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Abstract: In the framework of generalized Lorenz–Mie theory, we report here the results of our
comprehensive study for analyzing and computing the optical torque (OT) caused by AGVBB on a
charged sphere of arbitrary size. The effects of polarization, order, half-cone angle, the position of
particle, and the surface charge are carefully considered. The axial and transverse components or
OTs are numerically calculated, and the sign reversal of the axial OTs and vortex-like character of the
total transverse OTs are mainly discussed. The results reported here are expected to have significant
impact on improving the ability of optical manipulation and rotation.

Keywords: optical torque; charged sphere; vector Bessel (vortex) beam; GLMT

1. Introduction

An lth order axicon-generated vector Bessel (vortex) beam (AGVBB) [1–21] with ho-
mogenous polarization state has a helical phase characterized by exp(ilϕ), where ϕ is the
azimuthal angle. The lth order vector of an AGVBB carries two types of angular momentum:
(i) a spin angular momentum (SAM) corresponding to the polarization and (ii) an orbital
angular momentum (OAM) corresponding to the vortex phase [22–24]. Circularly polar-
ized waves carry SAM quantized as ± h̄ per photon, and an OAM, which describes the
azimuthal angular dependence of photons, is quantized as lh̄ per photon. Different l-values
correspond to mutually orthogonal OAM modes, and the total number of OAM modes is
unbounded. When an AGVBB interacts with an absorptive particle, the angular momentum
is transferred from the beam to the particle, causing an OT. The quantitative assessment
of OT generated by a vector vortex beam is of paramount importance for improving the
ability of optical manipulation and rotation.

In earlier studies, many researchers have devoted their work to the OTs exerted by
AGVBB either on an absorptive Rayleigh dielectric [18,25] sphere, magneto-dielectric [26]
sphere, and/or a neutral sphere of arbitrary size. These studies have placed special em-
phases on the sign reversal of axial OTs and the vortex-like behavior of the total transverse
OTs for different polarization types. The existing studies on optical torques by the vector
Bessel beams assumed that the particles are un-charged. For many practical situations,
however, the particles are charged. For example, particles can be charged due to the fre-
quent collision between two particles or contact with reactor walls. The water droplets
formed in ocean sprays is also charged. A graphene-coated particles can be modelled by a
charged sphere. These particles have excess surface charge, and these surface charges create
a very thin metallic layer. It is important to investigate the OT on the charged particle. It is
expected that the surface charge could significantly affect the scattered field and optical
torque on the particles.

The purpose of this paper is to numerically compute and analyze the OTs on a charged
sphere of an arbitrary size placed in an AGVBB. In the framework of a generalized Lorenz–
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Mie theory (GLMT), we meticulously calculate the axial and transverse OTs, including the
results of sign reversal of axial OTs and the vortex-like character of the transverse OTs. The
effects of polarization, order l, half-cone angle α0, and surface charge on OTs are carefully
analyzed. In Section 2, we outline the theory of the OTs on a charged sphere induced by an
AGVBB. In Section 3, the computational results are reported and analyzed on the axial and
transverse components of OTs, and the sign reversal of the axial OTs and the vortex-like
character of the transverse OTs are mainly discussed. The effect of surface charge is also
discussed in Section 3, with the concluding remarks presented in Section 4.

2. Optical Torque by an AGVBB on a Charged Sphere

As shown in Figure 1, a spherical particle is placed in a polarized Bessel beam, which
is generated using an axicon illuminated by a Gaussian beam. The radius of the particle is a,
and the complex refractive index is m1. The particle carries excess surface electric charge,
which can be expressed by the equivalent surface conductivity σS. The charge amount
increases from the 0 (neural particle) to a saturated charges. The half-cone angle of the
beam is α0, and the wavelength is λ. The refractive index of the surrounding media is m2.
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where
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An = <(an)−|an|2 (9)

Bn = <(bn)−|bn|2 (10)

