle inequality (for TSP), consideration of a gap between
optimal solution and given heuristics (for Knapsack problems). For five-mentioned CO
problems, important features contributing to higher prediction power were identified.

The most recent research [17–20] has shown improvements in identifying the crucial
features and their impact on difficulty estimation. The authors tested the proposed ML
methods for predicting the performance of algorithms applied on MFP [17], JSSP [18], 0-1
Knapsack [19], and SPP [20]. The obtained results offer new insights into the performance
of algorithms on mentioned problems and further insights into problems themselves.
Additionally, as it is stated in [36], ML may help us not only in detecting important
features, but also in choosing the best suitable algorithm for a given problem, as well as in
performance evaluation, parameter setting, etc.

Inspired by the above-mentioned research, we rely on CRISP-DM model [16] to define
a difficulty estimation module of our framework, in which we could take any predefined
features or define new features to predict the running time of the CO algorithm for a given
problem instance. In the next section, we introduce our framework and explain its modules.

3. Controlling the Difficulty—Methodology

We propose a methodology to control the difficulty of miners’ work in the PoUW-
based BC systems. Its place in the consensus protocol is illustrated by the gray-shaded
parallelogram in Figure 2. Similarly to the difficulty adjustment in PoW, controlling the
difficulty is performed by the system. However, in PoUW there are actual clients that
submit instances of their real-life problems to be solved by the miners. Their instances,
although equally important to the clients, may significantly differ in the difficulties. In
addition, the actual difficulty of each particular instance may not be known. Thus, it is
necessary to estimate the difficulty of submitted instances and to group them in such a way
that these groups represent similarly difficult tasks for miners. These two steps constitute
our framework for controlling the difficulty. It is executed each time an instance of the
real-life problem is submitted by the client and its output is a task (group of instances) to be
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executed by the miners. This is the reason why the gray-shaded parallelogram in Figure 2
is connected to the client role and positioned below the submission of the task candidate
for insertion into the pool.

Start

Switch user_role

case basic_user case miner case verifier case client

Submit transaction
to pool

Compose block Select block Submit task candidate
for insertion into pool

Controlling difficulty
Execute task Check validity

Successful

Announce block

End

Correct

Vote for block
Append it to BC

Announce that
block is invalid

no no no

yes yes yes yes

yes

no

yes

no

Figure 2. Flow-chart of BC users activities in our proposed framework.

As explained above, our framework for controlling the difficulty consists of two
modules. The first module addresses the difficulty estimation of CO problem instances.
The output of this module is EstimateDifficulty model (function) that would enable grouping
module to balance the work of miners. This is realized by packing instances into groups.
The two modules are explained in detail in the remainder of this section.

3.1. Difficulty Estimation Module

Our goal is to develop methods that will help us estimate the difficulty of a particular
CO problem instance, i.e., the time needed for the considered optimization algorithm to
solve it. The existing models for difficulty estimation could be used in the process. If no
models are available, we could make a satisfactory difficulty estimation either by using the
features already identified in the literature or by defining them in the process.

We modify CRISP-DM model that is presented in [16] and present our modifications in
a flow-chart in Figure 3. More details of the model are explained in the rest of this section.

For a given problem in this module, we need to collect the relevant data and under-
stand which features we could use. Better understanding of the data, its size and quality
could lead to simplified and faster data transformation, adequate model choosing, and
better model performance [37]. It is well known that domain experts could suggest charac-
teristics/features of a problem that are crucial for improving the model performance [37,38].

As data could be collected from various sources, some essential tasks need to be
conducted before building a model. These tasks include performing exploratory data
analysis, visualization, looking for outliers and missing values, and checking the data
quality [39]. They should employ statistical analysis, determine appropriate features, along
with their collations, in order to perform data selection and cleaning. We obtain usable data
through the execution of these tasks.
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Figure 3. Flow-chart of difficulty estimation module.

A dataset is divided in standard train/validation/test split. In general, model parame-
ters are tuned on a train/validation split and final tests are performed on test data. This
gives a resulting model a better ability to perform well on unseen data [40,41].

Preprocessing is a first part of the model building and, depending on the used model,
derived attributes have to be constructed. For preprocessing steps, different methods are
possible and are model dependent. For example, data are normalized in order to improve
data quality and thus, the performance of selected ML algorithms/models [42–44]. If data
distribution is normal, standardization could be performed. During preprocessing, outlier
removal, imputing missing data, and other actions that require fitting the data, should be
performed and tested on a train/validation split.

In order to increase the prediction power, feature engineering is performed so that most
critical parameters are kept relevant, while redundant and irrelevant ones are eliminated.
First, we could estimate a number of features needed for capturing a predefined variance
threshold [45]. A good threshold is considered to be above 70% but, in social science data,
it could be as low as 50%. Next, several methods of feature selection [46–48] could be
used in order to find the most relevant features, i.e., features that are commonly rated as
highly important by all used methods. Finally, a needed number of features is kept (as
defined by variance threshold). In the following steps, only features selected in this step
are considered.

In the model building block, models with high bias, such as linear regression or logistic
regression, are built first as they are simple and widely well understood. The goal is to
figure out how to leverage the aforementioned selected features and obtain a better sense
of the model’s predictive power. When we obtain a better understanding of the problem
and are not satisfied with the model’s performance, we may apply more complex models
that have high variance [37,49,50].

