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Abstract: Recently, developments and extensions of quadrature inequalities in quantum calculus
have been extensively studied. As a result, several quantum extensions of Simpson’s and Newton’s
estimates are examined in order to explore different directions in quantum studies. The main
motivation of this article is the development of variants of Simpson-Newton-like inequalities by
employing Mercer’s convexity in the context of quantum calculus. The results also give new quantum
bounds for Simpson-Newton-like inequalities through Hélder’s inequality and the power mean
inequality by employing the Mercer scheme. The validity of our main results is justified by providing
examples with graphical representations thereof. The obtained results recapture the discoveries of
numerous authors in quantum and classical calculus. Hence, the results of these inequalities lead us
to the development of new perspectives and extensions of prior results.

Keywords: Simpson’s inequality; Jesnen-Mercer inequality; convex functions; quantum calculus
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1. Introduction

Integral inequalities have historically been viewed as a classical field of research.
From classical to contemporary applications, inequalities have been used in mathematical
analysis. In 1934, Polya and Hardy introduced classical work on inequalities. Integral
inequalities play a vital role in differential equation theory. Many researchers have studied
integral inequalities in classical calculus, along with their applications (see [1,2]). Because
the value of mathematical inequalities was well established in the past, inequalities such
as the Hermite-Hadamard, Holder, Ostrowski, Jensen, Hardy, and Cauchy-Schwartz
inequalities have played an essential role in the theory of classical calculus and quantum
calculus [3].

Convexity is a growing area of research that has applications in complex analysis,
number theory, and many other fields. Convexity also has a significant impact on people’s
lives with its numerous applications [1,3]. Convex functions are defined as follows.

Definition 1 ([1]). Let g : [p1,02] € R — R be convex if, for every s,y € [p1,p2] and every
A € [0,1], we have:

g(Ay+(1=A)x) < Ag(y) +(1=2) g(x).
which holds for every s, y € [p1, p2] and every A € [0, 1].
Convexity theory also provides us with an amazing framework for initiating and

developing numerical tools to tackle and study complicated problems in mathematics.
Due to the number of expedient properties, they are magical, especially in optimization
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theory. The theories of mathematical inequalities and convex functions have a wonderful
relationship. One of the most remarkable inequalities, which, we may say, is the natural
extension of the convex function g : [ 1, p2] — R, is Jensen’s inequality [1], which is
given as:

g (}i w %;) < (é w g(%])>, @

for all 5 € [p1, 2], w; € [0,1] satisfying }w; = 1for (j=1,2,...,N). For N' = 2,
Jensen’s inequality (1) recaptures the definition of a convex function. There are several
important applications of Jensen’s inequality in economics, finance, statistics, and optimiza-
tion, but it is also the most effective inequality for predicting the estimations of the bounds
of distance functions in information theory (see [4,5]).

In the year 2003, Mercer [6] introduced an interesting variant of Jensen’s inequality,
which is called the Jensen—Mercer inequality:

N N
g(@ﬁrm— Y w, %]> <glp1) +alp2) — Y w a(s), @)
=1 =1

which holds for all finite positive increasing sequences »; € [ p1, 2], for (1 =1,2,...,7),
along with the weights w, € [0,1] defined in (1). Many scholars have investigated and
studied the Jensen—Mercer inequality over the years, and they have even brought it to
higher dimensions, using it for convex operators along with several purifications, operator
variants for super-quadratic functions, improvements, and many generalizations with
applications in information theory (see [7-10]).

In the applied sciences, there are a number of significant inequalities due to their im-
portant perspectives. However, the present study revolves around the renowned Simpson
inequality [11], whose error estimates are written as:

1{g(p1)+9(p2) (pl+p2> 1 /@z H
O T S - »)dxn
‘3{ 2 9 2 o2 — o1 Jor 9(%)

< ﬁ“g“‘ ’m(pz — 1)},

where g : [p1, 2] — R is a four-time continuously differentiable mapping on (g1, p2) and
[16% | = SUP..c (0,0 87 (39)| < co.

Simpson-type inequalities are a topic of great interest for many scholars, and they
have been explored and studied for various classes of functions. Some fractional Simpson
results were established with applications in [12,13].

