
Citation: Abd-Elhameed, W.M.;

Alkhamisi, S.O.; Amin, A.K.; Youssri,

Y.H. Numerical Contrivance for

Kawahara-Type Differential

Equations Based on Fifth-Kind

Chebyshev Polynomials. Symmetry

2023, 15, 138. https://doi.org/

10.3390/sym15010138

Academic Editor: Serkan Araci

Received: 28 November 2022

Revised: 28 December 2022

Accepted: 29 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Numerical Contrivance for Kawahara-Type Differential
Equations Based on Fifth-Kind Chebyshev Polynomials
Waleed Mohamed Abd-Elhameed 1,* , Seraj Omar Alkhamisi 2, Amr Kamel Amin 3

and Youssri Hassan Youssri 1

1 Department of Mathematics, Faculty of Science, Cairo University, Giza 12613, Egypt
2 Department of Mathematics, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
3 Department of Basic Sciences, Adham University College, Umm AL-Qura University,

Makkah 21955, Saudi Arabia
* Correspondence: waleed@cu.edu.eg

Abstract: This article proposes a numerical algorithm utilizing the spectral Tau method for nu-
merically handling the Kawahara partial differential equation. The double basis of the fifth-kind
Chebyshev polynomials and their shifted ones are used as basis functions. Some theoretical results
of the fifth-kind Chebyshev polynomials and their shifted ones are used in deriving our proposed
numerical algorithm. The nonlinear term in the equation is linearized using a new product formula
of the fifth-kind Chebyshev polynomials with their first derivative polynomials. Some illustrative
examples are presented to ensure the applicability and efficiency of the proposed algorithm. Fur-
thermore, our proposed algorithm is compared with other methods in the literature. The presented
numerical method results ensure the accuracy and applicability of the presented algorithm.

Keywords: Chebyshev polynomials; linearization coefficients; Tau method; partial differential
equation; Kawahara-type equations; algebraic equations
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1. Introduction

Nonlinear partial differential equations (PDEs) play a significant role in many branches
of science and engineering disciplines. In order to deal with the fact that many partial
differential equations do not have analytic solutions, it is necessary to propose numerical
algorithms for dealing with such problems. Numerous fascinating books, such as [1,2],
discuss numerical solutions to PDEs using various numerical techniques. In addition, a
number of partial differential equations were solved utilizing different spectral methods
(see, for example, [3]). Numerical methods for PDEs can be categorized as either local or
global. The global approach of the spectral methods is what sets them apart from the local
arguments of the finite-difference and finite-element methods.

Spectral methods are extensively employed for treating different types of differential
equations. There are many advantages to using different spectral methods, such as their
high accuracy when compared with other numerical methods [4]. The fundamental princi-
ple behind applying the various spectral approaches is based on the choice of two families
of polynomials that are frequently provided as combinations of special functions. In fact,
the selection of trial and test functions depends on the suitable method that we apply to
solve the desired differential equations. There are three well-known spectral methods. In
the Galerkin method, trial functions should be chosen so that the boundary conditions
are satisfied. Moreover, the two families of trial and test functions are identical. The Tau
method has the advantage of the two selected families not being identical (see [5]). Because
of its ability to treat any type of differential equation, the collocation method is widely used
to solve a variety of differential equations (see, for example, [6–8]).

Symmetry 2023, 15, 138. https://doi.org/10.3390/sym15010138 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15010138
https://doi.org/10.3390/sym15010138
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6102-671X
https://orcid.org/0000-0002-0670-6712
https://orcid.org/0000-0003-0403-8797
https://doi.org/10.3390/sym15010138
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15010138?type=check_update&version=2


Symmetry 2023, 15, 138 2 of 21

There are numerous applications for time-dependent PDEs. A rapidly expanding
field of study in fluid dynamics is the dynamics of shallow water waves. There are
numerous models available to focus on this field of study. One equation that illustrates
the behavior of one-dimensional shallow water waves is third-order KdV equations; see,
for example, [9,10]. A modified third-order KdV equation was numerically investigated
in [11]. A Benjamin–Bona–Mahony equation was investigated in many papers; see, for
example, [12,13]. A Boussinesq equation was investigated in many contributions; see, for
example, [14].

An example of a KdV-type equation is the Kawahara equation, which has the following
form:

∂u
∂t

+ ϑ u
∂u
∂x

+ ς
∂3u
∂x3 − κ

∂5u
∂x5 = 0,

where ϑ, ς, and κ are arbitrary constants that are nonzero. In physics, this equation is used
to describe a wide variety of wave types, including lattice, plasma, capillary gravity water,
and magnetoacoustic waves. To define the behavior of isolated waves in media, Kawahara
proposed an equation in 1972 [15].

There are many contributions that study the Kawahara differential equation. For
example, the authors in [16] applied Crank–Nicolson differential quadrature algorithms
for treating the Kawahara equation. Radial basis function methods were applied in [17]. A
dual Petrov–Galerkin method was applied in [18]. The same equation was treated with
a decomposition method in [19]. The thanh function method was employed in [20]. Two
methods, namely, the variational iteration method and homotopy perturbation method,
were applied in [21] to treat the Kawahara equation. The sine–cosine method was applied
in [22] to handle the Kawahara differential equation.

In mathematical analysis and its applications, Chebyshev polynomials are crucial.
Chebyshev polynomials may be symmetric or non-symmetric. The first and second kinds
of Chebyshev polynomials are symmetric since they are ultraspherical polynomials, while
the third and fourth kinds are non-symmetric since they are not ultraspherical ones. All
four kinds of Chebyshev polynomials are utilized in several applications. They were widely
used in the study of ordinary and partial differential equations (see, for example, [23,24]).
The Chebyshev polynomials of the first kind were employed to treat different types of
differential and integral equations (see, for example, [25–28]). Some types of boundary-
value problems were handled on the basis of employing the first kind of Chebyshev
derivative polynomials in [29]. The second kind of Chebyshev polynomials were utilized
in [30] to treat third-order Emden–Fowler singular differential equations. Furthermore,
in [31], the nonlinear fractional pantograph equation was handled through the employment
of Chebyshev polynomials of the third kind. For additional contributions relating to
Chebyshev polynomials, see, for instance, [32–35].