In the model improvement step, we optimize the current model based on the feedback
from a validation set, and continue updating it until all optimizations are used and all
feature engineering is exhausted. When satisfied with the model performance on the
validation set, final testing could be performed. To avoid overfitting, optimizations are
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performed gradually until acceptable performance on the validation set is achieved. Several
methods [51–53] of model evaluation may be used, as well as some ad-hoc evaluations
dependent on nature of a problem that we try to estimate. For example, eliminating ex-
treme misclassifications in case of classification (that is, avoidance of non-zero values in
upper-right and lower-left corner of a confusion matrix [54,55]). As for the model optimiza-
tion/improvement, hyper-parameter optimization [56–58] is primarily used. Furthermore,
we can implement DL models such as Convolutional Neural Network (CNN), Recurrent
Neural Networks (RNN), Long Short Term Memory (LSTM), etc. Using DL models [49], we
can eliminate the need for feature engineering, maximize the utilization of the data, and pro-
cure better results through a feedforward network. Implementing DL also enables us to use
many high-performing, pre-trained models and implement them using a transfer learning
approach [50]. These multi-layered, pre-trained algorithms can be used as a starting point
in our DL model, which allows rapid performance optimization with relatively smaller
training duration. The ideal depth of the pre-trained models can be tuned automatically
in the training phase using the Keras auto-tuner. Moreover, the entire training, validation,
and testing phase can be encapsulated using pipelining, making the model clean, scalable,
and robust [49,50,59].

Model deployment in our framework consists of providing assessment of the per-
formed estimation and deployment plan. In particular, the deployment plan addresses
incorporation of this module into general framework, i.e., providing a grouping mod-
ule with a function EstimateDifficulty that will estimate the execution time for all given
instances.

3.2. Instance Grouping Module

The next step of our study involves the usage of the difficulty estimation model, i.e.,
leveraging the predicted execution time of the considered CO algorithms, for balancing the
work of miners in the BC systems. We propose to group CO problem instances together
into packages of approximately the same size with respect to the sum of the expected
runtimes. The size of packages should correspond to the BIT, and therefore, the instances
with the estimated runtime close to the BIT may be alone in the package. The model for the
estimation of CO problem instances difficulty is deployed as the basic step in the instances
grouping module. We assume that there is an instance pool and the corresponding solution
pool. The instance pool contains all unsolved instances that PoUW miners will use during
the mining process. All solutions are stored in the solution pool to serve for validation
purposes and to be provided to clients.

Grouping is applied within the instance submission part of the considered PoUW-
based consensus protocol. Specifically, each submitted instance i undergoes the difficulty
estimation process. If it is scored as hard, i.e., if it requires a large amount of CPU time,
ti, for finding a valid solution, it enters the instance pool as a single instance. Otherwise,
the instance i becomes a member of a group containing several easier instances. In such
a way, it is possible to balance the work of miners needed to publish a new block. This is
important to ensure both the fairness in the mining process and almost constant BITs.

The difficulty of instance i is defined by the time, referred to as solving time ti, required
by the exact or stochastic heuristic method to find its valid solution. The solving time should
correspond to BIT whose value is denoted by f , meaning that extremely hard instances
(requiring more than f time units) cannot be accepted for submission to the instance pool.
If ti ≈ f , the corresponding instance is considered to be hard and it solely represents the
work miner needs to complete before publishing a composed block. All instances for which
the estimated solving time is significantly smaller than f , are grouped together until the
sum of their solving times approaches f . The external loop of instances grouping module,
the function referred to as Grouping, is described by the flow-chart presented in Figure 4.

The Grouping(i, ρ, f , ∆) function is executed as an infinite loop that waits for the
submission of an instance i and then decides if it should be discarded, executed as a stand-
alone instance, or included into group of instances that the miner should solve before
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publishing a new block. The input parameters of this function are i, ρ, f , and ∆. Here, ρ and
∆ represent the tolerance parameters, whose roles are explained later in the text. In the case
when instance i should be inserted in a group, the function Insert(i, ρ, f , ∆) (see Figure 4)
is called to perform the insertion. The output of this function is set G = {G1, . . . , Gl} of
groups composed of the new instance i and/or the easy or moderately hard instances,
submitted by clients, that have been waiting for the insertion. If G is an empty set, the Insert
function was not able to compose any group, and function Grouping completes the current
iteration without submitting anything to the instance pool. In the case G is not empty, each
composed group of instances is submitted separately to the instance pool.

Start

i, ρ, f , ∆

ti = 0

ti = EstimateDi f f iculty(i)

ti > f

Discard(i) f − ti < ∆

SubmitToInstancePool(i) G = Insert(i, ρ, f , ∆)

∀Gl ∈ G

SubmitToInstancePool(Gl)

yes

yes no

yes no

no

Figure 4. Flow-chart of instances Grouping module external loop.

The first if statement in the Grouping function identifies the instances that have already
passed the difficulty estimation module. Specifically, it may happen that the miner did not
manage to be the first one to solve all instances from the group and publish a new block.
In such a case, all solved instances are transferred to the solution pool and the best found
solution for each of them is provided to the client. The unsolved instances are returned
to the instances grouping module to be inserted in some new group. For these instances,
difficulty estimation is already performed, and it is known that they should be a part of
some group. This is because too difficult instances have already been discarded and the
ones with ti ≈ f are sent individually to the instance pool on the first entrance to the
Grouping function. Therefore, if for instance i, ti > 0 holds, it is directly passed to the Insert
function.

Our approach for grouping instances is based on Bin Packing Problem (BPP) [12,60]
methodology under the assumption that the capacity of each bin is f . The only difference
is that the bins are filled one by one. Greedy heuristic approach, based on the general-
ized algorithm for the well-known Subset Sum Problem (SSP) [61], is adopted: instances
are packed into current bin until it is filled, or as long as it is possible. When the new
instance cannot fit into the current bin, i.e., its inclusion would exceed the bin capacity,
re-arrangement of instances is performed in such a way that several easy instances are
removed from the bin to make room for the newly arrived harder instance.

An additional request, related to the usefulness of the PoUW, is to ensure that the
instance deadline is not missed. Specifically, for each instance i, the condition tc + ρ · ti < di
should be checked within Insert function. Here, tc refers to the current time, while ρ
represents the number of block insertion cycles expected for an instance to wait in the
instance pool before it is solved, and di is the deadline for execution of instance i. In such
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a way, we give chance for each instance from the group to be solved before its deadline,
if the corresponding group is selected in due time by any miner. However, the selection
of groups from the instance pool is dynamic, stochastic, concurrent process within the
consensus protocol and it cannot be controlled by the instance grouping module. Challenges
that PoUW-based consensus protocols face, presented in [4], indicate that stochastic and
distributed execution of any PoUW consensus protocol, can prevent some instances from
being completed before the pre-specified deadline.

