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Abstract: This paper concerns the one-dimensional compressible Navier–Stokes system with temperature-
dependent heat conductivity in R with large initial data. We prove that velocity and temperature are
uniformly bounded from below and above in time and space when the heat conductivity coefficient
takes κ = κ̄(1 + θb) for all b > 5

2 . In addition, we show that the global solution is asymptotically
stable as time tends to infinity.

Keywords: compressible Navier–Stokes equations; global strong solution; large-time behavior;
temperature-dependent heat conductivity

1. Introduction

This paper concerns the Cauchy problem of compressible fluids in one space dimen-
sions. The motion of a perfect polytropic ideal heat-conducting fluids can be written in the
following form [1]:

ρt + (ρu)y = 0,
(ρu)t + (ρu2 + P)y = (µuy)y,
(ρ(e + 1

2 u2))t + (ρ(e + 1
2 u2)u + Pu)y = (κey)y + (µuuy)y,

(1)

where t > 0 and y ∈ R are the time variable and spatial variable, respectively, where the
unknown ρ ≥ 0 denotes the density of the flow, u the velocity, and e the internal energy.
Both pressure P and internal energy e are generally related to the density and temperature
of the flow according to the equations of state: P = P(ρ, θ) and e = e(ρ, θ). Parameters
µ = µ(ρ, θ) denote the viscosity coefficients, and κ = κ(ρ, θ) is the heat conductivity.

To solve the Cauchy problem, we transform Problem (1) into Lagrangian variables. To
this end, we introduce the Lagrangian symmetry variable

x =
∫ y

y(t)
ρ(t, z)dz,

where y(t) is the particle path satisfying y′(t) = u(t, y(t)). The Lagrangian version of
System (1) can be written as

vt = ux, (2a)

ut + Px = (µ
ux

v
)x, (2b)(

e +
u2

2

)
t
+ (Pu)x =

(
κ

θx

v
+ µ

uux

v

)
x
, (2c)

P = Rθ/v, e = cvθ. (2d)
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We consider a perfect gas for Navier–Stokes flow in this paper, that is,

P = R
θ

v
, e = cvθ, (3)

where R is a positive constant, and cv is the heat capacity of the gas. System (2) is supple-
mented with the following initial condition:

(u, v, θ)|t=0 = (u0, v0, θ0), x ∈ R, (4)

and the far-field condition:

lim
|x|→∞

(v(x, t), u(x, t), θ(x, t)) = (1, 0, 1), t > 0. (5)

Let us review some results on System (2) in different situations. When µ and κ were
constants, the existential results in bounded domains for large initial data were obtained by
Kazhikhov et al. [2–4]. Regarding initial boundary value problems in bounded domains,
see [2,5–9] for a thorough discussion of System (2) with initial Condition (4) and far-field
Condition (5). Furthermore, the existence and uniqueness of global solutions, and the
regularity are known [2,5–10]. Moreover, the asymptotic behavior of the global solution
was studied as time tended to infinity; see [11–14], among others. For the Cauchy problem,
the global existence of a solution was obtained by Kazhikhov [15]; then, Li [16] gave the
asymptotic behavior of solutions to System (2) with initial Condition (4) and far-field
Condition (5).

We could obtain compressible Navier–Stokes Equations (2) from the celebrated Boltz-
mann equations for monatomic gas with a slab symmetry by using the Chapman–Enskog
expansion. Then, viscosity coefficient µ and heat conductivity coefficient κ are functions
of density and temperature; see Chapman and Cowling [17] or Vincenti and Kruger ([18],
Chapter X) for a thorough discussion of these issues. When the coefficients depended on
special volume and temperature, for the one-dimensional full compressible Navier–Stokes
equations of ideal polytropic gas whose viscosity coefficient and heat conductivity coef-
ficient satisfying µ = µ̄h(v)θb, κ = κ̄h(v)θb, Liu, Yang, et al. in [19] obtained the global
nonvacuum classical solutions with a smallness mechanism (i.e., γ− 1 small). Wang and
Zhao in [20] obtained the global nonvacuum classical solutions with smallness assumptions
for b. Later, in 2016, Wang and Zhao [21] gave the large-time behavior of the solutions under
the assumptions that Ch(v) ≥ vl1 + v−l2 , h′(v)2v ≤ Ch(v)3 and that b was small enough.
Duan, Guo, et al. [22] proved the existence and uniqueness of a strong global solution for
ideal polytropic gas flow, with µ = 1 + ρα and κ = θβ. Kazhikhov [15] gave frameworks
when µ and κ are constants. However, if the viscosity coefficient depends on temperature,
Kazhikhov’s method is invalid. Li, Shu, et al. [23] proved the global existence of strong
solutions to a compressible Navier–Stokes system with degenerate heat conductivity in
unbounded domains. However, the asymptotic behavior of a solution with large initial
data is still open.

When viscosity was a positive constant, and only heat conductivity depended on
temperature, i.e.,

µ = µ̄, κ = κ̄θb, (6)

Jenssen and Karper [24] proved the global existence of a weak solution to initial-
boundary value problem (IBVP) (2) under the assumption that b ∈ [0, 3

2 ); Pan and
Zhang [25] extended it to b ∈ [0, ∞). Li and Guo [1] established the global existence
of strong and classical solutions to free boundary Problem (2) for b ∈ [0, ∞), and the
expanding rates of the interface were also studied. Recently, Li, Shu, et al. [23] proved the
global existence of a solution to Cauchy Problem (2) for b ∈ [0, ∞). Chen and Zhang [26]
proved global existence to free boundary problems. Cai, Chen, et al. [27] obtained the
asymptotic behavior of the initial boundary value problem of System (2). However, the
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asymptotic behavior to the Cauchy problem is still open and our focus. The research
on numerical and applications in engineering to system of (2) and it’s related models,
see [28–31].

The mission of this paper is to establish the uniform bounds from below and above of
velocity and temperature to the Cauchy problem, and the large-time behavior of strong
solutions with κ = κ̄(1 + θb).

Notations:

(1) For p ≥ 1, Lp = Lp(R) denotes the Lp space with the norm ‖ · ‖Lp . For k ≥ 1 and
p ≥ 1, Wk,p = Wk,p(R) denotes the Sobolev space, whose norm is denoted as ‖ · ‖Wk,p ,
Hk = Wk,2(R). For k ≥ 1 and p ≥ 1, Dk,p(R) denotes the homogeneous Sobolev
space, the norm of f ∈ Dk,p(R) is ‖ f k‖ ∈ Lp(R). QT = [0, T]×R.

(2) For the sake of simplicity, we denote various positive constants independent of time
T and depending on time T with C and C(T), which may be different at different
occurrences.

Definition 1. (Global strong solution) For any (x, t) ∈ ([0, ∞)×R), (v, u, θ) is called a global
strong solution if 

v− 1 ∈ C([0, ∞), H1(R)),
θ − 1 ∈ C([0, ∞), H2(R)) ∩ L2([0, ∞), H1(R)),
u ∈ L∞([0, ∞), H2(R)) ∩ L2([0, ∞), W2,2(R)),
vt, ut, θt ∈ L2([0, ∞), D1,2(R)),

(7)

and (v, u, θ) satisfies both System (2) almost everywhere in R× (0, ∞) and Initial Value (4) almost
everywhere in R.