In the literature, there is a type of polynomials that generalize ultraspherical poly-
nomials, namely, generalized ultraspherical polynomials. There are some contributions
regarding this type of polynomials from a theoretical point of view; see, for example, [36,37].
Recently, several authors have explored the fifth- and sixth-kind Chebyshev polynomials,
two particular polynomials of the more generalized ultraspherical polynomials, from a
variety of theoretical and applied perspectives. In his PhD thesis, Masjed-Jamei extracted
these polynomials from certain generalized symmetric polynomials that involve four pa-
rameters. Abd-Elhameed and Youssri, in [38] derived some new formulas concerned with
these polynomials. Furthermore, the fifth kind of Chebyshev polynomials were recently
used in [39] to treat some FDEs.

The outline of this article can be summarized in the following items:

• Establishing some results concerned with fifth-kind Chebyshev polynomials, including
a new formula that linearizes the product of the Chebyshev polynomials of the fifth
kind and their first derivative.

• Developing a new numerical algorithm on the basis of the application of the Tau
method to solve Kawahara-type differential equations.
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• Investigating theoretically and numerically the convergence of the proposed algorithm.

The following are, to the best of our knowledge, aspects indicating our contribution’s
originality:

• An innovative strategy is provided in this article for solving Kawahara-type equations.
• Other classes of nonlinear differential equations are amenable to treatment with the

proposed approach.

This article’s contents are grouped as follows: In Section 2, we provide a brief account
of Chebyshev polynomials of the fifth kind and some of their fundamental formulas.
Section 3 creates a new formula for expressing the product of Chebyshev polynomials
of the fifth kind and their first-order derivative. The numerical treatment of Kawahara
differential equations using the spectral tau approach is discussed in detail in Section 4.
Section 5 presents the numerical experiments. Lastly, some conclusions are reported in
Section 6.

2. Some Properties of the Fifth-Kind Chebyshev Polynomials and Their Shifted Ones

This section is dedicated to introducing various characteristics and formulas of Cheby-
shev polynomials of the fifth kind and their shifted polynomials.

Fifth-kind Chebsyehv polynomials are particular orthogonal polynomials, namely, the
generalized ultraspherical polynomials (see, [36,37]). The following recurrence relation
with three terms can be used to generate them:

Cr(x) = x Cr−1(x)− (r− 1)2 + r + (−1)r (2r− 1)
4 r(r− 1)

Cr−2(x), r ≥ 2, (1)

accompanied by the following two initial values:

C0(x) = 1, C1(x) = x.

The fifth-kind Chebyshev polynomials are so named because, like the more common four-
kind Chebyshev polynomials, they may be written in trigonometric form. In reality, the
following trigonometric representation [38] holds for all integers r:

Cr(cos θ) =


cos((r + 1)θ)

2r cos(θ)
, r even,

((r + 2) cos(θ) cos((r + 1) θ)− cos((r + 2)θ)) sec2(θ)

r 2r , r odd.

This trigonometric representation is extremely useful because it enables us to define poly-
nomials Ci(x) for negative integers. More precisely, the following identity holds [38]:

Cr(x) =
1

22r+2


C−r−2(x), r even,

r + 2
r

C−r−2(x), r odd.

The fifth-kind Chebyshev polynomials are orthogonal polynomials on [−1, 1] whose weight

function is : w(x) =
x2

√
1− x2

. The explicit orthogonality relation of these polynomials can

be written as [40]:
1∫
−1

x2
√

1− x2
Cr(x) Cs(x) dx =

hr, if r = s,

0, if r 6= s,
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with

hr =
π

22 r+1


1, r even,

r + 2
r

, r odd.

The inversion and power form formulas are two of the most essential formulas for any
polynomial. The next two lemmas provide these formulas for Ci(x).

Lemma 1 ([41]). The power form representations of the Chebyshev polynomials of the fifth-kind
Cs(x), s ≥ 0, can be written as follows:

C2s(x) =(2s + 1)
s

∑
r=0

(−1)r (2s− r)!
r! 22r (2s− 2r + 1)!

x2s−2r, s ≥ 0, (2)

C2s+1(x) =
Γ
(
s + 5

2
)

(2s + 1)!

s

∑
r=0

(−1)r ( s
s−r) (2s− r + 1)!

Γ
(
s− r + 5

2
) x2s−2r+1, s ≥ 0. (3)

The inversion formulas for power form Representations (2) and (3) are given in the
following lemma.

Lemma 2 ([38]). The two following Chebyshev polynomials of the fifth-kind inversion formulas are
valid for every non-negative integer s:

x2s =(2s + 1)!
s

∑
r=0

1
22r r! (2s− r + 1)!

C2s−2r(x), s ≥ 0, (4)

x2s+1 =Γ
(
s + 5

2
) s

∑
r=0

( s
s−r) (2s− 2r + 2)!

Γ
(
s− r + 5

2
)
(2s− r + 2)!

C2s−2r+1(x), s ≥ 0. (5)

Remark 1. The power form representation and the inversion formula for any set of polynomials
are the keys to the establishment of several formulas that are very useful in treating numerically
different types of linear and nonlinear differential equations. Now, the three following theorems
that are useful in the sequel give the expressions for the moments, linearization, and the high-order
derivatives of the fifth-kind Chebyshev polynomials in terms of the original ones.

Theorem 1 ([38]). Let r and j be any non-negative integers. The following moment formula holds:

xr Cj(x) =
r

∑
m=0

Sm,r,j Cj−2 m+r(x), (6)

with the moment coefficients Sm,r,j given by

Sm,r,j =
r!