Here, < and the superscript ∗ denote the real and complex conjugate, respectively.
K = 2π/λ is the wavenumber. The superscript u represents the polarization type. c is the
light speed in vacuum. an and bn are the Mie scattering coefficients for a charged sphere,
which can be written as follows [34–42]:

an = ψn(x)ψ′n(m1x)−m1ψn(m1x)ψ′n(x)−iωµ0σs/kψ′n(m1x)ψ′n(x)
ξn(x)ψ′n(m1x)−m1ψn(m1x)ξ ′n(x)−iωµ0σs/kψ′n(m1x)ξ ′n(x)

bn = ψn(m1x)ψ′n(x)−m1ψn(x)ψ′n(m1x)+iωµ0σs/kψn(x)ψn(m1x)
ψn(m1x)ξ ′n(x)−m1ξn(x)ψ′n(m1x)+iωµ0σs/kψn(m1x)ξn(x)

(11)

where x = ka is the dimensionless size parameter of the sphere. ψn(.) and ξn(.) are Ri-
catti_Bessel functions of first and third kinds, respectively, and the prime indicates the
derivative with respective to the parameter. The surface conductivity σs is given by the
following [34,41,42]:

σs =
iρse/me

ω + iγ
=

ρseγ

me(ω2 + γ2)
+ i

ρseω

me(ω2 + γ2)
(12)

Here, ρs is the surface charge density, which ranges from 0 to a maximum value. When
ρs = 0, the particle is neutral. When ρs has its maximum value, the amount of charge reaches
the saturated charges [42]. e = 1.602× 10−19C and me = 9.109× 10−31kg are the charge
and mass of electron, respectively. Following ref. [35], the term γ is defined by γ ≈ kBT/},
with T being the temperature of the sphere. kB = 1.38× 10−23 J/K is the Boltzmann’s
constant, and } = 1.0546× 10−34 Js is the Plank’s constant divided by 2π.

gm,u
n,TM and gm,u

n,TE are the beam-shaped coefficients (BSCs) [29]. The BSCs for an AGVBB
were derived in reference [43,44]. In Equations (3)–(5), a pre-factor involving the power of
the incident beam is omitted [33].

3. Numerical Results and Discussions

The theory reported in Section 2 is employed here for numerically simulating the
vector components of OTs by an lth-order AGVBB on the charged sphere having radius a.
Both axial and transverse components of the OTs are discussed separately, with emphasis
on the effect of beam order l, the half-cone angle α0, polarization, and the surface charge.
Here, we assume that the particle is a pure glycerol droplet surrounded by air of the
refractive index m2 = 1. The wavelength of an incident beam is λ = 532 nm. The real
part of the refractive index of the pure glycerol droplet is 1.4746, and the imaginary part
is negligible at λ = 532 nm [45]. Since the generation of OT needs the absorption of the
particle, a small imaginary part of the refractive index is added in our calculation. Thus,
the refractive index is assumed to be m1 = 1.4746 + 10−7i.

3.1. Axial Optical Torque

We first investigated the axial OT components by placing the charged sphere centered
on a zeroth-order (l = 0) AGVBB (on-axis, x0 = y0 = 0), as shown in Figure 1. In our
calculations, the surface conductivity is assumed as σs = 5.5× 10−10 + 4.97× 10−8iΩ−1m−1

(corresponding surface charge density is ρs = 10−3 C/m2). Note that, in this case, the
transverse OT components vanish due to the symmetry. Figure 2 describes the calculated
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axial OTs (Tu
z ). The dimensionless size parameter ka varies in the range 0 < ka < 10 with

k = 2π/λ. The half-cone angle α0 changes within the range of 0 ≤ α0 ≤ 90◦. Since the
zeroth-order AGVBB with linear, radial, or azimuthal polarization carries neither spin nor
the orbital angular momentum, the sphere does not experience axial OT when placed in
the beam. In Figure 2, the OTs for these polarizations are not given, and only the OTs for
circular polarizations are shown. It can be noted that the axial OTs remain negative (for
right circular polarization) and positive (for left circular polarization). This means that the
zeroth-order AGVBB for circular polarizations does not reverse the sign of the axial OT. In
general, the magnitude of the axial OT is larger for larger size parameter ka and smaller
half-cone angle α0.
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The title of each panel denotes the polarization state.