The existence and uniqueness of local solution can be proven with a fixed-point
theorem; see Tani [32], who proved the existence of local solution if the initial (4) and
far-field Condition (5) are satisfied, and µ, κ are locally Lipschitz-continuous functions on
(v, θ). As a special case of the result in [32], the following theorem gives the local existence
for our problem.

Theorem 1. Assume that µ and κ satisfy (6) for some positive constants µ̄ and κ̄. If the initial data
(v0, u0, θ0)(x) are compatible with far-field Condition (5), satisfying

(v0 − 1, u0, θ0 − 1)(x) ∈ H1 × H2 × H2, (8)

and there are constants v, v̄, θ, θ̄ such that

0 < v ≤ v0(x) ≤ v̄, 0 < θ ≤ θ0(x) ≤ θ̄, (9)

then there exists a unique local strong solution (v, u, θ)(x, t) to (2) on R× [0, T1] for some C > 0
depending on the initial data, and T1 satisfies

C−1 ≤ θ(x, t) ≤ C(T1), C−1 ≤ v(x, t) ≤ C(T1),
‖(v− 1, u, θ − 1)(·, t)‖2

H1(R) +
∫ t

0 ‖(v− 1, u, θ − 1)(·, s)‖2
H1(R)ds ≤ C(T1),

‖(u, θ − 1)(·, t)‖2
H2(R) +

∫ t
0 ‖(vxt, uxt, uxx θxt, θxx)(·, s)‖2

L2(R)ds ≤ C(T1).
(10)

if the initial data further satisfy

v0(x) ∈ C1+α, u0(x) ∈ C2+α, θ0 ∈ C2+α, (11)

then v ∈ C1+α, α
2 (R× [0, T1]), u ∈ C2+α,1+ α

2 (R× [0, T1]), and θ ∈ C2+α,1+ α
2 (R× [0, T1]).
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Thanks to this local existence result, the existence of a global solution is established by
extending the local solution with the help of the global a priori estimates stated in (12) (see
Theorem 2). It is clear that (12) is sufficient to extend the local strong solution to global one
by a standard continuity argument.

The following are the main results of this paper. Some uniform estimate results and
the large-time behavior of the solutions are obtained when the heat conductivity coefficient
is in nondegenerate form with the temperature.

Theorem 2. Assume that the initial data (v0, u0, θ0) satisfy (8), (9), κ = κ̄(1+ θb) (nondegenerate
case) for b ∈ ( 5

2 , ∞). Let (v, u, θ) be a solution to (2)–(4) together with far-field Condition (5).
For any T > 0, there exists a unique global strong solution (v, u, θ) satisfying{

‖(v− 1, u, θ − 1)(·, t)‖2
H1(R) +

∫ t
0 ‖(v− 1, u, θ − 1)(·, s)‖2

H1(R)ds ≤ C,

‖(u, θ − 1)(·, t)‖2
H2(R) +

∫ t
0 ‖(vxt, vxx, uxt, uxx, θxt, θxx)(·, s)‖2

L2(R)ds ≤ C.
(12)

Moreover, there exists a positive constant C depending only on µ, κ, R, cv, v, θ, and the initial
value; the following uniform estimate holds

C−1 ≤ θ(x, t) ≤ C, C−1 ≤ v(x, t) ≤ C, (13)

and large-time behavior is obtained

lim
t→∞

(‖(v− 1, u, θ − 1)(t)‖Lp(R) + ‖(vx, ux, θx)(t)‖L2(R)) = 0, (14)

for any p ∈ (2, ∞].

Remark 1. Jiang [12] and Li [16] proved the results in Theorem 2 when κ was a constant. Jiang
obtained the positive upper and lower bounds of v(x, t), and Li proved that θ(x, t) was bounded
from below and above, and the solution was asymptotically stable as time tended to infinity for large
initial data.

Remark 2. The global existence of a solution and large time were obtained in Theorem 2 for
κ = κ̄(1 + θb). The global existence for κ = κ̄θb could also be obtained, but Large Time (14) failed
for this case in our method.

We now outline the main ideas and difficulties in our problem compared to previous
results. The existence of strong solutions can be easily obtained due to pioneering works,
e.g., Tani [32], Kazhikhov [4], and Jesssen and Karper [24]. For the large-time behavior
of such a solution, obtaining the uniform positive lower and upper bounds of v(x, t) and
θ(x, t) is a great challenge due to the strong nonlinearity of κ = κ̄(1 + θb). Jiang obtained
uniform positive lower and upper bounds on v(x, t) in [12] with a decent localized version
of the expression for v(x, t) when κ was a constant. Li and Liang deduced the uniform
positive lower and upper bounds on temperature θ(x, t) in [16] with a smart test function
method. However, there methods could not be applied to our case, since it is difficult
to obtain the uniform bounds of the high-order estimate (‖θx‖L2(R)), and bounds of θ
from below and above. To overcome such a difficulty, motivated by [1,25], we obtained
the high-order estimate Y(t) = sup0≤t≤T ‖θbθx‖L2 with an iterative method. The crucial
techniques of proofs in [25] could not be adapted directly here since their arguments
depend on bounded domain and boundary conditions that were different from ours, and
we could not obtain LP(p ≥ 1) norm of θ − 1 under the far-field condition in this paper
with an unbounded domain. In combination with the above methods in the literature, we
discuss it withg a space separation technique and iterative method that could obtain the
global existence of a solution. Then, combining the lower bound of the temperature when
t ∈ [0, T0] induced by the comparison principle and the lower bound when t ∈ (T0, ∞)
obtained from a well-designed continuation argument for some suitable fixed T0 ∈ [0, ∞),
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the positive pointwise boundedness of θ(x, t) from below and above independent of time
and the large-time decay behavior of solutions could be obtained.

The rest of the paper is organized as follows. In Section 2, we give some a priori
estimates, and prove the uniform positive lower and upper bounds of v(x, t) independent
of time. In Section 3, on the basis of the local existence of the solutions and the a priori
estimates in Section 2, we prove the global existence of solution with a standard conti-
nuity argument. In Section 4, we give the asymptotic behavior of the global solution for
κ = κ̄(1 + θb).

2. A Priori Estimates

In this section, we perform a sequence of estimates. We proved that volume v(x, t)
was pointwise bounded from below and above independent of time. This is a key step in
the proof of both the global existence and asymptotic behavior of the solution. Assume that
(v, u, θ)(x, t) is the unique strong solution of (2), defined on R× [0, T0] for some T0 > 0.

Lemma 1. There are positive constants e0 and C independent of T, such that

sup
0≤t<∞

∫
R

(
1
2

u2 + R(v− ln v− 1) + cv(θ − ln θ − 1)
)

dx

+µ̄
∫ ∞

0

∫
R

u2
x

vθ
dxdt + κ̄

∫ ∞

0

∫
R

(1 + θb)θ2
x

θ2v
dxdt ≤ e0, (15)

Let ΩM(t) = {x ∈ R|θ(x, t) ≥ M > 1}; we derive from (15) that

•
∫

ΩM
|θ − 1|dx ≤ C

∫
ΩM

(θ − ln θ − 1)dx ≤ C,

•
∫
R/ΩM

|θ − 1|2dx ≤ C
∫
R/ΩM

(θ − ln θ − 1)dx ≤ C.