22 mm! (r−m)!

×



1, r and j even,

j2(r− 1) + 2m(1− 2m + r) + j
(
−2− 2m(−1 + r) + r + r2)

j(2 + j− 2m + r)(r− 1)
, r even, j odd,

−2m(1 + r) + r(2 + j + r)
r(2 + j− 2m + r)

, r odd, j even,

2m + j r
j r

, r and j odd.

On the basis of Theorem 1, the linearization formula of Ci(x) can be stated as follows.
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Theorem 2 ([38]). Consider r and s to be random non-negative numbers. The following formula
for linearization is correct:

Cr(x)Cs(x) =
min (r,s)

∑
m=0

Lm,r,s Cr+s−2m(x), (7)

where the linearization coefficients Lm,r,s are given explicitly by

Lm,r,s =
(
−1
4

)m



1, r even, s even,

s(2 + r + s)− 2(1 + r + s)m + 2m2

s(2 + r + s− 2m)
, r even, s odd,

r(2 + r + s)− 2(1 + r + s)m + 2m2

r(2 + r + s− 2m)
, r odd, s even,

rs− 2(1 + r + s)m + 2m2

r s
, r odd, s odd.

(8)

Now, the following formula exhibits an expression for DnCr(x):

Theorem 3 ([42]). Let n and r be non-negative integers with n ≥ r ≥ 1. The following derivative
expression is valid:

DnCr(x) =
b r−n

2 c
∑
`=0

d(n)`,r Cr−n−2 `(x), (9)

where the coefficients d(n)`,r are given by

d(n)`,r =

√
π r! 2n−r

(
−`+

⌊
1
2 (r− n− 1)

⌋
+ 5

2

)
`

`! Γ
(⌊

1
2 (r− n− 1)

⌋
+ 3

2

)
(r− 2`− n + 2)`

(⌊ r−n
2
⌋
− `
)
!

× 4F3

 −`,−r + `+ n− 1,
⌈

1
2 (−r + n + 1)

⌉
− 1

2 ,−
⌊

r+1
2

⌋
− 1

2

−r,
⌈

1
2 (−r + n + 1)

⌉
− 3

2 , 1
2 −

⌊
r+1

2

⌋
∣∣∣∣∣∣1
,

(10)

where bzc denotes the well-known floor function, while dze denotes the well-known ceiling function.

The shifted fifth-kind Chebyshev C̃i(t) polynomials on [0, 1] can be defined as follows:

C̃i(x) = Ci(2x− 1). (11)

All formulas and properties concerned with the shifted fifth-kind Chebyshev polynomials
C̃i(x) can be deduced from their corresponding formulas and properties for the fifth-kind
Chebyshev polynomials.

Shifted polynomials C̃r(x), r ≥ 0, are orthogonal on [0, 1] with respect to weight

function w̄(x) =
(2x− 1)2
√

x− x2
:. The orthogonality relation for these polynomials is given by

∫ 1

0

(2x− 1)2
√

x− x2
C̃r(x) C̃s(x) dx =

h̄r, if r = s,

0, if r 6= s,
(12)
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with

h̄r =
π

22r+1


1, r even,

r + 2
r

, i odd.
(13)

Now, it is easy to deduce the counterpart results of Theorems 2 and 3 for the shifted
polynomials C̃i(x).

Corollary 1. Consider r and s to be random non-negative numbers. The following formula for
linearization is correct:

C̃r(x) C̃s(x) =
min (r,s)

∑
m=0

Lm,r,s C̃r+s−2m(x), (14)

where the linearization coefficients Lm,r,s are those given in (8).

Proof. Formula (14) can be easily obtained from Formula (7) by replacing x by (2x− 1).

Corollary 2. Let n and r be non-negative integers with n ≥ r ≥ 1. The following derivative
expression holds for the shifted polynomials C̃i(x) ([42]):

DnC̃r(x) =
b r−n

2 c
∑
`=0

d̃(n)`,r C̃r−n−2 `(x), (15)

where the coefficients d̃(n)`,r are given by

d̃(n)`,r = 2n d(n)`,r , (16)

and d(n)`,r are those given in (10).

Proof. Formula (15) can be easily obtained from Formula (9) by replacing x by (2x− 1).

Remark 2. The fifth-kind Chebyshev polynomials have connections with the four kinds of Chebyshev
polynomials (see, [38]). These connections may be very useful in deducing some other properties of
the fifth-kind Chebyshev polynomials.

The following lemma gives the connection formula between the fifth and first kinds of
Chebyshev polynomials.

Lemma 3 ([38]). The fifth and first kinds of Chebyshev polynomials on [0, 1] are connected with
each other by the following formulas:

C2r(x) =
1

22r−1

r

∑
m=0

(−1)m ξr−m T2r−2m(x), r ≥ 0, (17)

C2r+1(x) =
1

22r (2r + 1)

r

∑
m=0

(−1)m(1 + 2r− 2m) T2r−2m+1(x), r ≥ 0, (18)

with

ξm =

{
1
2 , m = 0,
1, m > 0.

(19)

Remark 3. Connection Formulas (17) and (18) are also valid if Ci(x) and Tj(x) are replaced by
their shifted polynomials on [0, 1].
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3. New Linearization Formula of the Fifth-Kind Chebyshev Polynomials and Their
First-Order Derivative

The goal of this section is to develop a new linearization formula for the fifth-kind
Chebyshev polynomials and their first-order derivatives. The lemma that follows aids in
developing the desired linearization formula.

Lemma 4. For all non-negative integers p, i and j, the following reduction formula holds:

p

∑
`=0

(−1)` (−j + `)(−2 + 2j− 2`)!(2j− `)!(1 + i(2− 4j + 4`)− 4(j− `)(j− p))
`!(p− `)!(1 + 2j− 2`)!(2j− `− p− 1)!