One of the trickiest math problems to comprehend is in the history of quantum calculus,
which is sometimes known as §-calculus or §-disease and dates back 300 years to Bernoulli
and Euler. When there is no limit in calculus, it is referred as §-calculus. Euler was the cre-
ator of g-calculus and the inventor of the §-parameter by using the §-parameter in Newton’s
work on infinite series. Jackson was the first to present the developing ideas about §-calculus
in a symmetrical manner in the nineteenth century by introducing §-definite integrals [14].
Al-Salam presented a fractional integral operator and a §-analog of the Riemann-Liouville
fractional integral operator from 1966 to 1967 [15]. Due to its applicability in a wide range
of domains, including mathematics, mechanics, and physics, there is now a tremendous rise
in the area of §-calculus. One can see this in [15-17] and the references therein. §-difference
operators are of huge importance because of their applications in a variety of mathematical
disciplines, including orthogonal polynomials, basic hypergeometric functions, relativity,
combinatorics, and mechanics. Many essential concepts of quantum calculus are covered
in Kac and Cheung’s [18] book. These ideas help us to develop new inequalities, which can
be useful in the discovery of new boundaries. The following are some of the fundamental
definitions of quantum calculus.
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2. Preliminaries

We first present the definitions of quantum derivatives and quantum integrals.

-1
a-1

[n]q =

The ,, Dg-difference operator and q,, -integral were first presented by Tariboon in [19].
Later, Bermudo et al. [20] intervened with the concept of the §°2-derivative and §f2-integral.

Definition 2 ([20]). The §°2-derivative of mapping g : [p1, p2] — R is defined as:

P2Dqg(5) = g(q%a (lq_)(?ZPZ)%_)g(%), if % # 2.

If 5 = p2, P Dqg(p2) = lim PDgg(x),
=02

which is a §-Jackson derivative.

Definition 3 ([20]). The §P2-integral of mapping g : [p1, 02] — R is defined as:

02 i
/p g(5) Prdgse = (1—-§) (02— p1) ) §"a(8"01 + (1 —8")p2),
n=0

1

which is a §-Jackson integral.

Theorem 1 ([20]). If g : [p1, p2] — R is a convex mapping that is differentiable on [p1, p2], then
the following inequality is true:

p1+ épz) 1 e 0 g(p1) +dg(p2)
g < g(o0) Pdgre < —=———— ==,
(") = s [ a0 2,

where § € (0,1).

Lemma 1. We have the equality

N (4 Rl |
J Gemowr o =T

)tx+1

7

for & € R\{—-1}.
It is pertinent to mention an important lemma of interest.

Lemma 2 ([21]). For the continuous functions g,b : [p1, 02] — R, the following inequality is true:

1

B P2 —pP1

_h(Oe(mer + (1 —1n)p2)
P2 —pP1

/O Dq (1) g(aner + (1 — ay)p2) dayy

c

| bn) P2Daglipr + (1= )pa) da

0

Despite our concentration on the thrill and romance of the development of quantum cal-
culus and its applications in specific areas of the mathematical sciences and physics, §-analogs
of integral inequalities are a topic of supreme interest. Using the ,, Dq-derivative, §,, -integral,
gf2-derivative, and §2-integral, several integral inequalities—namely, those of Holder, Griiss,
Ostrwoski, Hermite-Hadamrd, the trapezoid, and the midpoint —have been investigated with
respect to various kinds of functions (see [20,22-26]). Some quantum integral inequalities in co-
ordinates can be observed in [27,28]. New quantum versions of Simpson- and Newton-type in-
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equalities relevant to convex functions were developed in [29-31], and their significance was es-
tablished. Recently, Budak et al. introduced a variant of the quantum Hermite—Jensen—Mercer
inequalities [32,33], while in [34], Bohner et al. provided their post-quantum extensions.

Motivated by the ongoing trend, the purpose of this study is to give an analysis of
quantum Simpon-like inequalities under Mercer’s concept. We formulated new quantum
auxiliary results. By applying convexity and the related Jensen-Mercer inequality, we give
a variety of new estimates of Simpson’s quantum inequality.