Proof. By using Equation (2c) and a far-field condition, we obtain after a straightforward
calculation that

cvθt + R
uxθ

v
= κ̄

(
(1 + θb)θx

v

)
x
+ µ̄

(ux)
2

v
. (16)

Multiplying (2a) by R(1− v−1), (2b) by u, (16) by (1− θ−1), and adding them together,
we obtain (

1
2

u2 + R(v− ln v− 1) + cv(θ − ln θ − 1)
)

t
+ µ̄

u2
x

v
+ κ̄

(1 + θb)θ2
x

θ2v

= µ̄(
uux

v
)x − R(

uθ

v
)x + Rux + κ̄

(
(1− θ−1)

(1 + θb)θ2
x

v

)
x
. (17)

Using Taylor’s theorem, (8) and Sobolev’s imbedding theorem (H1 ↪→ L∞), we have

∫
R

(
1
2

u2
0 + R(v0 − ln v0 − 1) + cv(θ0 − ln θ0 − 1)

)
dx ≤ C(1 + ‖(v0 − 1, u0, θ0 − 1)‖2

H1).

Integrating (17) over R and using far-field Condition (5) obtains (15). The proof of
Lemma 1 is finished.

For some positive integer k, let φ ∈W1,∞(R) be defined by

φ =


1, x ≤ k + 1;

k + 2− x, k + 1 ≤ x ≤ k + 2;
0, x ≥ k + 2.
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For simplicity, we denote Ωk := (k, k + 1] for Cauchy problem. Then, the bounds
of v(x, t) dependent on T can be obtained. We prove the pointwise bounds on a specific
volume into two parts, when t ∈ [0, T] and t ∈ (T, ∞) for some suitable T.

Lemma 2. There exists a positive constant C, such that

C−1(T) ≤ v(x, t), (18)

for all (x, t) ∈ R× [0, T].

Proof. For any x ∈ Ωk, we have the following local representation via Lemma 1:

∫ k+1

k
[(v− ln v− 1) + (θ − ln θ − 1)]dx ≤ e0, (19)

which, together with Jensen’s inequality, yields

α1 ≤
∫ k+1

k
v(x, t)dx ≤ α2, α1 ≤

∫ k+1

k
θ(x, t)dx ≤ α2, (20)

where 0 < α1 < 1 < α2 are two roots of

x− ln x− 1 = e0.

Moreover, it follows from (19) that, for any t > 0, there exists some bk(t) ∈ [k, k + 1],
such that

(v− ln v− 1) + (θ − ln θ − 1)(bk(t), t) ≤ e0,

which implies
α1 ≤ v(bk(t), t) ≤ α2, α1 ≤ θ(bk(t), t) ≤ α2. (21)

Letting σ ,
µ̄ux

v − Rθ
v = µ̄(ln v)t − Rθ

v , we write (2b) as

ut = σx. (22)

Multiplying (2b) by φ gives

[φu]t =
[(

µ̄ux

v
− Rθ

v

)
φ

]
x
− φx

(
µ̄ux

v
− Rθ

v

)
.

Integrating over (x, ∞) (x ∈ Ωk) with respect to x and recalling (2a) and the definition
of φ, we have

−
∫ ∞

x
[φu]tdy =

(
µ̄ux

v
− Rθ

v

)
+
∫ ∞

x

(
µ̄ux

v
− Rθ

v

)
φxdy

= µ̄[ln v]t −
Rθ

v
−
∫ k+2

k+1

(
µ̄ux

v
− Rθ

v

)
dy, x ∈ Ωk. (23)

Furthermore, integrating over [0, t], one has∫ ∞

x
(u0 − u)φdy = µ̄(ln v− ln v0)−

∫ t

0

Rθ

v
ds

−
∫ t

0

∫ k+2

k+1

(
µ̄ux

v
− Rθ

v

)
dyds, x ∈ Ωk. (24)
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Denote

B(x, t) = v0 exp
{

1
µ̄

∫ ∞

x
(u0(y)− u(y, t))φ(y)dy

}
,

Y(t) = exp
{

1
µ̄

∫ t

0

∫ k+2

k+1

[
µ̄

ux

v
− R

θ

v

]
dyds

}
. (25)

Taking the exponential on both sides of (24), the following relation appears:

1
B(x, t)Y(t)

=
1

v(x, t)
exp

{ ∫ t

0

Rθ

µ̄v
ds
}

, x ∈ Ωk, t ≥ 0. (26)

Multiplying (26) by Rθ(x,t)
µ̄ and integrating over (0, t), we infer

exp
{

R
µ̄

∫ t

0

θ(x, s)
v(x, s)

ds
}

= 1 +
R
µ̄

∫ t

0

θ(x, s)
B(x, s)Y(s)

ds.

Substituting the above identity into (26), we obtain

v(x, t) = B(x, t)Y(t) +
R
µ̄

∫ t

0

B(x, t)Y(t)
B(x, s)Y(s)

θ(x, s)ds, x ∈ Ωk, t ≥ 0. (27)

Since∣∣∣∣ ∫ ∞

x
(u(y, t)− u0(y))φ(y)dy

∣∣∣∣ ≤ ( ∫Ωk

u2dy
) 1

2

+

( ∫
Ωk

u2
0dy
) 1

2

≤ C(e0),

we deduce from (25)
C−1(e0) ≤ B(x, t) ≤ C(e0). (28)

Moreover, integrating (27) with respect to x over [k, k + 1] gives

1
Y(t)

∫ k+1

k
v(x, t)dx =

∫ k+1

k
B(x, t)

(
1 +

∫ t

0

θ(x, τ)

B(x, τ)Y(τ)
dτ

)
dx.

Hence, we have

1
Y(t)

≤ C(α1) + C(α1, α2, e0)
∫ t

0

1
Y(τ)

dτ, (29)

where (15), (20), and (28) were used, as well as the following simple fact:

∫ k+1

k

θ(x, τ)B(x, τ)

B(x, t)
dx ≤ C(e0)

∫ k+1

k
θ(x, τ)dx ≤ C(α2, e0). (30)

Applying the Grönwall’s inequality to (29) gives

1
Y(t)

≤ C(T, α1, α2, e0), (31)

which implies that, for any positive integer k and (x, t) ∈ [k, k + 1] × [0, T], from (27),
we have

C−1(T, α1, α2, e0) ≤ v(x, t). (32)

From (29), there exists a suitable constant N > 0, such that v(x, t) ≥ C−1(T) when
k < N. Combining the fact v(x, t) → 1 as |x| → ∞, one has v(x, t) ≥ 1− ε when k ≥ N
and ε small enough. So, the bounds of v(x, t) from below are obtained in R× [0, T].
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Lemma 3. For any t ∈ [0, T], and positive constants C(T), it holds that

θ ≥ C(T). (33)

Proof. Let θ̄ = 1
θ , and rewrite Equation (16) as follows:

− θ̄t

θ̄2 = − Rux

cvvθ̄
− 1

cv

(
κ(θ̄)θ̄x

vθ̄2

)
x
+

µ̄u2
x

cvv
. (34)