=

2
2j + 1

(−2j + p)(−1− 2i− 2j + p), p even,

(p + 1)(−p + 2i), p odd.

(20)

Proof. First, set

Fp,i,j =
p

∑
`=0

(−1)`(−j + `)(−2 + 2j− 2`)!(2j− `)!(1 + i(2− 4j + 4`)− 4(j− `)(j− p))
`!(p− `)!(1 + 2j− 2`)!(2j− `− p− 1)!

, (21)

and utilize the celebrated algorithm of Zeilberger (see, [43]) to show that the following
recurrence relation of order 2 can be obtained:

− (−2 p + 1 + 2 j + 2 i)
(

2 ij− 2 ip + 2 j2 − 2 jp + p2 + 2 j− p
)

Fp−2,i,j

− 2
(

2 i2 + 2 ij− 2 ip− 2 jp + p2 + 3 i + j− 2 p
)

Fp−1,i,j

+
(

2 ij− 2 ip + 2 j2 − 2 jp + p2 + 2 i + 4 j− 3 p + 2
)
(−2 p + 3 + 2 j + 2 i) Fp,i,j = 0,

(22)

with the two following initial values:

F0,i,j =
j(1 + 2i + 2j)

1 + 2j
, F1,i,j =

−1 + 2i
1 + 2j

. (23)

Recurrence Relation (22) governed by (23) can be exactly solved to give

Fp,i,j =
2

2j + 1

(−2j + p)(−1− 2i− 2j + p), p even,

(p + 1)(−p + 2i), p odd.

This proves Lemma 4.

Theorem 4. For all non-negative integers i and j, the product of Ci(x) and C′j(x) can be linearized
as in the following formula:

Ci(x)C′j(x) =
j

∑
p=0

Hp,i,j Ci+j−2p−1(x), (24)

where coefficients Hp,i,j are given explicitly by the following formula:
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Hp,i,j = 4−p×

(j(2 + j) + (−1)p(j− 2p)(j− 2(1 + p)))
2 j

, i even, j odd,(
(1 + i)(1 + j) + (−1)p(−1 + i(−1 + j)− j− 2(i + j)p + 2p2))

2 i
, i even, j odd,

(j− p)(1 + i + j− p)
1 + i + j− 2p

, p, i, j even,

(i− p)(1 + p)
1 + i + j− 2p

, p odd, i even, j even,

(i− p)(1 + i + j− p)
(

j2 − 2jp + 2p(1 + p)
)

ij(1 + i + j− 2p)
, p even, i odd, j odd,

4−p(1 + p)(−j + p)
(
2i2 + j(2 + j) + 2i(1 + j− 2p)− 2(1 + j)p + 2p2)

ij(1 + i + j− 2p)
, p odd, i odd, j odd.

(25)

Proof. To prove Linearization Formula (24), it is required to prove the four following
linearization formulas:

C2i(x)C′2j(x) =
j

∑
p=0

21−4p(1 + 2i + 2j− 2p)(j− p)
1 + 2i + 2j− 4p

C2i+2j−4p−1(x)+

j−1

∑
p=0

2−1−4p(1 + p)(1− 2i + 2p)
1− 2i− 2j + 4p

C2i+2j−4p−3(x),

(26)

C2i+1(x)C′2j+1(x) =
1

(1 + 2i)(1 + 2j)
×

j

∑
p=0

16−p(1 + 2i− 2p)(3 + 2i + 2j− 2p)
(
(1 + 2j)2 − 8jp + 8p2)

3 + 2i + 2j− 4p
C2i+2j−4p+1(x)

+
1

(1 + 2i)(1 + 2j)
×

j

∑
p=0

16−p(1 + p)(j− p)
(
3 + 8i2 + 4j2 + 8i(1 + j− 2p)− 8j(−1 + p) + 8(−1 + p)p

)
1 + 2i + 2j− 4p

×

C2i+2j−4p−1(x),

(27)

C2i(x)C′2j+1(x) =
1

1 + 2j

2j+1

∑
p=0

2−1−2p
(

3 + 8j + 4j2 + (−1)p
(
−1 + 4(j− p)2

))
C2i+2j−2p(x), (28)

C2i+1(x)C′2j(x) =
1

1 + 2i

2j

∑
p=0

4−p((1 + i)(1 + 2j) + (−1)p(−1 + i(−1 + 2j− 2p) + p(−1− 2j + p)))×

C2i+2j−2p(x).

(29)

The proofs for each of the four formulas are long. Because the proofs are so similar, we
merely prove Formula (26). If we differentiate the power form representation of polynomi-
als C2j(x), then we can write

C2i(x)C′2j(x) = (2j + 1)
j

∑
r=0

(−1)r(2j− r)!(2j− 2r)
22r(2j− 2r + 1)!r!

x2j−2r−1 C2i(x). (30)

The moment Formula (6) enables one to convert the last formula into the following one:
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C2i(x)C′2j(x) = (2j + 1)
j

∑
r=0

(−1)r(2j− r)!(2j− 2r)
22r(2j− 2r + 1)!r!

×

2j−2r−1

∑
`=0

21−2`(−1 + i(−2 + 4j− 4r) + 4(j− r)(j− `− r))(−1 + j− r)(2j− `− 2r)`−2
(1 + 2i + 2j− 2`− 2r)`!

×

C2i+2j−2r−2`−1(x).

(31)

Some algebraic manipulations lead to converting Formula (31) into the following formula:

C2i(x)C′2j(x) =
i+j

∑
p=0

21−2p(1 + 2j)
1 + 2i + 2j− 2p

×

p

∑
`=0

(−1)`(−j + `)(1 + i(2− 4j + 4`)− 4(j− `)(j− p))(−2 + 2j− 2`)!(2j− `)!
`!(p− `)!(1 + 2j− 2`)!(2j− `− p− 1)!