The results displayed in Figure 3 are generated to provide axial OT by the first-order
(l = 1) AGVBB. It is well-known that a higher-order (l 6= 0) AGVBB carries an axial angular
momentum denoted by the phase term exp(ilϕ). Each photon of the lth-order AGVBB
carries OAM lh̄. In addition, if the incident beam is circular polarized, each photon carries
SAM +1h̄ (left circular polarization) or −1h̄ (right circular polarization). Thus, the total
angular momentum becomes (l ± 1) h̄. When the photons are absorbed or scattered by the
particle, the OAM is transferred from incident beam to the particle. Thus, for right circular
polarization, the photon carries no angular momentum ((l − 1) h̄ = 0), which results in an
axial OT of 0 as shown in Figure 3c. Similarly, for left circular polarization, the photon
carries angular momentum 2h̄ (Figure 3d), so the magnitude of the axial OT is about twice
that of the linear polarizations (Figure 3a,b). The axial OTs for linear polarizations have
similar distribution. In general, the magnitude increases with the increase of size parameter
ka. This is caused by the fact that a larger size particle can have more angular momentum
from the incident beam, as more rays are incident on the particle. The variation of axial
OT with half-cone angle α0 is dependent on the polarization. For instance, with linear and
circular polarization, the maximum axial OT locates in the range between 40◦ < α0 < 70◦,
while that of radial and azimuthal polarizations locates in the range of 0◦ < α0 < 30◦.

Next, an off-axis case (x0 = 1 µm) is studied for absorptive charged sphere placed in
the lth-order AGVBB. All other parameters are the same as that of the on-axis case.

Figure 4 depicts the axial OT Tu
z for a charged sphere illuminated by a zeroth-order

(l = 0) AGVBB. Similarly, as the AGVBBs for linear, radial, and azimuthal polarizations
do not carry any angular momentum, the axial OTs vanish and are not seen in Figure 4.
For right (left) circular polarizations, the axial OT remains negative (positive). This means
that the sign of the axial OT is not reversed for off-axis incidence. Note that, for a neutral
particle, the sign reversal can be observed as discussed in ref. [46]. Thus, depending on
the position of particle in the beam, the surface charge can change the sign of the axial
OT, namely the rotational direction. The comparison of Figures 2 and 4 shows that the
distribution of the axial OTs depends on the position of the particle in the beam.
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The effect of increasing the beam order to l = 1 for off-axis incidence is displayed
in Figure 5. The comparison of Figures 3 and 5 shows several typical differences of the
axial OT Tu

z for on- and off-axis incidence. The most important difference is that Tu
z can

be either positive or negative depending on the size parameters ka and half-cone angle α0.
For instance, if ka = 0.8, and the beam is linear polarized, the sign of the axial OT changes
with α0. This means that one can rotate the particle clockwise or counter clockwise by
changing the half-cone angle α0. This has potential application in the optical switches.
Secondly, for right circular polarization, Tu

z is 0 for on-axis incidence, but it is non-zero for
off-axis incidence.

Next, the axial OT Tu
z is calculated by varying the relative position of the particle and

the beam center in the range between −1 µm ≤ (x0, y0) ≤ 1 µm. Since the surface charge
mainly affects small particles, here, we considered relatively small sphere of radius 10 nm.
Figure 6 gives the results for a zeroth-order (l = 0) AGVBB with half cone-angle α0 = 15◦