So,

θ̄t =
Rθ̄ux

cvv
+

θ̄2

cv

(
κ(θ̄)θ̄x

vθ̄2

)
x
− µ̄θ̄2u2

x
cvv

=

(
κ(θ̄)θ̄x

cvv

)
x
− 2κ(θ̄)θ̄2

x
cvvθ̄

− µ̄θ̄2u2
x

cvv
+

Rθ̄ux

cvv

=

(
κ(θ̄)θ̄x

cvv

)
x
− 2κ(θ̄)θ̄2

x
cvvθ̄

− µ̄θ̄2

cvv

(
u2

x −
Rux

µ̄θ̄

)
=

(
κ(θ̄)θ̄x

cvv

)
x
− 2κ(θ̄)θ̄2

x
cvvθ̄

− µ̄θ̄2

cvv

(
ux −

R
2µ̄θ̄

)2

+
R2

4µ̄cvv
, (35)

which implies

θ̄t ≤
(

κ(θ̄)θ̄x

cvv

)
x
+

R2

4µ̄cvv
≤
(

κ(θ̄)θ̄x

cvv

)
x
+ C(T). (36)

Define the operator L := − ∂
∂t
+
( κ(·)

v (·)x
)

x and
Lθ̃ < 0 on [0, ∞)×Ω,
θ̃ |t=0≥ 0 on Ω,
θ̃ |x→∞≥ 0 on [0, ∞),

(37)

where θ̃(x, t) = C(T)t + maxΩ̄ θ̄0 − θ̄(x, t); then, with the comparison theorem, we obtain

min
(x,t)∈Q̄T

θ̃(x, t) ≥ 0,

which implies

θ(x, t) ≥ 1
C(T)t + maxΩ̄ θ̄0

≥ C(T). (38)

This completes the proof of Lemma 3.

Now, in order to obtain the uniform upper and lower bounds of v(x, t), we first show
the exponential decay of Y(t), and use Representation (27) to obtain the following uniform
bounds on v(x, t).

Lemma 4. There exists a positive constant C independent of t, such that

C−1 ≤ v(x, t) ≤ C, ∀x ∈ R, t ≥ 0. (39)

Proof. By using (28), one can first prove, by repeating the argument used in [12], the
following estimates:

−
∫ t

s
inf

[k+1,k+2]
θ(s, ·)ds ≤ C− t− s

C
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for all 0 ≤ s ≤ t ≤ T. Then, one can obtain, with Jenssen’s inequality,

∫ t

s

∫ k+2

k+1

[
µ̄

ux

v
− R

θ

v

]
dyds

≤ C
∫ t

s

∫ k+2

k+1

u2
x

θv
dyds− R

2

∫ t

s

∫ k+2

k+1

θ

v
dyds

≤ C− R
2

∫ t

s
inf

[k+1,k+2]
θ(s, ·)

∫ k+2

k+1

1
v

dyds

≤ C− R
2

∫ t

s
inf

[k+1,k+2]
θ(s, ·)

( ∫ k+2

k+1
vdy
)−1

ds

≤ C− R
2α2

∫ t

s
inf

[k+1,k+2]
θ(s, ·)ds

≤ C− t− s
C

, 0 ≤ s ≤ t ≤ T. (40)

Recalling the definition of Y(t) yields that

Y(t) ≤ Ce−Ct,
Y(t)
Y(s)

≤ Ce−C(t−s), ∀t ≥ 0, t ≥ s ≥ 0. (41)

On the other hand, for a point bk(t) ∈ [k, k + 1] via Lemma 1 implies that∣∣∣∣θ 1
2 (x, t)− θ

1
2 (bk(t), t)

∣∣∣∣ ≤ 1
2

∫ x

bk(t)
θ−

1
2 |θx|dx

≤ 1
2

( ∫ k+1

k

θ2
x

vθ2 dx
) 1

2
( ∫ k+1

k
vθdx

) 1
2

≤
√

α2

2

( ∫
Ωk

θ2
x

vθ2 dx
) 1

2

max
[k,k+1]

v1/2(·, t),

k = 0,±1, · · ·. By using Young’s inequality, we have

C(α1, b)− C(α2)
∫

Ωk

θ2
x

vθ2 dx max
Ω̄k

v(·, t) ≤ θ(x, t)

≤ C(α2)(α2, b) + C
∫

Ωk

θ2
x

vθ2 dx max
Ω̄k

v(·, t). (42)

Hence, inserting (28), (41), and (42) into (28), one has

v(x, t) ≤ Ce−Ct + C
∫ t

0
e−C(t−s)

(
C(α2, b) + C

∫
Ωk

θ2
x

vθ2 dx max
Ω̄k

v(·, t)
)

ds,

Applying Gronwall’s inequality and (15), we conclude

v(x, t) ≤ C, ∀x ∈ Ωk, t ≥ 0. (43)

Now, we prove the lower bound of v(x, t) independent with T. The proof is divided
into two parts, when t ∈ [0, T0] and t ∈ (T0, ∞), for some suitable fixed T0 ∈ [0, ∞).
When t ∈ [0, T0], we know that v(x, t) ≥ C(T) via Lemma 2. Regarding t ∈ (T0, ∞),
integrating (27) over [k + 1, k + 2], using the estimate in Lemma 3, we have

α1 ≤ Ce−Ct + C
∫ t

0

Y(t)
Y(s)

ds. (44)
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It follows from (20), (28), and (41)–(44) that

v(x, t) ≥ C4

∫ t

0

Y(t)
Y(s)

(C5 − C6

∫
R

θ2
x

vθ2 dx)ds

≥ C7 − C8e−Ct − C9

( ∫ t/2

0
+
∫ t

t/2

)
e−C(t−s)

∫
R

θ2
x

vθ2 dxds

≥ C10 − C11e−Ct − C9e−(Ct)/2
∫ t/2

0

∫
R

θ2
x

vθ2 dxds− C9

∫ t

t/2

∫
R

θ2
x

vθ2 dxds

≥ C10 −
3

∑
i=1

Ji

≥ C12. (45)

Obviously, via (15), we have J1, J2 → 0 as t→ ∞. We also have

J3 = C9

∫ t

0

∫
R

θ2
x

vθ2 dxds− C9

∫ t/2

0

∫
R

θ2
x

vθ2 dxds→ 0 t→ ∞.

So, we can take a large enough T0 to ensure that C12 > 0.
Therefore, by combining (43), (29), and (45), one has

C−1(k) ≤ v(x, t) ≤ C(k),

Due to the far-field condition, we obtain (39). This completes the proof of Lemma 4 (i.e.,
part of (13) in Theorem 2).

3. Proof of Global Existence

In this section, we apply the results obtained in Section 2 to prove Theorem 2. Moti-
vated by [1], we give the estimate on sup0≤t≤T

∫
R(1 + θ2b)θ2

xdx, which is the key step in
the proof of Theorem 2.

In our case, nonlinearity κ on θ requires further attention on the control of θ. For this
purpose, one of the main ingredients in this paper is the following lemma-refined estimates
on temperature. In order to obtain the higher-order estimates to the solution, we follow the
framework introduced in [1], and define the following two functionals

Z(t) = sup
0≤t≤T

∫
R

u2
xx(x, t)dx, Y(t) = sup

0≤t≤T

∫
R
(1 + θ2b)θ2

x(x, t)dx. (46)

These two functionals are useful in depicting the tangled relations of the higher order
and upper bound of θ. First, we have that the following lemma holds.