C2i+2j−2p(x).

On the basis of Lemma 4, Formula (26) can be obtained.
Other formulas can be obtained using the two power form representations along with

the moment Formula (6) after using some symbolic computation.

Corollary 3. For all non-negative integers i and j, the product of C̃i(x) and C̃′j(x) can be linearized
as in the following formula:

C̃i(x) C̃′j(x) =
j

∑
p=0

H̃p,i,j C̃i+j−2p−1(x), (32)

where
H̃p,i,j = 2 Hp,i,j, (33)

and the coefficients Hp,i,j are those given in (25).

Proof. Formula (32) can be easily deduced from Formula (24) only if x is replaced by
(2x− 1).

4. Numerical Treatment of Kawahara Equation

We consider the following Kawahara equation [18]:

∂U
∂t

+ ϑ U
∂U
∂x

+ ς
∂3U
∂x3 − κ

∂5U
∂x5 = 0, (x, t) ∈ (a, b)× (0, T), (34)

governed by the boundary conditions:

U(a, t) = U(b, t) = Ux(a, t) = Ux(b, t) = Uxx(b, t) = 0, (35)

and the initial condition:
U(x, 0) = g(x). (36)

The optimal use of the fifth-kind Chebyshev polynomials is on [−1, 1] or [0, 1]. For
this purpose, we use the following transformation: x̃ = (2x− b− a)/(b− a), t̃ = t/T, and
for the sake of simplicity and convenience, we use (x, t) to denote (x̃, t̃). Then, we have to
handle the following scaled Kawahara equation:

T ut + ϑ
(b− a)

2
u ux + ς

(b− a)3

8
uxxx − κ

(b− a)5

32
uxxxxx = 0, (x, t) ∈ Λ = (−1, 1)× (0, 1), (37)

governed by
u(±1, t) = ux(±1, t) = uxx(1, t) = 0, (38)
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and
u(x, 0) = g(x). (39)

Remark 4. Except for specific choices of the parameters ϑ, ς, κ, no exact solution to Equation (37)
exists in general. This, of course, has motivated us to treat this type of equations numerically.

Remark 5. One of the cases in which Equation (37) can be exactly solved can be verified to be the
case corresponding to the choices: ϑ = ς = κ = 1. In this case, the exact solution is given by

u(x, t) =
105
169

sech4
(

1
2
√

13

(
2x− b− a

b− a
− 36

169
t
T

))
.

The authors in [18] indicated this exact solution, but for the case that corresponded to [a, b] =
[−L, L], T = L.

4.1. Tau Algorithm for the Numerical Treatment of the Kawahara Equation

This section proposes a numerical algorithm for dealing with the Kawahara Equation (37)
under boundary and initial Conditions (38) and (39). The double-basis functions of the
polynomials Ci(x) and their shifted ones C̃i(x) were chosen. The following special values of
polynomials Ci(x) and C̃i(x) were required before proceeding with our proposed numerical
algorithm. The following lemma exhibits these results.

Lemma 5. Let i ≥ q, and let G(q)
i = DqCi(x)|x=1. The following identities hold:

G(0)
i =

1
2i


1, i even,

i + 1
i

, i odd,
(40)

G(1)
i =

1
2i


i(i + 2), i even,

i2(i + 3)− 2
i

, i odd,
(41)

G(2)
i =

1
2i


1
3 i(i + 2)(i(i + 2)− 5), even,

(i− 1)(i + 1)(i + 3)(i(i + 2)− 6)
3i

, i odd.
(42)

Proof. The proof can be performed using the connection formula between the fifth-and
first-kind Chebyshev polynomials. From Connection Formulas (17) and (18), and noting
the simple identity of Tm(1) = 1, m ≥ 0, we obtain the two following identities:

G0
2i =21−2i

i

∑
m=0

ξi−m (−1)m,

G0
2i+1 =

4−i

2i + 1

i

∑
m=0

(−1)m(1 + 2i− 2m).

It is not difficult to show the two following identities:

i

∑
m=0

ξi−m (−1)m =
1
2

,

i

∑
m=0

(−1)m(1 + 2i− 2m) = i + 1.
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Hence, the two following formulas hold:

G0
2i =

1
22i ,

G0
2i+1 =

i + 1
22i (2i + 1)

.

Unifying the last two identities, we obtain Formula (40). Formulas (41) and (42) can be
similarly proven on the basis of the two following identities for the first-kind Chebyshev
polynomials:

DTi(x)|x=0 = i2, D2Ti(x)
∣∣∣
x=0

=
1
3

i2(i− 1)(i + 1).

The special values at x = −1 can be similarly deduced. The following lemma exhibits
the corresponding results of Lemma 5 at x = −1.

Lemma 6. Let i ≥ q, and let F(q)
i = DqCi(x)|x=−1. The following identities hold:

F(0)
i =

1
2i


1, i even,

−(i + 1)
i

, i odd,
(43)

F(1)
i =

1
2i


−i(i + 2), i even,

i2(i + 3)− 2
i

, i odd,
(44)

F(2)
i =

1
2i


1
3 i(i + 2)(i(i + 2)− 5), even,

−(i− 1)(i + 1)(i + 3)(i(i + 2)− 6)
3i

, i odd.
(45)

Proof. By using Connection Formulas (17) and (18), along with the following identities:

Ti(−1) = (−1)i, DTi(x)|x=−1 = (−1)i+1 i2, D2Ti(x)
∣∣∣
x=−1

=
1
3
(−1)i i2(i− 1)(i + 1),

Lemma 6 can be proven.