3. Auxiliary Results

In this section, we describe our discovery of novel quantum Simpson-Mercer and
quantum Newton-Mercer-like identities using §°2-integrals.

Lemma 3. Let a mapping g : Z = [p1,02] € RT — R be differentiable on (pq,p2). If
PLt02=%Dag € L]p1, p2), then, for all 52,y € [p1, p2] with 3 <y, the following identity holds:

b pﬁpr%g(,\) priea=sg, )\

Y = 2 Jprtpa—y

1 . + g .
- [9(91 +p2-y) +q2[4]qg<pl TR Ak > +ag(o1 + p2 — »)
[6]q 2]q

=4a(y —») /01 p(A) P2 Dag(p1 + p2 — (Ay + (1 — A)x)) dgA,

where

Proof. Taking into account the fundamental properties of quantum integrals, we have

1
|| 9 P02 Daglpr +p2 — (Ay + (1= 1)) dad

/0[2]q prtp2—#p)., Q(Pl + 2 — ()\y-ﬁ- ( A) )) <A - [61]q> qu
+/ P1HP2—>]). q8(p1 o2 — Ay + (1= A)s ( 5}:)

B aw
614

w [ (1= ) Daslor 02— (hy+ (1= 1)) di

=hL+D.

/O[]q p1+p2— 7 D4 g(p1 +p2—()\y+(1_/\) )) dq)\

Now, as a consequence of Lemma 2, we get

h= d[[;]; /Omp“pr”Dqg(pl +02 — (Ay + (1= A)3)) dgA
[4lg a(o1 +p2 — Ay + (1 —A)x)) |Pa
{6]61 y—x

0
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= _[6];]([};4]—61%)[9(‘)1 +p2— ([21]qY+ (1—[21]@)%)) — (o +P2—%)]

o ) s o]

and

L= /01 PP~ Dag(po1 + p2 — (Ay + (1 = A)x)) <)‘ - E}Z) dgA

(1 Ba) sty 00 1
[6]q y—
L q(A—%)g(pﬁpz—(d?\yﬂl—é]?\)%))dAA
y—»Jo (6] K

_ (1 [5]Q> glp1+p2—y) [5laglpr +p2— )

0

[6]
1 /1 q X .
oy oot = @Ay + (1-81))) d)
[6]a — [5]g g(p1 +p2—y)  [Blagler +p2 — »)
(6] y—x 6l y—=
N (1-a)=2 a8 g(p1 +p2 — (@ Ty + (1—§"1)x))
y— 4
~5 .
= —[6]6‘(;7_%)9(!31 +02-y)— Mq([i]q_x)g(pl + 02 — )
L A-9xR, §"la(or+p2 — (" y + (1-4")x))
4(y — »)
g [5]q

= TBlaly =1 TP Y T =)

(1-49) 1 p1+pa— o
4(>—y) (o1 +p2-y) 4(s — Y)Z p1+p2—y 2 q
[5]4

gly —»

y — 6l y—

g(p1 +p2 — )

1
=———————g(m1+po2—y)— +p2—
Gy = %)9<Pl P2 =) @ )Q(Pl p2 — )
1 p1+p2—
I p1t+p2—2 4,
* 4(x —y)? /PlJer*Y o(d) FTETdgA

Then, it follows that

p1+p2— 3
aly =)+ ) = —— [" Ty g
Yy =% Jortpa-y

- [61]q {g(m +p2—y) +d2[4}q9(pl +p2— y&?) *+aaler o2 - %>]'

Thus, the required equality is captured here. [

Remark 1. If we set »c = p1 and 'y = py in Lemma 3, it can be reduced to the following equality:

LIl 2dh - L N A
02— 1 /Pl g(A) P2dgA 6l [9(P1)+q2[4]q9( 1[2}6] 2) +qg(p2)]

1
= alpz—p) | 9(A) ™Dag(Apr + (1= N)pa) dad,

which was proven in [31].
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Lemma 4. With the suppositions of Lemma 3, we have the following identity:

1 p1+p2—
- A) PrtP2—> g A
Y*%mﬂryﬁ) d
1 d ( Y+%1+dﬁ%>
+ 02 — - + 0 —
[S]q { (pl 02 Y) +4 P11 P2 [3]61
216
4-[6]q ( (1 §)y + & > ]
+ = 40—+ + 02 —
(1+q)9P1 02 mq aa(p1+p2 — )
1
=a(y =) [ $(A) P Daglpr + 2 — (Ay + (1= A)32) da, ©
where
A= A€ [0’[31]7}
_ 1 1 2
A—gl re [ﬁ@

Proof. By using the fundamental properties of quantum integrals, we have

1
/me P =Dag(py + 02— (Ay + (1= 1)) dad

0 [l
[2]4 .
b [T Doy +pa = (hy + (1 - < [2}>
Bly q
' p1+p2— 7 q
* g Dag(p1+p2 — (Ay + (1= A)s) (A — m dgA
Blg
=L+ DL+ L.

The desired results may be attained if steps similar to those in Lemma 3 are used for
the rest of this proof. O

Remark 2. If we set »c = p1 and 'y = py in Lemma 4, it can be reduced to the following equality:

1S

1 02 - _L
o, 9 e [8%[” 2

la
§’6lqg [ (1+d)p1 + %02
g o) waste)

—a(e: o) | " p(1) P Dag(Apr + (1 - A)pa) dg

q

+

which was proven in [31].

3.1. Simpson—Mercer 1/3 Formula-Type Inequalities
Theorem 2. Let the assumptions of Lemma 3 hold. If|P1P2~*Dgg| is convex on [p, p2], then the
following inequality holds:
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+ ”
SEPTPY or+o2—% g A
p1tp2—y

[6}q[ o1tz )+qz[4]qg<Pl+P2yE;]j )*qg(pﬁpz )}

8 1+pa— (oo ¢Blg—a 1 _(1+[5]3)
. 2
_ %’ _ W) — PH—Pz—%DqQ(Y) [Clq + Czq] — PH—Pz—%Dqg(%) [dig —|—d2q]}, 4)
alslq
where

tg = O[zl]ﬁ AlA [61](1 dg) = 220 :ld:[6]2[3]q

o :/O[;]q(l ol [61](1 doh = 2625131212 + [6]3 (1 + [2(1311 [3]4[5]q[612 (1 + [2]3)’
o :/;ﬁq A g e ([s]jzﬁ [é?q[zfg) #p 2T )

dag = /[le]q(l —A) |A- ﬂ: doh = 6[5]q[6]q5]2: — &Pl ﬁz[?]Tq%]@q[[Z]qu]q

and 0 < § < 1.

Proof. By taking the modulus in Lemma 3, we have

#/erzf%g()\) priea=sg, )\
(y =) Jor+p-y

1 R 14 )
T [9(P1 +p2—y)+ q2[4]q9<101 +02— Y > q%> +d4g(p1 + 02 — %)}
[6]q 2]
o 1
<4y - )/0 A - R PR Dag(o1 + 02 — (Ay + (1 = A)x)) | dgA
1 5]
+aly —») [ A—Hz PItP2=*Dag(p1 +p2 — (Ay + (1 = A)x)) | dgA.
s

By using the convexity of |"17P2~*Dgg|, we get
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1 1
< /mﬁ A— L {PlJer%Dqg(pl) + plﬂ)Z*”Dqg(pz) } — P1+P2%Dqg(y)‘/[z]ﬁ AN — i dgA
0 (6] 0 [6]4
1 1
— |12 % Dy g(5¢) /mq (1= A)|A — | dgA
0 [6]a
5q da) | [P1Ho2—2 P1+p2—% p1+p2— ! A— [5] )\d A
+/ ~ 6lq| % Dag(p1)| + Dgg(p2)| | — Das(y)| |, W
2l 2l
— |12 %D g (5 ‘ (1-=A)|A - 1 dgA.
o [6]4
Here, we have
1 ~ ~3 ~
2l gor— 20 aBla—a
) O] ™" Plalely  [elal2]3
and by using similar operations, we have
1 5 ; 5]4[2)2 — [6 5|2
on [6]q [6lg  [2]q [6]4[2]3 [Z]q[6]q
. ; "8l —
= aly — s { [P Dag(en) | + P Dag(ea)| (T80 + o
’ A 6lal213 (2l
5l 1Blal21§ —[6la . ( 5]%)) _ _
- +24 — |27 Dag(y) | [c1q + c2q] — [P ¥ Dqg(5¢)|[d1g + d2g] ¢-
[ ]q [6]q[2]2 [Z]q 6]q q [ q Q] q q q

Hence, the proof is completed. O

We give the following example to show the validity of the results given in Theorem 2.