Lemma 5. For some positive constant, we have

sup
R×[0,T]

θ ≤ C + CY
1

2b+3−δ , (47)

sup
R×[0,T]

|ux| ≤ C + CZ
3
8 . (48)

for any (x, t) ∈ QT .
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Proof. For a small constant δ, via the Gagliardo–Nirenberg inequality, we infer that

sup
R
|θ − 1|2b+3−δ = sup

R

(
−
∫ ∞

x

(
|θ − 1|2b+3−δ

)
xdy
)

≤ C
∫
R
|θ − 1|2b+2−δ|θx|dx

≤ C
∫
R
(1 + θ2b)θ2

xdx + C
∫

ΩM∪R/ΩM

|θ − 1|2b+4−2δdx

≤ C
∫
R
(1 + θ2b)θ2

xdx + C sup
R
|θ − 1|2b+3−2δ

∫
ΩM

|θ − 1|dx

+C sup
R
|θ − 1|2b+2−2δ

∫
R/ΩM

|θ − 1|2dx

≤ C + ε sup
R
|θ − 1|2b+3−δ + CY, (49)

which implies

sup
R

θ ≤ sup
R
|θ − 1|+ 1

≤ C + CY
1

2b+3−δ , (50)

where we used the fact that |θ − 1|2b ≤ C(1 + θ2b), Lemma 1 and Young inequality.
Regarding (48), we have

sup
R
|ux|2 ≤

∫
R

u2
xdx + 2

∫
R
|uxuxx|dx

≤
( ∫

R
u2dx

) 1
2
( ∫

R
u2

xxdx
) 1

2

+ 2
( ∫

R
u2

xdx
) 1

2
( ∫

R
u2

xxdx
) 1

2

≤ CZ
1
2 + 2

( ∫
R

u2dx
) 1

4
( ∫

R
u2

xxdx
) 1

4
( ∫

R
u2

xxdx
) 1

2

≤ C + CZ
3
4 .

This completes the proof of Lemma 5.

In addition, we have the following key estimate.

Lemma 6. For a positive constant C, 0 ≤ t ≤ T and b ≥ 2, it holds that∫ T

0
sup
R
|θ − 1|b+1dt ≤ C (51)
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Proof. Through the Gagliardo–Nirenberg inequality and Lemma 1, we infer that∫ T

0
sup
R
|θ − 1|b+1dt =

∫ T

0
sup
R

(|θ − 1|
b+1

2 )2dt

≤
∫ T

0

( ∫
R
|θ − 1|b+1dx

) 1
2
( ∫

R
|θ − 1|b−1θ2

xdx
) 1

2

dt

≤
∫ T

0

( ∫
ΩM

|θ − 1|b+1dx
) 1

2

sup
R
|θ − 1|

1
2

( ∫
R
|θ − 1|b−2θ2

xdx
) 1

2

dt

+
∫ T

0

( ∫
R/ΩM

|θ − 1|b+1dx
) 1

2

sup
R
|θ − 1|

( ∫
R
|θ − 1|b−3θ2

xdx
) 1

2

dt

≤ ε
∫ T

0
sup
R
|θ − 1|b+1dt + C

∫
QT

|θ − 1|b−2θ2
xdxdt + C

∫
QT

|θ − 1|b−3θ2
xdxdt

≤ ε
∫ T

0
sup
R
|θ − 1|b+1dt + C

∫
QT

(1 + θb)

θ2 θ2
xdxdt

≤ ε
∫ T

0
sup
R
|θ − 1|b+1dt + C. (52)

Here, we use the fact that, for b ≥ 2 and κ = κ̄(1 + θb), we have

∫
QT

θb−2θ2
xdxdt ≤

∫
QT

1 + θb

θ2 dxdt,

and for b ≥ 1 ∫
QT

θb−3θ2
xdxdt ≤ C

∫
QT

θ2
x

θ2 dxdt + C
∫

QT

θbθ2
x

θ2 dxdt.

It yields that ∫ T

0
sup
R
|θ − 1|b+1dt ≤ C. (53)

Then, the proof of Lemma 6 is completed.

The following lemma gives estimates on the L2 norm of vx.

Lemma 7. For any t ∈ [0, T], there exists a constant C independent of time; it holds that

sup
0≤t≤T

∫
R

v2
xdx +

∫
QT

θv2
xdxdt ≤ C + CY

1
2b+3−δ . (54)

Proof. First, integrating (2b) multiplied by vx
v over R, we obtain that, after using (2a),

µ̄

2
d
dt

∫
R

v2
x

v2 dx = R
∫
R

(
θ

v

)
x

vx

v
dx +

∫
R

ut
vx

v
dx

= R
∫
R

θxvx

v2 dx− R
∫
R

θv2
x

v3 dx +
d
dt

∫
R

uvx

v
dx +

∫
R

u2
x

v
dx

≤ C
∫
R

θ2
x

vθ
dx− R

2

∫
R

θv2
x

v3 dx +
d
dt

∫
R

uvx

v
dx +

∫
R

u2
x

v
dx, (55)

which together with (15), which yields

∫
R

v2
x

v2 dx +
∫

QT

θv2
x

v3 dxdt ≤ C + sup
QT

θ
∫

QT

u2
x

vθ
dxdt ≤ C + CY

1
2b+3−δ .
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We have the following relationship between the high-order estimates on u(x, t) and Y.

Lemma 8. For any t ∈ [0, T], we have following estimate:

sup
0≤t≤T

∫
R

u2
xdx +

∫
QT

u2
xxdxdt ≤ C + CY

3
2b+3−δ . (56)

Proof. We rewrite the momentum equation into the following form:

ut −
µ̄uxx

v
= − µ̄uxvx

v2 − Rθx

v
+

Rθvx

v2 . (57)

Multiplying (57) by uxx, and integrating in x over R, one has

sup
0≤t≤T

∫
R

u2
xdx +

∫
QT

µ̄u2
xx

v
dxdt

≤ C +

∣∣∣∣ ∫QT

µ̄uxvx

v2 uxxdxdt
∣∣∣∣+ ∣∣∣∣ ∫QT

Rθx

v
uxxdxdt

∣∣∣∣+ ∣∣∣∣ ∫QT

Rθvx

v2 uxxdxdt
∣∣∣∣

≤ C +
µ̄

4

∫
QT

u2
xx
v

dxdt + C
∫

QT

(u2
xv2

x + θ2
x + θ2v2

x)dxdt. (58)

According to Equation (2a) and the far-field conditions, one has∫ T

0
sup
R

u2
xdt = 2

∫ T

0
sup
R

∫ x

−∞
uxuxxdydt

≤ C
∫ T

0

( ∫
R

u2
xdx
) 1

2
( ∫

R
u2

xxdx
) 1

2

dt.

Hence, via (15), Young’s inequality, and the uniform boundedness of v(x, t), we have
the term ∫

QT

u2
xv2

xdxdt ≤
∫ T

0
sup
R

u2
xdt sup

0≤t≤T

∫
R

v2
xdx

≤ C
∫ T

0

( ∫
R

u2
xdx
) 1

2
( ∫

R
u2

xxdx
) 1

2

dt sup
0≤t≤T

∫
R

v2
xdx

≤ ε
∫

QT

u2
xx
v

dxdt + C
∫

QT

u2
xdxdt

(
sup

0≤t≤T

∫
R

v2
xdx
)2

≤ ε
∫

QT

u2
xx
v

dxdt + CY
3

2b+3−δ + C.