Now, we proceed in our numerical algorithm to solve (37)–(39). We first choose the
two following basis functions:

φp(x) = Cp(x), ψq(t) = C̃q(t) = Cq(2t− 1),

and consider the following approximate solution to (37)–(39):

u(x, t) ≈ uN(x, t) =
N

∑
p=0

N

∑
q=0

ap,q φp(x)ψq(t). (46)

The basic idea behind the application of the spectral Tau method is based on choosing
two families of basis functions called trial and test functions. The approximate solution is
written in terms of the trial functions. The application of this method enforces the residual
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of the equation to be orthogonal to the test functions. The residual of (37) can be computed
with the following formula:

RN(x, t) =T Dt uN(x, t) + ϑ
(b− a)

2
uN(x, t) Dx uN(x, t) + ς

(b− a)3

8
D3

xuN(x, t)

− κ
(b− a)5

32
D5

xuN(x, t),
(47)

where DtuN(x, t) denotes the partial derivative with respect to t, while Dr
xuN(x, t) denotes

the rth partial derivative with respect to x.
Now, in order to be able to apply the Tau method, we give the expressions of

the partial derivatives: Dt uN(x, t), D3
xuN(x, t), and D5

xuN(x, t) in terms of the proposed
basis functions.

In virtue of (46) along with Formula (15), we can express Dt uN(x, t) as

Dt uN(x, t) =
N

∑
p=0

N

∑
q=1

q−1

∑
s=0

ap,q d̃(1)q,s φp(x)ψs(t), (48)

and partial derivatives D3
xuN(x, t), and D5

xuN(x, t) can be expressed by the following
formulas, respectively:

D3
xuN(x, t) =

N

∑
p=3

N

∑
q=0

p−3

∑
r=0

ap,q d(3)p,r φr(x)ψq(t), (49)

D5
xuN(x, t) = −

N

∑
p=5

N

∑
q=0

p−5

∑
r=0

ap,q d(5)p,r φr(x)ψq(t). (50)

Furthermore, to express the term uN(x, t) Dx uN(x, t), we use Formula (7) along with
Corollary 3 to obtain

uN(x, t) Dx uN(x, t) =
N

∑
p′=0

N

∑
q′=0

N

∑
p=1

N

∑
q=0

p′+p−1

∑
τ′=p′−p−1

q′+q

∑
τ=q′−q

ap′ ,q′ ap,q H̃τ′ ,p,p′ Lτ,q,q′ φτ′(x)ψτ(t), (51)

where coefficients H̃τ′ ,p,p′ can be computed from (33).
Now, thanks to Expressions (48)–(51), the residual RN(x, t) can be written in the form:

RN(x, t) =T
N

∑
p=0

N

∑
q=1

q−1

∑
s=0

ap,q d̃(1)q,s φp(x)ψs(t) + ς
(b− a)3

8

N

∑
p=3

N

∑
q=0

p−3

∑
r=0

ap,q d(3)p,r φr(x)ψq(t)

− κ
(b− a)5

32

N

∑
p=5

N

∑
q=0

p−5

∑
r=0

ap,q d(5)p,r φr(x)ψq(t)

+ϑ
(b− a)

2

N

∑
p′=0

N

∑
q′=0

N

∑
p=1

N

∑
q=0

p′+p−1

∑
τ′=p′−p−1

q′+q

∑
τ=q′−q

ap′ ,q′ ap,q Hτ′ ,p,p′ Lτ,q,q′ φτ′(x)ψτ(t).

(52)

Now, since our choice of basis functions does not guarantee the satisfaction of bound-
ary and initial Conditions (38) and (39), we have to set these conditions as constraints. In
fact, Lemmas 5 and 6, along with boundary and initial Conditions (38) and (39) lead to the
following equations:

uN(−1, t) =
N

∑
p=0

N

∑
q=0

ap,q F(0)
p ψq(t) = 0, (53)
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uN(1, t) =
N

∑
p=0

N

∑
q=0

ap,q G(0)
p ψq(t) = 0, (54)

DxuN(−1, t) =
N

∑
p=1

N

∑
q=0

ap,q F(1)
p ψq(t) = 0, (55)

DxuN(1, t) =
N

∑
p=1

N

∑
q=0

ap,q G(1)
p ψq(t) = 0, (56)

D2
xuN(1, t) =

N

∑
p=2

N

∑
q=0

ap,q G(2)
p ψq(t) = 0, (57)

uN(x, 0) =
N

∑
p=0

N

∑
q=0

ap,q φp(x) F(0)
q = 0. (58)

Now, the residual formula in (52) enables one to apply the Tau method. More precisely, the
Tau method implies that (

RN(x, t), φp(x)ψq(t)
)

w = 0, (59)

where w = w(x, t) = w(x) w̃(t) = x2 (2 t−1)2
√

1−x2
√

t−t2 .
Equation (59) leads to the following equation:

T
N

∑
p=0

N

∑
q=1

q−1

∑
s=0

ap,q d̃(1)q,s δp,m hm δs,n h̄n + ς
(b− a)3

8

N

∑
p=3

N

∑
q=0

p−3

∑
r=0

ap,q d(3)p,r δr,m hm δq,n h̄n

− κ
(b− a)5

32

N

∑
p=5

N

∑
q=0

p−5

∑
r=0

ap,q d(5)p,r δr,m hm δq,n h̄n

+ ϑ
(b− a)

2

N

∑
p′=0

N

∑
q′=0

N

∑
p=1

N

∑
q=0

p′+p−1

∑
τ′=p′−p−1

q′+q

∑
τ=q′−q

ap′ ,q′ ap,q Hτ′ ,p,p′ Lτ,q,q′ δτ′ ,m hm δτ,n h̄n = 0,

0 ≤ m, n ≤ N − 2.