Example 1. Let us consider thefunctionsg : [1,2] — R defined by g({) = %, and let x = % and
y = 3. Then, we have P1*F2~*Dqg({) = 3Dqg({) = (1+8)J + (1 — §)3, and [P17P2=*Dqg| is
convex on [1,2]. Under these assumptions, we have

16
gl +p2—y) = 97
. N2
y+q%> B <4+5q)
+ J— —
9(’“ 2= 3124

g(p1+p2— ) = 5

and

From Definition 3, we get

pl+p27%g(;\) prtpe—g. 3y — P A234.0
o2 q 4 q
1TP27Y 3
(1—6]) C ATl An4 N} 5 2
= — 1—
3 nE:Oq a3+ (1-4d"7
_ (1—61) - N _ A2n
- = n§:0q (25 10" + 4§ )
1 { 10 1 }
= 25 — +
27 [2s " Bla
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Hence, the left-hand side of the inequality (4) reduces to

1 p1tp2—5 .
1+02—

1 . + §ac .
— = {g(m +p2—y) + (449 (m +p2— ym? ) +aa(o1 +p2 — %)] ‘
q

[6]q
1 10 1 1 [16+254 ., (4+5q)2
=|= 25—+]— T %4,
sl e |
Since
. 8 — 24 . 11+4§
|P1+P2 Dqg(P1)| — Tq' ‘P1+Pz Dqg(Pz)‘: 3q (5)
. 10 . 9—4§
e Dgety)| = g D) = 5
we can write the right-hand side of the inequality (4) as
*Bla—4 (1+[5]3)
aly = )] [P Daaten)| + e Dasten)| (T8t + -+ 20
! e W\ Tolal2y " B T 2alel
5q  [5lal2]3 — [6] e Y
_H:_ q{ﬂ?[z] q) P02 Dag(y)| [c1q + c2q] — |72 Dqg(%)‘[dlq +d2q]}
al=lg

o ]85

917 g  Bla) [6lg 4
qf8-24 11+q/&Blq—a 1 . (1+[])
: 3{ 3 3 ( [6]a[2]3 " 2] 2 [2](6]3
5lq [5lal2z —[6la\ 10 9-4
- ﬁ - q[@qq[z]gq) -3 [c1q + c2q] — —5—[d1q + dzq]}- (6)

One can see the validity of the inequality (6) in Figure 1.
Remark 3. If we choose s = p1 and y = pa in Theorem 2, we get Theorem 4 of [31].

Corollary 1. With the assumptions of Theorem 2 with s = p1, y = p2, and § — 17, we have
(see [35]):

o [ aan— g laten) +4a (P2 ) + alen)|

_ 5(02p1) <|g' (01)] + Ig’(Pz)|>. @)

36 2
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0.6 T T T T T T T T T

0.5 y

The left term
The right term ||

0471

03r y

0.2r a

011 §

0 . . . .
0 0.1 02 03 04 05 06 07 08 0.9 1

Figure 1. An example of the dependence of the inequality (6) on § was computed and plotted with
MATLAB.