For the other two terms, we have the following estimate

∫
QT

(θ2
x + θ2v2

x)dxdt ≤ sup
QT

θ2
∫

QT

θ2
x

vθ
dxdt + sup

QT

θ
∫

QT

θv2
xdxdt

≤ C sup
QT

θ2 + C sup
QT

θY
1

2b+3−δ

≤ CY
2

2b+3−δ + C,

Here, we use (15) and Lemma 7. Then, (58) shows that Lemma 8 holds.

The relation of Y and Z is given in the following lemma.
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Lemma 9. For any (x, t) ∈ QT and positive constant C, we have

Y +
∫

QT

(1 + θb)θ2
t dxdt ≤ C + ε1Z. (59)

Proof. Define K(v, θ) = θ
v + θ1+b

(1+b)v . Multiplying (16) by Kt, integrating over QT and by
parts, we have

∫
QT

θtKtdxdt +
κ̄

cv

∫
QT

(1 + θb)θx

v
Kxtdxdt =

∫
QT

(
µ̄u2

x
cvv
− Rθux

cvv

)
Ktdxdt.

(60)

Then, we compute

Kt =
(1 + θb)θt

v
− θvt

v2 −
θ1+bvt

(1 + b)v2 ,

Kx =
(1 + θb)θx

v
− θvx

v2 −
θ1+bvx

(1 + b)v2 ,

Kxt = (
(1 + θb)θx

v
)t +

2θvxux

v3 +
2θ1+bvxux

(1 + b)v3

− (1 + θb)θtvx

v2 − θuxx

v2 −
θ1+buxx

(1 + b)v2

.
= (

(1 + θb)θx

v
)t + K̃.

Hence, we have∫
R

(1 + θ2b)θ2
x

v2 dx +
∫

QT

(1 + θb)θ2
t

v
dxdt

≤ C +
∫

QT

θ1+bθtux

(1 + b)v2 +
θθtux

v2 dxdt− κ̄

cv

∫
QT

(1 + θb)θx

v
K̃dxdt (61)

+
∫

QT

(
µ̄u2

x
v
− Rθux

v

)
Ktdxdt

.
= C +

3

∑
i=1

Ii. (62)

Next, we give the estimate on I1, I2, I3. Using Lemmas 1 and 5, the first term can be
estimated as follows:

I1 =
∫

QT

θ1+bθtux

(1 + b)v2 +
θθtux

v2 dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C

∫
QT

(θb+2 + θ2)u2
xdxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + sup

QT

(θb+3 + θ3)
∫

QT

u2
x

θ
dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + CY

b+3
2b+3−δ + C. (63)



Symmetry 2023, 15, 112 15 of 23

Then, we turn to estimate I2. We divide the proof into three parts through the lemmas
proved in Section 2, Lemmas 5–8, and the interpolation inequality.

I2 ≤ C
∫

QT

(
(θ + θ1+2b)|θxuxvx|+ (1 + θ2b)|θxθtvx|

+(θ + θ1+2b)|θxuxx|
)

dxdt .
=

3

∑
i=1

I2j. (64)

We now give the estimate on I2j (j = 1, 2, 3) term by term. For term I21, when b ≥ 1,
one has

I21 ≤ C
∫

QT

(
(θ + θ1+2b)|θxuxvx|dxdt

≤ sup
QT

|ux|
[( ∫

QT

θ3θ2
x

θ2 dxdt
) 1

2
( ∫

QT

θv2
xdxdt

) 1
2

+

( ∫
QT

θ3bθ2
xdxdt

) 1
2
( ∫

QT

θ2+bv2
xdxdt

) 1
2
]

≤ C(1 + Z
3
8 )

[
Y

2
2b+3−δ + sup

QT

θb+1
( ∫

QT

θ2+bv2
xdxdt

) 1
2
]

≤ C(1 + Z
3
8 )

[
Y

2
2b+3−δ + sup

QT

θb+1
( ∫ T

0
sup
R
|θ − 1|b+1

∫
R

θv2
xdxdt +

+
∫

QT

θv2
xdxdt

) 1
2
]

≤ C(1 + Z
3
8 )

[
Y

2
2b+3−δ + sup

QT

θb+1
(

C sup
QT

θ
∫
R

v2
xdx ++Y

1
2b+3−δ

) 1
2
]

≤ C(1 + Z
3
8 )

[
C + CY

b+2
2b+3−δ

]
≤ C + CZ

3(2b+3−δ)
8(b+1−δ) + εY ≤ C + CZ

21−3δ
24−8δ + εY

≤ C + εZ + εY

Here, we use (15), (47), (48), (51), (54), and Young’s inequality.
Regarding I22,

I22 ≤
∫

QT

(1 + θ2b)|θxθtvx|dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C sup

QT

(1 + θb)
∫ T

0
sup
R

(θ2
x + θ2bθ2

x)dt
∫
R

v2
xdx

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C sup

QT

(1 + θb)
∫ T

0
sup
R

(θ2
x + θ2bθ2

x)dtY
1

2b+3−δ

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C(1 + Y

b+1
2b+3−δ )

∫ T

0
sup
R

(1 + θ2b)θ2
xdt. (65)
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For the last term in the right-hand side of (65), we have the following estimate:∫ T

0
sup
R

(1 + θ2b)θ2
xdt

≤
∫

QT

(1 + θ2b)θ2
xdxdt + C

∫
QT

(1 + θb)θx

v

∣∣∣∣( (1 + θb)θx

v

)
x

∣∣∣∣dxdt

≤ C + C sup
QT

θb+2 + C
(
(1 + sup

QT

θ2)
∫

QT

θb−2θ2
xdxdt

) 1
2

×

( ∫
QT

(1 + θb)(θ2
t + u4

x + θ2u2
x)dxdt

) 1
2

≤ C + CY
b+2

2b+3−δ + C(1 + Y
1

2b+3−δ )

( ∫
QT

(1 + θb)θ2
t dxdt +

∫
QT

(1 + θb)u4
xdxdt

+(θ2 + sup
QT

θb+2)
∫

QT

u2
xdxdt

) 1
2

≤ C + CY
b+2

2b+3−δ + Y
b+4

2(2b+3−δ) + ε
∫

QT

(1 + θb)θ2
t dxdt

+C(1 + Y
1

2b+3−δ )

( ∫
QT

(1 + θb)u4
xdxdt

) 1
2

. (66)

Then, using (56) and the Gagliardo–Nirenberg inequality, we infer that

(1 + sup
QT

θ
b
2 )

( ∫
QT

u4
xdxdt

) 1
2

≤ C(1 + Y
b

2(2b+3−δ) )

( ∫ T

0
‖u2‖L∞‖uxx‖2

L2 dt
) 1

2

≤ C(1 + Y
b

2(2b+3−δ) )

( ∫ T

0

∫
R

u|ux|dx
∫
R

u2
xxdxdt

) 1
2

≤ C(1 + Y
b

2(2b+3−δ) )

( ∫ T

0

( ∫
R

u2dx
) 1

2
( ∫

R
u2

xdx
) 1

2 ∫
R

u2
xxdxdt

) 1
2

≤ C(1 + Y
b

2(2b+3−δ) ) sup
0≤t≤T

( ∫
R

u2
xdx
) 1

4
( ∫ T

0

∫
R

u2
xxdxdt

) 1
2

≤ C(1 + Y
b

2(2b+3−δ) )Y
3

4(2b+3−δ) Y
3

2(2b+3−δ)

≤ CY
2b+9

4(2b+3−δ) + C.