The Insert function can be formalized by flow-chart presented in Figure 5. This function
also represents an infinite loop, and within it the following instructions are performed.
First, all data structures are cleaned for the new iteration. The set of composed groups G
and the set of mandatory instances M are initialized to ∅. The input parameters of this
function are the same as for the Grouping function: i, ρ, f , ∆. All instances that are not
yet included in any group are the members of the working set called heap H. When a
new instance i arrives, it joins others in the heap. To favor instances with closer deadlines,
a set of mandatory instances M is formed from all instances j for which dj > tc − ρ · f .
These instances should be immediately sent to the instance pool for execution even if it
is not possible to compose large enough group, i.e., the group of instances for which the
relation (1) holds.

f − ∆ ≤∑
j

tj ≤ f . (1)

Out of set M, instances are packed in the best possible way to form a group GM by the
application of a generalized algorithm for the well-known SSP [61]. In addition, if GM is
not large enough, we try to compose the supplement S out of non-mandatory instances
from the heap H. Again, the SSP algorithm is employed. If a valid group is obtained, i.e.,
GM ∪ S is not empty, it is added to a set of composed groups G to be returned as an output
from the Insert function. In the case when a valid group is not obtained, the set of composed
groups G and the set of mandatory instances M are re-initialized and the loop is restarted.
All used instances are removed from the heap H and the set of mandatory instances M. The
described procedure is repeated until it is not possible to compose valid group of instances.
In that case, the set of composed groups G is returned from the Insert function.

Start

G ← ∅

M← ∅

i, ρ, f , ∆

H ← H ∪ {i}

∀j ∈ H

dj > tc − ρ f

M← M ∪ {j}

GM ← SSP(M, f )

H ← H \ GM

S← SSP(H, f −∑ GM)

GM 6= ∅ ∨∑ S > f − ∆

G ← G ∪ {GM ∪ S}

M← M \ GM

H ← H \ {GM ∪ S}

G
yes

no

yes

no

Figure 5. Flow-chart of instances grouping module inner loop (Insert function).

Each obtained group, called package, is submitted to the instance pool as a single unit
of work for miners. A package is identified by the name of file containing web addresses of
input data for all instances constituting that package. Miners take instances one by one,
execute the corresponding algorithm for finding its valid solution, and write the obtained
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solution in the solution pool. When all instances are solved, a new file containing links to
the generated output files is created, and the miner is ready to publish the composed block.

The difficulty estimation module cannot predict exactly the solving time of any in-
stance. Therefore, we cannot guarantee that the smaller packages will be executed faster
than the packages with larger predicted total time. On the other hand, we can record the
exact running time for each instance and use it to improve the performance of our difficulty
estimation module either off-line or during its deployment.

4. Case Study

We tested the proposed framework on P||Cmax problem [21,62,63]. To the best of
our knowledge, there are no studies that have tried to establish difficulty estimation
for general P||Cmax problem. The authors in [64] focused on optimization of parallel
machine scheduling using estimated processing time for a specific use case. They used the
parameters of that specific use case as features. Thus, in this work, our focus is to address
general P||Cmax problem.

The use cases for our framework are CO problem solvers ArcFlow [22] and GIST [23]
algorithms developed for P||Cmax problem [21,62,63]. Model building in the difficulty
estimation module works the same way for both problems, but the resulting models might
differ from one problem to another. Grouping instances module works in the same way
for both case studies. In the remainder of this section, we explain how the framework
is applied.

All results are obtained using a free cloud service hosted by Google to encourage ML
and AI research (https://colab.research.google.com/notebooks/intro.ipynb, accessed on
1 August 2022). The code is available in our Github repository cited in data availability
section.

4.1. Difficulty Estimation Module

We develop a model for predicting difficulty of the given P||Cmax scheduling problem
instances when solved by the considered exact (ArcFlow) and heuristic (GIST) algorithms.
The input data of these instances are number of tasks n, number of processors m, and a set
of processing times for n independent tasks P = {p1, p2, . . . , pn}. By difficulty, we mean
the estimated time needed for the algorithm to reach the value of the makespan Cmax that
is better than a predefined threshold value.

Our dataset consists of 8750 P||Cmax instances, each described by 23 features, two of
which are target variables (time needed for instance execution and indicator if algorithm
managed to find an optimal solution). Only one target variable is considered: time needed
for instance execution, and we refer to it as y. The 21 non-target features are proposed
by the domain experts. Two of them represent the names and types of instances, and
we disregard them. Three features are indicators of how data are organized, while the
remaining 16 are extracted statistical properties of elements of the above-mentioned set P
and m. Therefore, 19 features are utilized in the development of our difficulty estimation
model, all presented in Table 1.

Table 1. List of features used in difficulty estimation module.

Feature Notation Explanation of Feature

n Cardinality of set P, that is, number of tasks

m Number of processors

av.length Average length of elements in set P

median Median value of elements in set P

std.dev Standard deviation of set P

max Maximum value in set P

https://colab.research.google.com/notebooks/intro.ipynb
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Table 1. Cont.

Feature Notation Explanation of Feature

min Minimum value in set P

range Difference between maximum and minimum value in set P

k Number of different values of elements in set P

rel.bound Difference between a solution upper and lower bound relative to the
upper bound

n/m Average number of tasks per processor

(n/m)2 Polynomial feature of n/m

(n/m)3 Polynomial feature of n/m

m/n Polynomial feature of n/m

(m/n)2 Polynomial feature of n/m

(m/n)3 Polynomial feature of n/m

subtype Instances with same subtype have the same n/m value

class Probability distribution of random generator for elements of P

index Index of instance in dataset with same subtype and class [1–10]

4.1.1. Experimental Setup

The domain experts suggested that the instances should be classified into one of
four categories: 0-easy, 1-moderate, 2-hard, 3-very hard. However, as the running times of
algorithms can differ for several orders of magnitude, we opted to define categories for
each algorithm separately. When doing this, we used the logarithmic scale to capture the
values from the whole space.