Theorem 3. Let the assumptions of Lemma 3 hold. If |P1tP2=*Dgg|** is convex on [p1, pa) for

some fixed ©, > 1, then the following inequality holds:

prHp2—
1 /p1 T a(n) e

Y =% Jpit+pa—y

[g(m +p2—y)+ 62[4]q9<y [J;]j%> +dg(p1 +p2 — %)} |

A Mg \E
Sq(y—%)<[2]m+1[6]m> X([Z]a

01 GZ +2q
3
213
1
[2]?]24—1615@2 — g [4]§2> 02 . < g

215 [6] 2 [2lq

21 21

plﬂ’z*"Dqg(m) P1+P2*%Dqg(p2)

L1
[2]4

q
@1) %

PEP2=*Dag(p1)

1
P1N\ op
7

P1+Pz—%Dqg(%)

M,
o W

91 91

PEP2=%Dag(p2)

q

§
",

+d(y—%)<

a2 A P1 A3 a2 A
G- +29 _ §g°+q9°—q -
— [2]3 p1+pP2 ”Dqg(y) p1+P2 %Dqg(%)
q

- 1 1 _
where0<q<1anda+@—1.
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Proof. Applying the well-known Holder inequality for the 2-integral on the right-hand
side of Lemma 3, we have

e
(y —») p1+p2—y

—[éqFQM+P2—YV+¥HMQOH+P2—y££%>+@9@1+P2—%4‘

1
ﬁ §2 @
<€1(y—%)</0 ) dq?\)

1
% (/O[Z]q p1+p2*%Dag(p1 + 02 — (/\y-f— (1 - )‘)%))

1
1 2 92
+4(y - ) ( In qu)

g
1 1 KJl]
x ([, |7 Daalor +p2 — (Ay + (1 = A)3))| daA | .

2,

1

A,

1 ﬁ
dgA

_ [5lq
A [6]q

T\

By using the convexity of [P17P27*Dgg|¥1, we obtain:

p1+p2— 5
’(y 1%) /] ~a(A) )
- Jp1+p2—y

+ §ac

- ﬁ {Q(Pl +p2—y)+a%[4)q0 (m +p02— Y[Tj) +Gg(p1 +p2 — %)] ‘

e v B o
<aty—=)| [ doA X(Aq

1
[2lg [2lq
+/ | dAA—/ TN dgA
Jo q Jo q

1
[6]4

1

1
A= P~ Dag(p1)| dqh

1

PP Dag(p2) P02 Daga(y) PP~ Dag(>)

1
331) o1

1
- /Omﬁ (1-A) dgA

1

1 5]4 |~ o2 1 o1
raly | [, -t dad] < ([, [P Dagten)| dad
s [6]‘1 2ls
4 (g
1 Z o

Jr

]

PR =% Dag(02)

1 1 1 1
doh— [, Adgh - [, (1= Mg
& 1+

24

PP < Dygy)

PP Dyg (50

1
4

To calculate the integrals,

o 1 (1-4) &0 8" 1
VA= | dgh = m 3
) G PP PR P
2
(1-8) v 0| 1 1
< -
ok 5En
4?2 (42
- n+11 1602
20 lely
Similarly,
1 Bl ©2 [2]gz+1q5m — qv2[4]£2
/1 )\_ [6]A dq - KJerl 2
Bly 4q [2]q [6](4
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Here, we also have

3
2]
1 D ~
P (1 - A)dgr = T2
1 82 oo
[, Ader =1 2,
oy 213
q
and
1 3 a2
on 2]
q

~

q

By substituting these integrals, we get the required results.

O

Remark 4. If we put s« = p1 and y = py into Theorem 3, then we get Theorem 5 of [31].

Theorem 4. Let the assumptions of Lemma 3 hold. If [P11P2*Dgg

some fixed ©, > 1, then the following inequality holds:

1 /pﬁpr%g(/\) Pt g\
(Y*%) p1+02—y

y+ax
2]q

- [g(m +p2—y) +8°[4qs (Pl +p2—

ity [ EBla—a 29 ’ﬁ
=aly )< wmmg'*phm2)

= Dag(p1)

1

+

— 14|/ *Daa(y)

| Bl SRRl (52
*Qm O GER e

BAGE
(Bl BelE-ls BB 1
( 6l [6lal] +MMﬁﬁ+mJ

q
1
01\ ©1
7

where 0 < § < 1, ¢14, 29, d1g, and daq are defined in 2.