Then, we can obtain that

I22 ≤ C + CY
b+2

2b+3−δ + Y
b+5

2(2b+3−δ) + CY
6b+17

4(2b+3−δ) + ε
∫

QT

(1 + θb)θ2
t dxdt

≤ C + εZ + εY + ε
∫

QT

(1 + θb)θ2
t dxdt, (67)

Here, we use the fact that if b > 5
2 ; then, 6b+17

4(2b+3−δ)
< 1.
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Regarding I23,

I23 ≤ C
∫

QT

(θ + θ1+2b)|θxuxx|dxdt

≤
( ∫

QT

u2
xxdxdt

) 1
2
( ∫

QT

θ2θ2
xdxdt

) 1
2

+

( ∫
QT

θ1+bu2
xxdxdt

) 1
2
( ∫

QT

θ3b+1θ2
xdxdt

) 1
2

≤ C + CY
7

2(2b+3−δ) + sup
QT

θ
b+1

2

( ∫
QT

u2
xxdxdt

) 1
2

sup
QT

θ
2b+3

2

( ∫
QT

θb−2θ2
xdxdt

) 1
2

≤ C + CY
7

2(2b+3−δ) + CY
3b+7

2(2b+3−δ) ≤ C + εZ + εY.

Here, we use the fact that 7
2(2b+3−δ)

< 3b+7
2(2b+3−δ)

< 1, if b > 1.
Then, we give the estimate on I3,

I3 =
∫

QT

(
Ru2

x
cvv
− µ̄θux

cvv

)(
(1 + θb)θt

v
− θvt

v2 −
θ1+bvt

(1 + b)v2

)
dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C

∫
QT

(
(1 + θb)|ux|4 + θu3

x

+θ1+bu3
x + (1 + θ1+b)θu2

x + θ2u2
x + θ2+bu2

x
)
dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + C(1 + sup

QT

θb)
∫

QT

u4
xdxdt

+C sup
QT

θb+2 sup
QT

|ux|
∫

QT

u2
x

θ
dxdt + C(1 + sup

QT

θb+3)
∫

QT

u2
x

θ
dxdt

≤ ε
∫

QT

(1 + θb)θ2
t dxdt + CY

4b+18
4(2b+3−δ) + CY

b+2
2b+3−δ Z

3
8 + CY

b+3
2b+3−δ + C

≤ C + εZ + εY + ε
∫

QT

(1 + θb)θ2
t dxdt.

Here, we use the fact that 4b+18
4(2b+3−δ)

< 1, if b > 3
2 and b+2

2b+3−δ < 5
8 , if b > 1

2 .
Adding the estimations of I1, I2, I3 and taking a suitable δ, it holds that

Y +
∫

QT

(1 + θb)θ2
t dxdt ≤ C + ε1Z.

This completes the proof of Lemma 9.

Next, we give the uniform boundedness of z.

Lemma 10. For any b ∈ ( 5
2 , ∞) and (x, t) ∈ QT , it holds that

sup
[0,T]

∫
R

u2
t dx +

∫
QT

u2
xtdxdt ≤ C + ε2Z, (68)

Z ≤ C, Y ≤ C. (69)
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Proof. Differentiating (2b) with respect to t, multiplying by ut, and integrating over QT
yields

∫
R

u2
t dx +

∫
QT

u2
xt
v

dxdt ≤ C +
∫

QT

(
µ̄u2

x

v2 +
Rθt

v
− θux

v2

)
uxtdxdt + C

≤ ε
∫

QT

u2
xt
v

dxdt + C
∫

QT

(u4
x + θ2

t + u2
xθ2)dxdt + C

≤ ε
∫

QT

u2
xt
v

dxdt +
∫

QT

θ2
t dxdt

+C(sup
QT

u2
xθ + sup

QT

θ3)
∫

QT

u2
x

θ
dxdt + C

≤ ε
∫

QT

u2
xt
v

dxdt + CZ
3
4 Y

1
2b+3−δ + CY

3
2b+3−δ + C

≤ ε
∫

QT

u2
xt
v

dxdt + C + ε2Z, (70)

Here, we use (59) and the fact that 1
2b+3−δ < 1

4 , if b > 1
2 . This completes the proof

of (68).
Rewrite Equation (2b) as

µ̄uxx

v
= ut +

(
Rθ

v

)
x
+

µ̄uxvx

v2 ,

which implies that

Z ≤ C sup
0≤t≤T

( ∫
R

u2
t dx +

∫
R

u2
xv2

xdx +
∫
R

θ2
xdx +

∫
R

θ2v2
xdx
)

≤ C
(

1 + ε2Z + sup
QT

(u2
x + θ2)

∫
R

v2
xdx +

∫
R

θ2
xdx
)

≤ C
(

1 + ε2Z + Z
3
4 Y

1
2b+3−δ + Y

)
≤ C + ε3Z. (71)

Substituting (59) into (71), we obtain

Z ≤ C, Y ≤ C. (72)

This completes the proof.

By Lemmas 5–10, we have the following high-order estimates.

Lemma 11. Via the estimations above, for any b ∈ ( 5
2 , ∞) and (x, t) ∈ QT , it holds

sup
QT

θ ≤ C, sup
QT

|ux| ≤ C,
∫

QT

(1 + θb)θ2
t dxdt ≤ C, (73)

sup
0≤t≤T

∫
R
(u2

t + v2
t )dx +

∫
QT

u2
xxdxdt +

∫
QT

(u2
xt + v2

xt)dxdt ≤ C. (74)

It remains to obtain the L2(R)-norm bound of θt, L2(QT)-norm bound of θxt and θxx.
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Lemma 12. For any b ∈ ( 5
2 , ∞) and (x, t) ∈ QT , it holds that

sup
0≤t≤T

∫
R

θ2
t dx +

∫
QT

θ2
xtdxdt +

∫
QT

θ2
xxdxdt ≤ C. (75)

Proof. Differentiating the temperature equation with respect to t, multiplying the result
equation by θt, and integrating over QT using (73) and (74) gives

d
dt

∫
R

θ2
t dx +

∫
R
(1 + θb)θ2

xtdx

≤ C
∫
R
|θxt|(|θt||ux|+ |ux|2 + |uxt|+ |θt||θx|+ |θx||ux|)dx

≤ ε
∫
R

θ2
xtdx + C

∫
R
(θ2

x + u2
x)θ

2
t dx + C

∫
R

θ2
xu2

xdx + C
∫
R
(u2

x + θ2
t + u2

xt)dx

≤ ε
∫
R

θ2
xtdx + C(sup

R
u2

x + sup
R

θ2
x)
∫
R

θ2
t dx + C

∫
R
(θ2

t + u2
xt)dx + C. (76)

Combining this with (66) and (72) , we have∫ T

0
sup
R

θ2
xdt ≤ C.

Then, applying the Gronwall inequality on (76) yields

sup
0≤t≤T

∫
R

θ2
t dx +

∫
QT

(1 + θb)θ2
xtdxdt ≤ C. (77)

Next, we rewrite the temperature equation as follows:

κ̄(1 + θb)θxx

v
= θt + R

θux

v
− µ̄

u2
x

v
− bκ̄θb−1θ2

x
v

+
κ̄θbθxvx

v2 ,

which gives ∫
R
(1 + θ2b)θ2

xxdx ≤ C
∫
R
(θ2

t + u2
x + u4

x + θ4
x + θ2

xv2
x)dx

≤ C + C sup
R

θ2
x ≤ C + C

∫
R
|θxθxx|dx

≤ C + C
( ∫

R
θ2

xxdx
) 1

2

, (78)

and implies

sup
0≤t≤T

∫
R

θ2
xxdx ≤ C.