We aim for a simple and interpretable model, which could be used by the domain
experts to understand the importance of features for each considered algorithm. As our
goal is not to explain the importance of features in this manuscript, we opted to show the
process and the performance we could achieve in more details.

Following the recommendations in [40,41], we divided our dataset into train/valida-
tion/test with the following ratios: (train + validation)/test we split in ratio 83/17 and
train/validation, and we also split in the ratio 83/17.

For the performance measure of the classification, we use two variants. The first
variant is the precision, which refers to how close to each other are the measurements of
the same item. The second measure is the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) [65]. As the limits for categories are too broad, we also
perform regression to find more fine-grained estimates of the execution times. To evaluate
the performance of linear regression model, we use statistical properties for goodness of
fit and error. For a goodness of fit, we use R squared, a measure that evaluates how much
variance of a dependent variable is explained by an independent variable. Even though
that measure tells us how good regression model is, the final decisions are made using
Root Mean Squared Error (RMSE), defined by (2), as it properly indicates the quality of the
estimates.

RMSE =

√√√√√ D

∑
i=1

(xi − yi)
2

D
(2)

4.1.2. ArcFlow Case Study

In this case study, the limits for categories are defined by instance runtime values as
follows easy: 0–10 s, moderate: 10–100 s, hard: 100–1000 s, very hard: >1000 s.

Not solved instances were assigned the maximum observed execution time of 4510 s.
Thus, for a list of our 19 features, we provide their correlations with target y in Table 2.
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From Table 2, it could be concluded that, individually, statistical properties like standard
deviation (std.dev), maximum (max), average length (av.length), and median as well as
characteristic of the problem instance (k), are among the highest correlated features with the
execution time for ArcFlow algorithm (target y). As it is shown in Table 2, feature rel.bound
is not correlated with the target y.

Table 2. Correlation of features with execution time of ArcFlow algorithm.

Feature Correlation with Target y

y 1.000000

std.dev 0.539327

max 0.538683

av.length 0.538287

median 0.536837

k 0.529941

range 0.528752

min 0.495868

n/m 0.423243

(n/m)2 0.420624

(n/m)3 0.412105

subtype 0.386236

m/n 0.377794

class 0.364556

n 0.356450

(m/n)2 0.337697

(m/n)3 0.300864

rel.bound 0.246362

m 0.100150

index 0.005231

Next, we examine how many features are needed to capture a threshold of 90%
of the variance [66]. We opted to be more conservative with our threshold as it is just
providing a number of features to be considered in an ideal case. In order to do Principal
Component Analysis (PCA), we need to perform proper scaling (using StandardScaler())
and oversampling [67] (using RandomOverSampler()). The results of the applied PCA
show that 5 features are needed so that their cumulative explained variance could reach
the desired threshold, as presented in Figure 6.

Trying to obtain the number of features that PCA indicated, we applied feature
permutation [68], PCA [69] and looked into feature importance in logistic regression [70] to
decide upon feature selection. The five most frequently highly rated features were n, m, std.
dev, max, and av. length. Therefore, we chose them for input features of logistic regression.
To build it, we performed grid search on hyperparameter C [71] using 15 values uniformly
distributed on logarithmic scale [−5, 5]. The best hyperparameter value turned out to be
C = 26.82695 with max iter = 1000. Logistic regression achieved a precision of 77.46% on
the validation set, with the following AUC scores for categories: easy: 0.93, moderate: 0.77,
hard: 0.78, very hard: 0.91.
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Figure 6. PCA feature importance analysis.

From AUC scores, we can conclude that logistic regression performs better on easy and
very hard instances than on moderate and hard ones. Possible reasons for this performance
could be very sharp boundaries between categories. Moderate and hard categories are in
some sense in the “middle”. Therefore, it is expected that some moderate instances can be
misclassified as easy or hard, and some easy instances can be misclassified as moderate.

However, we noticed that some very hard instances are misclassified as easy. In
Figure 7, we plotted the four misclassifications from very hard to easy, in the space of av.
length, max and std. dev as axes. It can be seen that large black points (representing very
hard instances misclassified as easy) are very close in feature space to correctly classified
very hard instances (yellow).

Figure 7. Logistic regression—3D scatter plot for correct and incorrect classifications.

To understand why this happens, in Figure 8, we also generated 2D scatter plot
in the space with n and m as axes containing points from the validation set (correctly
classified easy instances are orange points, correctly classified very hard are yellow, and
four mentioned misclassified instances are large black points). In Figure 8, black points
completely coincide with the orange ones. Hence, our deduction would be that we need
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more information than we have for features n, m. However, the coefficients of features
in logistic regression [11.20589791, 8.24008468, 2.05775954, 1.89851106, 2.6349542] for n, m,
max, av.length, and std.dev, respectively, confirmed that these features (n, m) are more
important than the remaining three.

In Figure 8, we note that all large black points occupy part of 2D space, where n and
m are relatively big, with additional trait that n = 2m. There are clearly many more easy
instances with n = 2m than the hard ones, as seen in Figure 8. Therefore, it is not unusual
for our model to classify black points as easy. Finally, the question should be, how is it
possible for them to be very hard?

Figure 8. Logistic regression—2D scatter plot for correct and incorrect classifications.

Binomial coefficient (n
m) could provide an answer to this question. Specifically, with

fixed n, it is known that the largest value of (n
k) is obtained for k = b n

2 c. Hence, for larger
n and m, the coefficient (n

m) is by far the largest for n = 2m, when n is fixed. For example,
for n = 180 (180

90 ) ≈ 25000(180
60 ) and (180

90 ) ≈ 1.5 · 1010(180
45 ) and, given that (n

m) is correlated to
time complexity of algorithm execution (simply, the larger the coefficient, the more possible
combinations for distribution of tasks on processors), it is clear why mentioned black points
are originally very hard.