and circular polarizations. The OTs for other polarizations vanish and are not shown. For
circular polarizations, the axial OTs form a series of concentric rings. In the center, the
axial OT has maximum magnitude for left circular polarization, while its magnitude is zero
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for right circular polarization. It is seen that the axial OT remains positive (left circular
polarization) or negative (right circular polarization), which means that the sign of the axial
OT is not reversed.
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The effect of increasing the beam order to l = 1 is displayed in Figure 7. First, for
circular, radial, and azimuthal polarizations, the axial OTs form a series of concentric rings.
For right circular, radial, and azimuthal, the axial OT has central maximum magnitude
but zero central magnitude for the left circular polarization. The AGVBBs for radial and
azimuthal polarizations induce a larger axial OT than that for the circular polarizations.
For circular, radial, and azimuthal polarizations, the axial OTs are symmetrical about the
center (x0 = y0 = 0), while the symmetry is broken for linear polarizations. They form four
islands: two of them are formed by maximum magnitude, while the other two are formed
by minimum magnitude. For linear polarizations, two islands for minimum magnitude
are arranged in the polarization direction, and the other two are perpendicular to the
polarization direction. Note that the magnitude for circular polarizations is much larger
than that for linear polarizations. It is very important that, for radial and azimuthal
polarizations, the axial OT can be positive or negative depending on the position of particle
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in the beam. This means that if the particle moves radially from the beam axis, it may rotate
in either the counter-clockwise or the clockwise direction.
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The effects of increasing the half-cone angle to α0 = 80◦ for zeroth- and first-order AGVBBs
on the axial OTs were also investigated, and the results are displayed in Figures 8 and 9.
Like the smaller half-cone angle, the axial OTs for linear, radial, and azimuthal polariza-
tions are zero, and for circular polarizations, it forms a series of concentric rings. A com-
parison of Figures 6b and 8b shows an important difference. For left circular polarization,
the axial OT for smaller α0 remains positive, while that of larger α0 can be either positive
or negative depending on the position of the particle. This means that for a larger α0, the
sign reversal of axial OT can be observed. Similar results can be observed for first-order
AGVBB from the comparison of Figures 7d and 9d. Note that for larger α0, the concentric
rings become denser.
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3.2. Transverse Optical Torque

Next, we investigated the transverse OTs Tu
x and Tu

y by considering the effects of
polarization, beam order, surface charge, and half-cone angle on the total transverse OT;
i.e., Tu

⊥ = Tu
x + Tu

y . In our calculations, we assumed the radius of the particle a = 10 nm,
the refractive index of the particle is m1 = 1.4746 + 1−7i, while the surrounding media is air
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with refractive index m2 = 1. The wavelength of the incident AGVBB is λ = 532 nm. The
vortex-like character of the transverse OT is mainly discussed.
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First, we considered the transverse OTs for a smaller half-cone angle. Figures 10 and 11
show, respectively, the transverse OTs induced by zeroth-order (l = 0) and first-order (l = 1)
AGVBBs with α0 = 15◦. For the zeroth-order AGVBB with x-polarization, the transverse OT
is parallel or anti-parallel to the y-axis depending on the position of particle. For x0 > 0 and

ro =
√

x2
0 + y2

0 < 1, the transverse OT is parallel to the y-axis, and it is anti-parallel for r0 > 1.
For x0 < 0, the transverse is opposite to that for x0 > 0. The transverse OTs for y polarization
rotate by 90 degrees relative to that for the x polarization, respectively. For circular, radial,
and azimuthal polarizations, the transverse OTs have vortex-like characteristics, and the
vortex direction depends on the position of particle. For right circular polarization, the
vortex direction is clockwise. For left circular polarization, the vortex direction is counter-
clockwise for r0 < 0.7 µm and clockwise for r0 > 0.7 µm. The transverse OTs for radial
and azimuthal polarizations have similar vortex-like character. The vortex direction is
clockwise for r0 < 0.9 µm and counter-clockwise for r0 > 0.9 µm.

Figure 11 shows the transverse OT induced by a first-order AGVBB. Like the zeroth-
order AGVBB, the transverse OT generated by a first-order AGVBB with x-polarization
is parallel or anti-parallel to the y-axis. For x0 > 0, the transverse OT is anti-parallel to the
y-axis for r0 < 0.6 µm and is parallel to y-axis for r0 > 0.6 µm. For x0 < 0, the transverse is
opposite to that for x0 > 0. Similar to the case of zeroth-order AGVBB, the transverse OTs
for y polarization rotate by 90◦ relative to that for x polarization, respectively. Furthermore,
vortex-like characteristics can be observed for circular, radial, and azimuthal polarization,
but they have different ranges. For right circular polarization, the vortex direction is
clockwise for r0 < 0.7 µm and anti-clockwise for r0 > 0.7 µm. For left circular polarization,
the vortex direction is always anti-clockwise. For radial and azimuthal polarizations, the
vortex direction is counter-clockwise for r0 < 0.5 µm, clockwise for 0.5 µm < r0 < 1 µm, and
counter-clockwise for r0 > 1 µm.