We complete the proof of Lemma 12.

It is clear that we carried out all estimates in (12) of Theorem 2. Then, Theorem 2
follows via the standard procedures. We omitted the details.

4. Proof of Asymptotic Behavior

With Lemmas 7–11 in hand, we study the asymptotic behavior as t→ ∞ of the solu-
tions to System (2) with κ = κ̄(1 + θb) for b ∈ ( 5

2 , ∞) in this section. When b = 0, see Li [16],
who deduced the uniform positive lower and upper bounds on temperature θ(x, t) with a
smart test function.
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The following large-time behavior of global solutions together with Lemmas 7–11
finish the proof of Theorem 2.

Lemma 13. For all t ∈ [0, ∞) and b ∈ ( 5
2 , ∞), it holds that

C−1 ≤ θ(x, t) ≤ C, (79)

lim
t→∞

(
‖(v− 1, u, θ − 1)(t)‖Lp(R) + ‖(vx, ux, θx)(t)‖L2(R)

)
= 0, (80)

for any p ∈ (2, ∞].

Proof. Integrating (2b) multiplied by uxx over R leads to

∫ ∞

0

∣∣∣∣ d
dt

∫
R

u2
xdx
∣∣∣∣dt +

∫ ∞

0

∫
R

u2
xx
v

dxdt

≤ C
∫ ∞

0
(sup

R
u2

x)
∫
R

v2
xdxdt + sup

QT

θ
∫ ∞

0
θv2

xdxdt + C
∫ ∞

0

∫
R

θ2
xdxdt

≤ C
∫ ∞

0
sup
R

u2
xdt + C sup

R×[0,∞)

θ
∫ ∞

0

∫
R

θ2
x

θ
dxdt + C

≤ C. (81)

Next, multiplying the temperature equation by θxx and integrating over R leads to

cv

2
d
dt

∫
R

θ2
xdx + κ̄

∫
R

(1 + θb)θ2
xx

v
dx

= −bκ̄
∫
R

θb−1θ2
xθxx

v
dx + κ̄

∫
R

θbθxvxθxx

v2 dx− µ̄
∫
R

u2
xθxx

v
dx + R

∫
R

θuxθxx

v
dx. (82)

Using the Cauchy inequality and Sobolev interpolation inequality gives

∫ ∞

0

∣∣∣∣ ∫R θb−1θ2
xθxx

v
dx +

∫
R

θbθxvxθxx

v2 dx−
∫
R

u2
xθxx

v
dx +

∫
R

θuxθxx

v
dx
∣∣∣∣dt

≤ C
∫ ∞

0
‖θxx‖L2‖θx‖L2‖θx‖L∞ dt + C

∫ ∞

0
‖θxx‖L2‖θx‖L∞‖vx‖L2 dt

+C
∫ ∞

0
‖θxx‖L2‖ux‖L∞‖ux‖L2 dt + C

∫ ∞

0
‖θxx‖L2‖ux‖L2 dt

≤ C
∫ ∞

0
‖θxx‖L2(‖θxx‖

1
2
L2‖θx‖

1
2
L2 + ‖uxx‖

1
2
L2‖ux‖

1
2
L2)dt + C

∫ ∞

0
‖θxx‖L2‖ux‖L2 dt

≤ ε
∫ ∞

0

∫
R

θ2
xxdxdt + C. (83)

It follows from (81) and (83) that∫ ∞

0

(∣∣∣∣ d
dt
‖ux(·, t)‖2

L2(R)

∣∣∣∣+ ‖ux(·, t)‖2
L2(R)

)
dt

+
∫ ∞

0

(∣∣∣∣ d
dt
‖θx(·, t)‖2

L2(R)

∣∣∣∣+ ‖θx(·, t)‖2
L2(R)

)
dt ≤ C, (84)

which gives

lim
t→∞

(‖ux(·, t)‖L2(R) + ‖θx(·, t)‖L2(R)) = 0. (85)
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Thanks to the uniform lower and upper bounds of v(x, t), and upper bounds of θ(x, t),
we have

sup
0≤t≤∞

∫
R
(v− 1)2dx + sup

0≤t≤∞

∫
R
(θ − 1)2dx

≤ C sup
0≤t≤∞

∫
R
(v− ln v− 1)dx + C sup

0≤t≤∞

∫
R
(θ − ln θ − 1)dx ≤ C. (86)

On the other hand, we have the following estimates for all t ≥ 0:

‖(θ − 1)(·, t)‖2
C(R) ≤ C‖(θ − 1)(·, t)‖L2(R)‖θx(·, t)‖L2(R)

≤ C‖θx(·, t)‖L2(R), (87)

and

‖(v− 1)(·, t)‖2
C(R) ≤ C‖(v− 1)(·, t)‖L2(R)‖vx(·, t)‖L2(R)

≤ C‖vx(·, t)‖L2(R). (88)

This, combined with (85), shows

lim
t→∞

‖θ(·, t)− 1‖C(R) = 0. (89)

Hence, there exists some T0 > 0 such that for all (x, t) ∈ R× [T0, ∞)

1
2
≤ θ(x, t) ≤ 3

2
. (90)

Lastly, it follows from the proof in Lemma 3 that there exists a constant, such that, for
all (x, t) ∈ R× [0, T0]

θ(x, t) ≥ C(T0).

Hence, we have
C−1 ≤ θ(x, t) ≤ C for all t ∈ [0, ∞). (91)

Then, combining with Lemma 7, one has

∫ ∞

0

(∣∣∣∣ d
dt
‖vx(·, t)‖2

L2(R)

∣∣∣∣+ ‖vx(·, t)‖2
L2(R)

)
dt ≤ C, (92)

it yields that

lim
t→∞
‖vx(·, t)‖L2(R) = 0. (93)

The pointwise bounds of v(x, t) and θ(x, t) from below and above independent of
time were proven in Lemmas 4 and 13. The asymptotic behavior as t→ ∞ of the solutions
was proven in Lemma 13. This completes the proof of Theorem 2.

5. Conclusions

In this paper, we considered the Cauchy problems to a one-dimensional compressible
Navier–Stokes system with temperature-dependent heat conductivity, and general large
initial data and far-field conditions. We proved that velocity and temperature are uniformly
bounded from below and above in time and space. Further, we proved that the global
solution was asymptotically stable as time tended to infinity for b > 5

2 . Our approaches
relied upon the maximal principle, and the iteration and energy estimate method. The
conclusions in this manuscript are primitive. However, there are limitations to this con-
clusion because the corresponding results were not obtained when 0 < b ≤ 5

2 . We can
further study the global well-posedness to System (2) with a viscosity coefficient and heat
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conduction coefficient that are both dependent on density and temperature. However,
there is a great challenge: since we could not obtain an expression for velocity as in (27), the
uniform estimates to velocity and temperature were difficult to obtain with the Gronwall
inequality. Therefore, there were only some small initial value conclusions in this situation.
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