In short, we concluded that instances with n
m = 2 exhibit a different behavior for

large n, m. Based on that observation, in the sequel, we divided our dataset on instances
with n

m = 2 and with n
m 6= 2. What follows is the analysis of models for each of the two

mentioned subsets.
After dividing dataset, feature selection is repeated. For n

m 6= 2, the following 4 features
are sufficient to obtain a well-performing model: n

m , max, av.length and (k). ANN is used
as an improvement over logistic regression. The characteristics of this model are: one
hidden layer consisting of 16 neurons and the output layer of size 4. ReLU is used as an
activation function in the hidden layer with dropout rate of 0.2 (which showed the best
performance among values [0.1, 0.125, 0.2, 0.25, 0.5], tested on validation set). For the output
layer, activation function is softmax. The model performs with precision of 81.01% on the
validation set and with following AUC scores for categories: easy: 0.94, moderate: 0.82,
hard: 0.79, very hard: 0.94. Misclassifications from very hard to easy, or from easy to very
hard are eliminated.

For n
m = 2, different ANN and the following 4 features are used: n, max, av.length

and std.dev. Characteristics of ANN are two hidden layers (8 and 12 neurons, respectively)
and the output of size 3 (because category of ‘hard’ instances is empty). ReLU is used as
an activation function in both hidden layers. The second hidden layer has dropout rate of
0.125 (which showed the best performance among values [0.1, 0.125, 0.2, 0.25, 0.5], tested on
the validation set). The output layer activation function is softmax. The model performs
with precision of 95.38% on the validation set and with following AUC scores for categories:
easy: 0.94, moderate: 0.96, very hard: 1.00. Misclassifications from very hard to easy, or
from easy to very hard, are eliminated on this subset. However, it is not impossible for a
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few easy instances to be misclassified as very hard-given that the number of instances in
the training set is smaller than in case when n

m 6= 2.
From the previous analysis, we may conclude that a hybrid ANN model (processing

the mentioned two subsets of data separately) outperforms logistic regression. However, as
we need to obtain more granular time estimates, our final model has to perform regression.
If we apply linear regression on the whole dataset, i.e., without any separation, RMSE
for the validation set is as low as 80. That performance could be misleading as extremely
inaccurate predictions for easy instances could be noticed (see Figure 9). The model predicts
much longer runtime for solving instances than it is really needed. Our small RMSE
can be explained by more correct prediction of runtime for harder instances. Therefore,
we conclude that we need to build a hierarchical model [72] to treat easier instances
independently from the harder ones. We use previously constructed classifier, and what
follows is an analysis of our final model.

Figure 9. ANN regression predictions (without classifier applied beforehand) for instances with
execution time in range [0, 10] s on the left and [10, 1000] s on the right.

The hierarchical model that we built, classifies instances into one out of three categories
(easy, medium+hard, very hard), and proceeds with regression built for each of three
categories separately. Those regression models are independent from each other, therefore,
we need to perform feature selection for each one separately.

For feature selection performed for the instances classified in [0, 10] s range, the five
most important features turned out to be n, m, k, std.dev, and max. Using a validation set,
ANN is chosen to have two hidden layers, the first with 8, and the second with 12 neurons,
after which dropout with a rate of 0.1 was applied. All activation functions are ReLUs,
except for the output layer, for which we took 10 ∗ sigmoid(x) as an activation function,
where sigmoid(x) is defined by (3).

sigmoid(x) =
1

1 + e−x (3)

To prevent the domination of misclassified values over the correct ones, logarithmic scale
was used for target (y), i.e., function log(100+ y) is applied. Before performance evaluation,
inverse function is applied to obtain the real RMSE values. In such a way, the final RMSE
value was 1.2 and R-squared score of 0.982. For more insight, a plot of predicted vs true
values for instances from the test set, is presented in Figure 10.

For the instances classified in [10, 1000] s range, the five most important features
turned out to be n, k, n/m, std.dev and av.length. We chose ANN with 2 hidden layers,
the first with 8, and the second with 32 neurons, after which dropout with a rate of 0.1 is
applied. All activation functions are ReLUs, except for the output layer activation function,
for which we took 4510 ∗ sigmoid(x). We note the increase in model complexity (larger
number of neurons in the second hidden layer), which is a consequence of a larger range
of target variables, i.e., runtimes. On the test set, the model performance was quantified
with RMSE equal to 118.26 and R-squared score of 0.86. Figure 11 ilustrates the relationship
between predicted and true values for instances classified in range [10, 1000] s.
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Figure 10. ANN regression predictions (with classifier applied beforehand)—for instances from test
set with execution time in [0, 10] s.

Figure 11. ANN regression predictions (with classifier applied beforehand)—for instances from test
set with execution time in [10, 1000] s.

Finally, for the instances classified in [1000, 4510] s range, the five most important
features are identified as n, k, std.dev, av.length, and median. However, given the extremely
high correlation (0.999507) between av.length and median, we replaced median with m.
This subset of instances required even higher ANN model complexity: four hidden layers;
the first with 16, and the second with 32 neurons, after which dropout with rate 0.1 was
applied, the third with 16, and the fourth with 4 neurons. All activation functions are ReLUs,
except for the output layer activation function, for which we took 4510 ∗ sigmoid(x). The
increase in the model complexity is a consequence of even larger range of target variables
(runtimes). The model performed on test set with RMSE of 136.61 and R-squared score of
0.98. A plot of predicted vs true values for instances in range [1000, 4510] s is presented in
Figure 12.
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Figure 12. ANN regression predictions (with classifier applied beforehand)—for instances from the
test set with execution time in [1000, 4510] s.

Combining the results of the three models, the performance of our hierarchical model
on the test set resulted in RMSE of 130.66, and R-squared score of 0.987. The final plot,
illustrating the relationship between the predicted and true values for all instances from
the test set, is presented in Figure 13.