In the effect of increasing the half-cone angle to α0 = 80◦, the transverse OTs is also
considered, and the corresponding results for l = 0 and l = 1 are shown in Figures 12 and 13,
respectively. For larger α0, the transverse OT around the beam axis is much larger than that
far away from beam axis, so here, we only discuss the OT in the vicinity of the beam axis.
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For linear polarizations, the transverse OT does not have vortex-like character, which is
same with that for smaller α0. For circular, radial, and azimuthal polarizations, the vortex-
like character can be seen near the beam axis for both zeroth- and first-order AGVBBs.
The vortex direction for left circular polarization is counter-clockwise, while that for right
circular, radial, and azimuthal polarizations is clockwise.
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3.3. Effect of Surface Charge

In this section, the effect of surface charge on optical torque is mainly discussed. In
the calculation, the on-axis (x0 = y0 = 0) for a charged sphere centered on a Bessel beam
is considered. The refractive index of the particle is m1 = 1.4746 + 10−7i, and that for the
surrounding media is m2 = 1.0. The wavelength of the incident beam is λ = 532 nm. Here,
only the axial OT component Tu

z are considered.
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Figure 14 shows the axial OTs (Tz) versus surface conductivity σs for particles placed
in a zeroth-order (l = 0) AGVBB. Various half cone-angle α0 and size parameters ka are
considered, and σs varies from 0 to 1. Note that here, only the results for circular polariza-
tions are given since the OTs for linear, radial, and azimuthal polarizations are zeros. For
linear polarizations, the beam carries neither spin nor orbital angular momenta; thus, no
angular momenta will be transferred from the beam to the particle, resulting in zero OTs,
while for radial and azimuthal polarizations, the axial OTs are zero since the beams have
null central intensities. For right circular polarization, the OTs are negative, while the OTs
for left circular polarization are positive. This means that the particle does not experience
negative axial OTs. With the increasing of σs, the magnitude of Tz increases first and then
continuously decreases. For all α0, the magnitude of Tz increases with the size parameter
ka. For right circular polarization, the beam with larger α0 produces larger OT, while for
left circular polarization, larger OT is produced by the beam with smaller α0.
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Figure 14. The plots for axial optical torque Tu
z of a charged sphere by a zeroth-order Bessel beam

versus σs.

The effect of increasing the beam order to l = 1 on the OTs is depicted in Figure 15.
Figure 15a–f correspond to linear, circular, radial, and azimuthal polarizations. For right
circular polarization, the axial OT is zero. Since each photon of the beam carries both spin
angular momentum −h̄ and orbit angular momentum h̄, the total angular momentum
carried by the beam is 0, causing the axial OT to vanish. In general, for other polarizations,
the axial OTs are all positive. This means that the sphere spins in same handedness of the
angular momentum carried by the incident beam. For all cases, the magnitude of the axial
OTs increase first and then decreases until to 0. Note that the magnitude for left circular
polarization is about twice that for linear polarizations. This is caused by the fact that each
photon of a first-order Bessel beam with left circular polarization carries both spin angular
momentum h̄ and orbit angular momentum h̄, and the total angular momentum is 2h̄. For
linear and circular polarizations, the OTs change with α0 and ka in the same rule. In other
words, the magnitude of OTs increases with the increasing of α0 and ka, while for radial
and azimuthal polarizations, the magnitude decreases with α0 and increases with ka.

For quantitatively investigating the effects of the surface charge on axial OT, we
calculated the ratio of axial OT Tu

z for charged and neutral particles. The ratio is defined as
Tc

z /Tn
z , with Tc

z and Tn
z denoting the OTs for charged and neutral spheres, respectively.

Figure 16 shows the ratio Tc
z /Tn

z for a zeroth-order (l = 0) AGVBB. Since the axial OT
for linear, radial, and azimuthal polarizations is 0, only the OTs for circular polarizations
are given in Figure 16. In the calculation, we consider relatively small particles, whose
size parameters ka range from 0.1 to 10. It can be noticed that for both right and left
polarizations, Tc

z /Tn
z decreases with the increase of ka. This means that the surface charge

mainly affects small particles since smaller particles have larger surface charge density.
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Once the particle is large enough, the effect can be ignored. In the meanwhile, we can find
that the half-cone angle α0 does not affect the ratio Tc

z /Tn
z .
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Figure 16. Ratio of axial optical torque for charged and neutral spheres illuminated by a zero-order
Bessel beam.