(60)

Now, by applying the inner product between uN(−1, t), uN(1, t), DxuN(−1, t), DxuN(1, t),
D2

xuN(1, t) with ψn(t), respectively in (53)–(57), with respect to the weight function w2(t),
and applying the inner product between uN(x, 0) and φm(x) in (58) with respect to the
weight function w1(x), yields the following equations:

N

∑
p=0

N

∑
q=0

ap,q F(0)
p δq,n h̄n = 0, 0 ≤ n ≤ N − 1, (61)

N

∑
p=0

N

∑
q=0

ap,q G(0)
p δq,n h̄n = 0, 0 ≤ n ≤ N − 1, (62)

N

∑
p=1

N

∑
q=0

ap,q F(1)
p δq,n h̄n = 0, 0 ≤ n ≤ N − 1, (63)

N

∑
p=1

N

∑
q=0

ap,q G(1)
p δq,n h̄n = 0, 0 ≤ n ≤ N − 1, (64)

N

∑
p=2

N

∑
q=0

ap,q G(2)
p δq,n h̄n = 0, 0 ≤ n ≤ N − 1, (65)

N

∑
p=0

N

∑
q=0

ap,q F(0)
q δp,m hm = gm, 0 ≤ m ≤ N − 1. (66)

Equations (60) and (61)–(66) construct a set of nonlinear algebraic equations in which the
unknown expansion coefficients are ap,q of dimension (N− 1)2 + 4N = (N + 1)2. We solve
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this system with Newton’s method with vanishing initial guess and obtain the needed
approximate solution.

Remark 6. We could handle the same problem over the spatial domain x ∈ (0, 1) by performing
the slight change of replacing φp(x) with φp(2x− 1) = ψp(x).

4.2. Convergence and Error Analysis

In this section, we comment on the convergence of approximate solution u(x, t) to the
Kawahara equation.

Theorem 5 ([39]). Let u(x, t) = g1(x) g2(t) ∈ L2
ω̂(x,t)(I), provided with g1(x) and g2(t), both

have bounded third derivatives and assume the following expansion:

u(x, t) =
∞

∑
i=0

∞

∑
j=0

aij Ci(x) C̃j(t). (67)

The preceding Series (67) converges uniformly to u(x, t), and the next inequality holds:

|aij| /
1

(i j)3 2i+j
, ∀ i, j > 3. (68)

Y / Z means that there exists a generic constant n independent of N and any function, such that
Y ≤ n Z.

Theorem 6 ([39]). Under the same assumptions of Theorem 5, the following truncation error
estimate is valid:

|u(x, t)− uN(x, t)| / 4−N . (69)

5. Numerical Examples

This section presents three examples of the Kawahara equation that are solved numer-
ically via our proposed numerical algorithm.

Example 1 ([18]). Consider the following Kawahara equation:

∂U
∂t

+ U
∂U
∂x

+
∂3U
∂x3 −

∂5U
∂x5 = 0, (x, t) ∈ (−200, 200)× (0, 200), (70)

governed by the boundary conditions:

U(−200, t) = U(200, t) = Ux(−200, t) = Ux(200, t) = Uxx(200, t) = 0, (71)

and the initial condition:

U(x, 0) =
105
169

sech4
(

100 x√
13

)
. (72)

From Equation (34), it is clear that: a = −200, b = T = 200. We applied transformation
x̃ = x/200, t̃ = t/200 to transform (70)–(72) into the following modified equation:

ut + u ux + 2.5× 10−5 uxxx − 6.25× 10−10 uxxxxx = 0, (x, t) ∈ Λ = (−1, 1)× (0, 1), (73)

subject to the boundary conditions:

u(±1, t) = ux(±1, t) = uxx(1, t) = 0,

and the initial conditions:

u(x, 0) =
105
169

sech4
(

100 x√
13

)
,
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with the exact smooth solution

u(x, t) =
105
169

sech4
(

100√
13

(
x− 36

169
t
))

.

For the purpose of verifying the accuracy of the method, we depict some figures that show the
behavior of the solutions by fixing t (x) for different values of x (t), the approximate solution, and
the absolute error; all these figures were generated for N = 14.

• Figure 1 presents the numerical solution of Example 1 for various spatial values. From the
results in this figure, we can see the moving behavior of the solution wave as x changes.

• Figure 2 presents the numerical solution of Example 1 for various temporal values. From the
results in this figure, we can see the infinitesimal change of the solution wave as time goes on
for fixed values of x.

• Figure 3 presents the numerical solution of Example 1 at any point (x, t) ∈ Λ. From the
results in this figure, we see the whole solution when both temporal and space variable changes,
and this wave coincides with the two previous figures.

• Figure 4 presents the absolute error of Example 1 at any point (x, t) ∈ Λ. From the results
in this figure, we ascertain the exponential convergence of the method as the error is of
order 10−15.

In addition, Table 1 displays a comparison between our proposed algorithm with the method
developed in [18]. From this comparison, we can definitely conclude that the results obtained by our
proposed algorithm were more accurate than those obtained by the method developed in [18].

t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

x=0

x=0.1

x=0.12

x=0.14

x=0.16

x=0.18

x=0.2

Figure 1. Approximate solution of Example 1 for various spatial values.

x

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6 t=0.1

t=0.2

t=0.3

t=0.4

t=0.5

t=0.6

t=0.7

t=0.8

t=0.9

Figure 2. Approximate solution of Example 1 for various temporal values.

Figure 3. Approximate solution of Example 1 at any point (x, t) ∈ Λ.
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Figure 4. Absolute error of Example 1 at any point (x, t) ∈ Λ.