Figure 13. Hierarchical model predictions for the whole test set of ArcFlow runtimes.

Applying this hierarchical model, we obtained the significant improvement in pre-
diction of instances with smaller runtimes, as well as a slight improvement for harder
instances. RMSE values are much smaller for easier instances than for the harder, indicating
a good quality of the model.

4.1.3. GIST Case Study

In this case study, very different correlations of features with target y are noted, as
shown in Table 3.
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Table 3. Correlation of features with runtime for GIST algorithm.

Feature Correlation with Target y

y 1.000000

rel.bound 0.476547

m 0.442684

subtype 0.430256

m/n 0.418171

(m/n)2 0.411345

(m/n)3 0.382118

n/m 0.340878

av.length 0.306203

median 0.305065

min 0.302683

max 0.297263

(n/m)2 0.289090

range 0.283401

std.dev 0.253432

(n/m)3 0.250783

k 0.215968

class 0.211151

n 0.160885

index 0.007393

We see that rel.bound is the feature with the highest correlation with target y. At the
same time k, the feature having the highest correlation with target y in ArcFlow case study,
is now among the least correlated features. Our analysis in this case study led to a very
similar hierarchical model as obtained in ArcFlow case study. Combining the results of the
three models, the final performance of our hierarchical model resulted in RMSE of 0.99,
and R-squared score of 0.97. A plot of predicted vs true values for all instances from the
test set is presented in Figure 14.

Figure 14. Hierarchical model predictions for the whole test set of GIST runtimes.
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The fact that resulting RMSE is much smaller for GIST case study could be just a
consequence of a different runtimes’ range. R-squared values in both hierarchical models
indicate a good fit for data that we have. Additionally, from the calculated R-squared values
we can conclude that the obtained runtime estimates for instances of P||Cmax problem are
reliable.

4.2. Instances Grouping Module Case Study

To illustrate the execution of instances grouping module, we performed a simulation
on small example containing 20 instances of P||Cmax problem. The estimated runtimes ti
of these instances are presented in Table 4, together with the order o(i) of their arrival to
the start of Grouping function. In the text to follow, we use notation Ii when referring to
the instance i. Having in mind that the ti values are ranging from 0.000013 to 19.907111,
we set f = 17 and ∆ = 2. For this simulation, it is not important to specify values for di
and ρ because it is executed outside the actual BC environment. However, to cover the case
with critical instances, we include a description of what has to be done when the deadline
is approaching for an instance.

Table 4. Estimated running times of the considered instances.

i 1 2 3 4 5 6 7 8 9 10

ti 0.000013 0.0001 0.000105 0.000231 0.000471 0.000607 0.001301 0.275697 1.420326 4.651514

o(i) 10 20 6 19 17 3 13 7 12 11

i 11 12 13 14 15 16 17 18 19 20

ti 4.905763 4.928929 5.492491 5.833624 6.058383 6.132013 9.387262 11.366228 15.392948 19.907111

o(i) 8 4 9 14 2 18 15 1 5 16

In the first iteration of instances grouping module, the instance I18 arrives. It passes
both checking points in Grouping and enters Insert function. As there are no other instances
in the heap, and assuming that d18 is not critical, it is not possible to generate a large enough
group to be submitted to the pool. Therefore, an empty package G is returned by the Insert
function.

The next instance to arrive is I15. Combining instances I18 and I15 into a single package
is not possible as the sum of their execution times exceeds f . Both of them remain in the
heap and an empty package is returned. After instances I6 and I12 are passed to the Insert
function as the third and the fourth, respectively, it is possible to compose a package with
the total execution time of all instances within the interval [ f − ∆, f ] and to send it for
the submission to the pool. This package is composed of instances I18, I6, and I12, while
instance I15 remains in the heap. The described state is illustrated in Figure 15.

When the fifth instance, I19, arrives to Grouping it is immediately sent to the instance
pool because f > t19 = 15.392 > f − ∆ = 15.

The second package in the Insert function is composed combining instances I3, I8, I11,
and I13 with instance I15, which is already in the heap. When this package is returned for
submission to the pool, no instances remain in the heap.

Now, we assume that the new instances arrive in the following order: I1, I10, I12, I7,
and I14. There are no critical deadlines among them, the sum of their estimated runtimes is
smaller then f − ∆, and they are all stored in the heap. Consequently, an empty package is
always returned to Grouping function.
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∑j tj = 16.295764
I12

∑j tj = 11.366835
I6

∑j tj = 11.366228
I18

G H

∑j tj = 6.058383
I15

Figure 15. The first generated package and the heap content after analyzing four CO problem
instances.

Let us assume that instance I17 arrives next. With this instance, the SSP algorithm
manages to compose a large enough package in such a way that only instance I10 remains
in the heap. The generated package is returned for submission to the pool.

The estimated runtime of instance I20 is greater than f . This means that it will never
manage to complete its execution in the BC system with the above defined time parameters.
Therefore, it is discarded from the system.

The new instances that enter the Grouping function one by one are I5, I16, and I4.
Although they (together with I10 that is already in the heap) cannot create a large enough
package, we assume that the deadline of instance I16 approaches and the Insert function
returns a new package, composed of all the available instances, for the submission to the
pool. The structure of the composed package G is presented in Figure 16. The heap remains
empty.

∑j tj = 10.784229
I4

∑j tj = 10.783998
I16

∑j tj = 4.651985
I5

∑j tj = 4.651514
I10

G H

Figure 16. The structure and size of the last composed package.

I2 is the last instance that we consider in our simulation. It passes two checking points
of Grouping module and is put in the heap by the Insert function (Figure 17) waiting to be
included in some new package and sent away for submission to the instance pool.