Figure 17 gives the ration Tc
z /Tn

z for first-order (l = 1) AGVBB, where the Figure 17a–f
correspond to linear, circular, radial, and azimuthal polarizations. Note that since the axial
OT for right circular polarization the axial OT is zero, the corresponding ratio Tc

z /Tn
z is

not given in Figure 17. Similar to the case of zeroth-order (l = 0) AGVBB incidence, the
ratio Tc

z /Tn
z decreases with the increase of size parameter ka. For linear and left circular

polarizations, the ratios Tc
z /Tn

z versus ka are similar, and the half-cone angle α0 does not
affect the ratio. However, for radial and azimuthal polarizations, the half-cone angle α0
has influence on the ratio. For instance, if the incident beam is radially polarized, the ratio
for a larger angle (α0 = 80◦) is larger than that for a smaller angle (α0 = 15◦) when the size
parameter is small. This means a larger α0 leads to greater effect of surface charge.
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4. Conclusions

In summary, the OTs on a charged sphere of arbitrary size by an AGVBB were in-
vestigated using GLMT. The axial and transverse components of the OTs were separately
discussed, and the sign reversal of axial OTs and the vortex-like characteristics of transverse
OTs were mainly discussed. To emphasize the effect of surface charge, the axial OT versus
surface conductivity σs and the ratio Tc

z /Tn
z versus ka were calculated. Numerical calcula-

tions lead to several conclusions: Like the case of neutral particle, the sign of the axial OT
can be reversed, and the vortex-like character of the transverse OT can be observed. The
axial OT sign reversal and vortex-like behaviors are highly sensitive to the polarization
type, order, and half-cone angle. Secondly, the surface charge does not affect the sign of the
axial OT but has strong effect on the magnitude of the axial OT. With the increasing of σs,
the magnitude of the axial OT increases first and then continuously decreases. Thirdly, with
the increase of ka, the ratio Tc

z /Tn
z decreases. This means that the surface charge mainly

affects the axial OT for a relatively smaller particle. Note that for a neutral particle, the
half-cone angle α0 does not affect the ratio Tc

z /Tn
z . However, if a charged sphere is illumi-

nated by an AGVBB of radial or azimuthal polarizations, the ratio Tc
z /Tn

z is sensitive to α0.
The results reported here are valuable in predicting the OT sign reversal for a absorptive
charged sphere of any size in applications dealing with the design and optimization of
particle-manipulation devices. Other related applications can also benefit from the results
of the present investigation.

Author Contributions: Writing—Original Draft, Methodology, Software, and Editing, P.L.; Su-
pervision, L.W.; Validation and Software, H.Y.; Writing—Reviewing, D.N.T.; Data curation, L.L.;
Investigation, J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Symmetry 2023, 15, 128 14 of 15

References
1. Mishra, S.R. A vector wave analysis of a bessel beam. Opt. Commun. 1991, 85, 159–161. [CrossRef]
2. Bouchal, Z.; Olivik, M. Non-diffractive vector bessel beams. J. Mod. Opt. 1995, 42, 1555–1566. [CrossRef]
3. Monk, S.; Arlt, J.; Robertson, D.A.; Courtial, J.; Padgett, M.J. The generation of bessel beams at millimetre-wave frequencies by

use of an axicon. Opt. Commun. 1999, 170, 213–215. [CrossRef]
4. Arlt, J.; Dholakia, K. Generation of high-order bessel beams by use of an axicon. Opt. Commun. 2000, 177, 297–301. [CrossRef]
5. Zhang, Y.; Wang, L.; Zheng, C. Vector propagation of radially polarized gaussian beams diffracted by an axicon. J. Opt. Soc. Am.

A Opt. Image Sci. Vis. 2005, 22, 2542–2546. [CrossRef]
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