Table 1. Comparison between L2 errors of Example 1.

t Method in [18] Present Method

0.5 3.44 × 10−7 2.78 × 10−15

1 5.93 × 10−7 4.59 × 10−15

Example 2 ([44]). Consider the following Kawahara equation:

∂U
∂t

+ U
∂U
∂x

+
∂3U
∂x3 −

∂5U
∂x5 = 0, (x, t) ∈ (−20, 30)× (0, 30), (74)

governed by the boundary conditions:

U(−20, t) = U(30, t) = Ux(−20, t) = Ux(30, t) = Uxx(30, t) = 0, (75)

and the initial condition:

U(x, 0) =
105
169

sech4
(

100 x√
13

)
. (76)

In such a case, a = −20, b = T = 30. We applied transformation x̃ = (x− 5)/25, t̃ = t/30 to
obtain the following modified equation:

30 ut + 25 u ux + 15625 uxxx − 9765625 uxxxxx = 0, (x, t) ∈ Λ = (−1, 1)× (0, 1), (77)

subject to the boundary conditions:

u(±1, t) = ux(±1, t) = uxx(1, t) = 0,

and the initial conditions:

u(x, 0) =
105
169

sech4
(

x− 5
50
√

13

)
,

with the exact smooth solution

u(x, t) =
105
169

sech4
(

169(x− 5)− 30 t
8450
√

13

)
.

We compared our results to those obtained in [44] in Table 2. The results in this table confirm that
our method is ultimately better than the cubic spline technique offered in [44]. In Figure 5, we depict
the numerical solution for N = 14 over the whole domain.



Symmetry 2023, 15, 138 17 of 21

Table 2. Comparison between L2-errors of Example 2.

t Method in [44] Present Method (N = 14)

5 3.289 × 10−5 6.361 × 10−16

15 3.294 × 10−5 4.273 × 10−16

25 3.320 × 10−5 5.84 × 10−15

Figure 5. Approximate solution of Example 3 at any point (x, t) ∈ Λ, when N = 14.

Example 3 ([45]). Consider the following equation:

∂U
∂t
−U

∂U
∂x

+
∂5U
∂x5 = 0, (x, t) ∈ (0, 10)× (0, 1), (78)

governed by the boundary conditions:

U(0, t) = t, U(10, t) = t cos 10, Ux(0, t) = 0, Ux(10, t) = −t sin 10, Uxx(1, t) = −t cos 10, (79)

and the initial condition:
U(x, 0) = 0, (80)

we apply the transformation x̃ = 5(x + 1), t̃ = t, to obtain the following modified equation:

ut − 0.2u ux + 0.00032 uxxxxx =
1
2

t2 sin(10(1 + x))− t sin(5(1 + x)) + cos(5(1 + x)),

(x, t) ∈ Λ = (0, 1)× (0, 1),

subject to the boundary conditions:

u(0, t) = t cos 5, ux(0, t) = −5 t sin 5, u(1, t) = t cos 10, ux(1, t) = −5 t sin 10, uxx(1, t) = −25 t cos 10,

and the initial condition:
u(x, 0) = 0,

with the exact smooth solution:

u(x, t) = t cos(5(1 + x)).

We display now some figures whose descriptions are as follows:

• Figure 6 presents the numerical solution of Example 3 for various spatial values. From the
results in this figure, we can track the spatial change of the solution at a fixed instant.

• Figure 7 presents the numerical solution of Example 3 for various temporal values. From the
results in this figure, we can track the temporal change of the solution at a fixed x.

• Figure 8 presents the numerical solution of Example 3 at any point (x, t) ∈ Λ. From the
results in this figure we can see the whole solution at any point in the x− t plane.
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• Figure 9 presents the absolute error of Example 3 at any point (x, t) ∈ Λ. From the results in
this figure, we can clearly verify the accuracy of the method.

t

uN(x,t)

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0.0

0.5

1.0

x=0

x=0.2

x=0.4

x=0.6

x=0.8

x=1

Figure 6. Approximate solution of Example 3 for various spatial values.

x

uN(x, t)

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

t=0.2

t=0.4

t=0.6

t=0.8

t=1

Figure 7. Approximate solution of Example 3 for various temporal values.

Figure 8. Approximate solution of Example 3 at any point (x, t) ∈ Λ.

Figure 9. Absolute error of Example 3 at any point (x, t) ∈ Λ.

Example 4. We chose to handle the following example with an exact polynomial solution to ensure
that the method would achieve the solution if the number of retained modes agrees with the highest
degree of the monic polynomial included in the exact solution.

ut +
1
5

u ux +
1
60

uxxx +
1

120
uxxxxx = t2x9 + tx2 + t + x5, (x, t) ∈ Λ = (0, 1)× (0, 1), (81)

subject to the boundary conditions:

u(0, t) = ux(0, t) = 0, u(1, t) = t, ux(1, t) = 5t, uxx(1, t) = 20 t, (82)
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and the initial conditions:
u(x, 0) = 0, (83)

with the exact smooth solution
u(x, t) = x5 t.

We applied the technique in Section 4.1 for N = 5. In such a case, the approximate solution is
given by

uN(x, t) =
5

∑
p=0

5

∑
q=0

ap,q φp(x)ψq(t).

Furthermore, Equations (60)–(66) yield the following coefficients of the approximate solution
expansion:

a0,0 = a0,1 =
93

512
, a1,1 = a1,0 =

225
1024

, a2,1 = a2,0 =
65

256
,

a3,1 = a3,0 =
57

320
, a4,1 = a4,0 =

5
64

, a5,1 = a5,0 =
1

64
,

ap,q = 0, 0 ≤ p ≤ 5, 2 ≤ q ≤ 5,

and accordingly, we obtain
uN(x, t) = t x5,

which is the exact solution.

6. Conclusions

In this paper, a new spectral solution to the Kawahara-type equations was proposed.
The derivation of this solution is based on the application of the Tau method. Two families of
the fifth-kind Chebyshev polynomials and their shifted ones were selected as basis functions.
Some theoretical results concerning the fifth-kind Chebyshev polynomials and their shifted
polynomials were established and utilized to obtain our proposed algorithm. The Tau
method served to transform the Kawahara partial differential equation governed by its
underlying conditions into a system of nonlinear equations that could be efficiently solved.
The numerical examples showed the accuracy and applicability of our proposed algorithm.
Our algorithm could be applied to other types of nonlinear differential equations.
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