G H

∑j tj = 0.0001
I2

Figure 17. The content of the heap at the end of simulation.
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5. Discussion

Within our difficulty estimation module, we tested how well we can predict runtimes
of instances for two different optimization algorithms (ArcFlow and GIST), developed
for scheduling independent tasks to homogeneous multiprocessor systems. Following
flowchart from Figure 3, we concluded that, for both algorithms, the best prediction model
is hierarchical. That is, for the sake of grouping together instances with the same order of
magnitude of runtimes, the classification is applied first. Then, for finer grained prediction,
regression is applied within each of the obtained groups. This way, we better captured
the unique characteristics of instances from each of the classes. Moreover, we noticed
different correlations of independent variables (features) with target between ArcFlow and
GIST algorithms, which shows that our framework is flexible and works successfully no
matter what is the nature of the prediction algorithm. Additionally, different time ranges
(from 0 to 4510 s for the ArcFlow algorithm and from 0 to 21 s for GIST), do not have
significant impact on the prediction results. For both algorithms, and all three categories,
we got satisfactory results with regression on each class individually. Average R-squared
score of 0.987 for ArcFlow, and average R-squared score of 0.97 for GIST indicate almost
perfect goodness of fit. RMSE shows sub-linear monotonic increase tendency for ArcFlow
algorithm. RMSE is 1.2 on the class with time range from 0 to 10s, 118.26 for the middle
class (from 10 to 1000 s), and 136.61 on the class involving times in the range 1000 to 4510 s
with the global RMSE taking value 130.66. Global RMSE for GIST is 0.99, while individual
RMSE values are 0.45 for the first class (when runtimes range from 0 to 1 s), 1.42 on the
second class (from 1 to 10 s), and 0.85 on the third class (from 10 to 21 s). Here, RMSE does
not show monotonic tendency. However, the obtained values are very small with respect
to the runtime ranges of each class.

In the grouping instances simulation, we used 20 CO problem instances with estimated
runtimes ranging from negligible 10−5 s to almost 20 s. As the BIT was set to f = 17 s,
the largest instance needed to be discarded from this BC system and, hopefully, executed
in another. Out of the remaining 19 instances, we were able to compose five packages
of similar size. One contains a single instance with the estimated running time equal to
15.392948 s. One package is a bit shorter (10.784229 s), as it contains an instance whose
deadline approaches and, favoring the usability of the PoUW consensus protocols, we
wanted to give it a chance to be solved. The size of remaining packages fits into the pre-
defined time interval [ f − ∆, f ] = [15, 17]. Having in mind that the difficulty estimation
procedure is not 100% accurate, we believe that each miner is given a chance to solve all
instances from the assigned package and publish the composed block. However, the main
goal of our framework, to group the instances that may differ in size for several orders of
magnitude into the packages of similar size, is certainly achieved.

Our case study clearly illustrates all advantages of the proposed framework. First of
all, it enables the fairness in distribution of work among miners, gives them equal chances
to complete the required amount of useful work, and to add the composed block to the
BC. The second advantage is that the amount of work can be easily adapted to any desired
BIT and to keep the intervals between insertion of blocks stable. Finally, our framework
ensures that all the performed work is useful, no other overhead is required to keep the
resulting PoUW consensus protocol fair and stable.

This actually recommends our framework to be incorporated in PoUW-based con-
sensus protocols and to replace the usage of nonce values in PoW sense for controlling
difficulty of miners’ work. Specifically, our approach enables elimination of both disadvan-
tages of using nonce in PoUW-based consensus protocols. First, the solution space could be
unexplored if the valid nonce value is obtained too early, i.e., before high-quality solution is
found. Second, the application of our framework prevents exploration of the solution space
more than it is necessary. More precisely, it prevents the continuation of the search until
valid nonce is obtained in the case when the solution of satisfactory quality was already
found.
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It is important to note that the proposed framework cannot be used as a standalone
procedure, it needs to be integrated into a functional PoUW-based consensus protocol.
Our goal was to ensure fairness and stable BIT for any PoUW-based consensus protocol
because it represents energy efficient alternative to classic PoW. The performed simulation
has shown that, by packing instances into groups, miners will receive more balanced tasks
than in the case when individual instances are directly submitted to the pool.

6. Conclusions

Proof-of-Useful-Work (PoUW) consensus protocols have been developed to increase
the efficiency and usability of Blockchain (BC) systems. The main idea of PoUW is to
solve some problems useful to a wider community. Common issues in implementing
these consensus protocols are controlling the difficulty of the miners’ work and ensuring
fairness and security. There are two main reasons for resolving these issues: to ensure
fairness in rewarding miners and to keep the value of Block Insertion Time (BIT) stable.
We developed the general difficulty estimation framework using modified Cross Industry
Standard process for Data Mining (CRISP-DM) model, Artificial Intelligence (AI), Machine
Learning (ML), and data science methods. Using the estimated execution times required
to complete the useful work, the balance of workload for miners is achieved by grouping
instances into equally difficult work elements to be executed by miners. Case study
simulation is performed to illustrate the benefits of the proposed framework.

The generality of our framework could be interpreted in many ways. First, it can be
adapted to any PoUW-based consensus protocol. Next, it enables us to use already available
estimates (by some other prediction model) of runtimes for the considered instances. In
addition, the size of instance packages is an input parameter of our framework and it
allows easy adjustment to any BIT value. Moreover, our difficulty estimation does not
depend on the number of miners involved in the mining process. Therefore, we believe
that any PoUW-based consensus protocol with our framework applied may serve as an
adequate replacement for PoW-based consensus protocols.

Our main contribution is in showing that controlling the difficulty and fairness of
miners’ work in PoUW-based consensus protocols can be achieved exclusively through the
useful work, without the need for solving cryptographic puzzles in the classical PoW sense.

For the future work, we plan to incorporate the proposed framework into prominent
PoUW-based consensus protocols that ensure usefulness and security. Incorporating our
framework would eliminate the need for applying PoW concept as a part of those protocols.
Implementation of the framework might request addressing other Combinatorial Optimiza-
tion (CO) case studies for which prediction models do not exist. That would both provide
further validation of generality of our framework and contribute to algorithm design and
analysis research field. Additionally, the difficulty estimation learning process could be
submitted as a useful task of the PoUW consensus protocol. Finally, having a breadth of
CO and ML/AI problems, hopefully, we will be able to attract more clients and ensure
large enough number of instance packages for miners to work on.
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Notation

The following notation is used in this manuscript:
Abbreviations

ANN Artificial Neural Network
AUC Area Under the Curve
BC Blockchain
BPP Bin Packing Problem
BIT Block Insertion Time
CNN Convolutional Neural Network
CO Combinatorial Optimization
COCP Combinatorial Optimization Consensus Protocol
CPU Central processing unit
CRISP-DM CRoss Industry Standard Process for Data Mining
DL Deep Learning
DPLS Doubly Parallel Local Search
GIST Greedy Iterative Stochastic Transformation
JSSP Job Shop Scheduling Problem
LSTM Long Short Term Memory
MFP Maximum Flow Problem
MIP Mixed Integer Programming
ML Machine Learning
NSGA-II Non-dominated Sorting Genetic Algorithm II
P||Cmax Problem of scheduling independent tasks on identical parallel machines
PCA Principal Component Analysis
DLBC Deep Learning-Based Consensus Protocol
PoS Proof-of-Search
PoUW Proof-of-Useful-Work
PoW Proof-of-Work
RMSE Root Mean Squared Error
RNN Recurrent Neural Networks
ROC Receiver Operating Characteristics
R-squared Coefficient of Determination
SAT Propositional Satisfiability
SNN Shallow Neural Network
SPP Strip Packing Problem
SSP Subset Sum Problem
TSP Traveling Salesman Problem

Symbols
∅ Empty set
∆ Package size tolerance parameter
so f tmax Type of activation function
ReLU Type of activation function
sigmoid Type of activation function
kTSP Number of chosen coordinates in TSP instance
nTSP Number of coordinates in TSP instance
NTSP Number of coordinates in hard TSP instance
T1 Threshold for good enough solution for TSP instance
i Submitted instance

https://github.com/Uros-Males/pouw
https://github.com/Uros-Males/pouw
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ti Instance score (difficulty)
tc Current time
f BIT value
ρ Number of insertion cycles an instance is expected to wait in the

pool before it is solved
Gl Group of instances
G Set of groups of instances
L Number of groups
di Deadline for execution of instance
H Heap of instances not included in any group yet
j Instance from heap
M Set of mandatory instances
GM Group formed of mandatory instances
SSP Subset sum problem solver function
n Number of tasks in P||Cmax
m Number of processors in P||Cmax
P Set of tasks in P||Cmax
pq Processing time of task q in P||Cmax
y Time needed for P||Cmax problem execution (target variable)
Iw w-th example of instance for P||Cmax

Blockchain and machine learning jargon
Miners BC participants who have the computer hardware and appropriate

software needed to mine digital currencies or solve complex
mathematical problems

Consensus Protocol Mechanism to perform BC management without the central
authority

Transaction A unit measure of data in BC
Block Blocks are the basic containers of information in a blockchain,

they contain transaction as stored data
Cryptographic Puzzle A mathematical puzzle that miners must solve in PoW-based BCs

in order to append their blocks
Proof-of-Work (PoW) A common mechanism used to validate peer-to-peer transactions

and maintain highly secured immutability of the blockchain
Proof-of-Useful-Work
(PoUW)

Energy efficient consensus protocol that re-purposes the

computational effort required to maintain protocol security
to solve complex real-world problems

Proof-of-Learning (PoLe) PoW that exploit the computation power of miners for training
ML models as a useful work in consensus protocol

Proof-of-Search (PoS) Combines BC consensus formation with solving optimization
problems

Instance An example of a problem with all the inputs needed to compute a
solution to the problem

Feature Individual measurable property or characteristic of an instance
Solution Space The set of all possible solutions for the combinatorial optimization

problem
Randomized Algorithm An algorithm that employs a degree of randomness as a part of its

logic or procedure
Parameter The configuration variable that is internal to the model and whose

value can be estimated from the given data
Hyperparameter The explicitly specified parameter that controls the training process
Training (Train) Dataset A dataset of examples used during the learning process to fit the

parameters
Validation Dataset A dataset of examples used to tune the hyperparameters
Test Dataset A dataset that is independent of the training dataset, but follows

the same probability distribution
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Data Normalization The organization of data to appear similar across all records
and fields

Data Standardization The process of converting data to a common format suitable for
analysis by users

Data Preprocessing Data mining technique used to transform the raw data in a useful
and efficient format

Bias Describes how well a model matches the training set
Confusion Matrix A table that is used to define the performance of a classification

algorithm
Transfer Learning Taking the relevant parts of a pre-trained ML model and applying

it to a new problem
Depth Number of layers in ML model
Group Group of instances that the miner should solve before publishing a

new block
Heap All instances that are not included in any group yet
Package Successfully created group
Model A decision process in an abstract manner
Framework A tool that provides ready-made components or solutions that are

customized in order to speed up development
Cloud Service Refers to a wide range of services delivered on demand to

companies and customers over the internet
Relative Bound Difference between upper and lower bound of a solution relative

to the upper bound value
Scaling A technique to standardize the independent features present in

the data in a fixed range
Oversampling A technique that creates synthetic samples by randomly sampling

the characteristics from occurrences in the minority class
Neuron A connection point in an ANN
Activation Function Decides whether a neuron should be activated or not
Layer In a DL model a structure or network topology in the model’s

architecture
Hidden Layer A layer in between input layer and output layer
Dropout A regularization method that approximates training a large

number of ANNs with different architectures in parallel
Output Layer The last layer of neurons that produces given outputs for the ANN
Input Layer Brings the initial data into the ANN for further processing by

subsequent layers of artificial neurons
Regression A technique for investigating the relationship between independent

variables or features and a dependent variable or outcome
Classification A supervised learning concept which basically categorizes a set of

data into classes
Pool Place to store unprocessed objects
Hierarchical Model A model in which lower levels are sorted under a hierarchy of

successively higher-level units
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