— dig |1 P2 Dag(3)

1
@1) o1
1
)1_m

1
_ dzq

— 24 |P" T2 Daa(y) PrtP2= D (52)

= Dag(p2)

P1+Pz*%Dqg(p1)

1 }

1

+

) +dag(p1 +p2 — %)} ’

P1+P2*%Dqg(p2)

1 is convex on [p1, p2] for

1 }

Proof. By applying the power mean inequality on the right-hand side of Lemma 3, we have
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+p2—
;/pl P2 Vg()\) p1+p2—%da/\
(Y—%) P1+p2—y

A LR R RO R RR TR —;»H

2ls
sa(y—m(/o " qu>

1
- 1 _
(/)[ﬂa A— 01+p02 ”Dqg(Pl + 02— (/\y— (1—)\)%))

b

A [6]4

X

(6]

o\
dgh

=5
+q(y%>(/;]q AR daA)
x (/f A— % PP Dag(p1 +p2 — (Ay + (1= A)5)) mdq/\> -
2y

Now, applying the convexity of [P17P2=*Dgg

P1+p2—
’<y1%)/ I L) Py
- p1+02—y

#1, we have

1 . + g .
615 {9(01 +02—y) + & [4lq0 <P1 +p2— Y[z]A ) +dg(o1 +p2 — %)] ‘
q q
qu)

PIEP2=Dag(p1)

1

A [6]4

e | et
1

01 /ﬁ
0 [6]4

-5
dg)

PP Dag(p1)

91

+ P1+Pz—%Dag(p2)

1 }

©1 1

[2lq
1—A
JARICERY

P1+P2*%Dqg(y) _ i

[6]4

A —

dgh — A

P12~ Dag ()

1
[
qu)

54
A s

i {

pl/1 /\‘)\—[5]@

N [6]4

91

[6]4

P1+P2—%Dag(p2)

1 }
91 1
/ 1

[2lq

D) Ak

At - [6]4

PlJer*%Dag(%)

o1
(1- /\)qu)
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i
©1
dq/\) X <C3q {

PlJer*%Dqg(%)

01

}

1 1

[6]4

1

dg) — dug

PP~ Dag(o1) PP~ Dag(p02)

o\ o
dg)

A +

:a(y—w(/ﬁ

P1+P2*%Dqg(y)

—14(4)

1— L
~ 1 [5]@ . 40y —¢ o1 +00—2 71
valy | [ o gtdad ] (dsag U Daglen)| o+ P Daglen)
m q
1
1 1 ©1
— 04| P2 Dag(y)|  dgA — dag| > ¥ Dag() qu) '

By putting in the values of the integrals, we get required results. O
Remark 5. If we put sc = p1 and y = py into Theorem 4, we get Theorem 5 of [31].

Corollary 2. With the suppositions of Theorem 4 with s = p1, y = p2, and § — 17, we have
(see [35]):

o [ aan = g [aten) +a (P2 ) + alen)| ‘

1
1 5\ "
<(p2—p1)——— (72)
(1296) 1

><{(mm’(m)“+29|g’<pz>|“> +(61|g’<p1>“+29|g’<pz>|“) } (8)

3.2. Simpson—Mercer 3/8 Formula-Type Inequalities
Theorem 5. With the suppositions of Theorem 2, we have

pr+o2—3
[ T aa) g ©
Y — > Joi+pr—y
1 §3[6]4 ( Y+ﬁ[2]a%> 4%[6]4 ( [2]aY+%ﬁz>
— ——l8(o1 +p2—y) + 29 ( p1 + 02 — + 28 (g 4 pp — HO T
[%[@ P2=Y) T e\ e T 2 P\ T

+dg(p1 + o2 — %)] ‘

Ptr=*Dag(p1)| + [P1TP2*Dag(p2)

Sd(y—%){

3
7 RlaBlal7)a - lalBla , {[S]ﬁ 2 W] )
8l; EHEP 22

Pt g(y) P02 Dag(5¢) ‘ [d3g + dag + dSQ]}

[ng + C4q + C5q] —

where W3g = [Z]Q [3]61 [8]§
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1 2151+ [213) - B3+ [23) | 242
g = |A — —=—|(1—A)dgA a a 4 =+ ,
H ' 84 (=4, 2131313 [2]3[3]4
[2lg
s = Hq)\‘A quA_2q2[7]2+[Z]a[S]a([Z]§+[312)—4([2]3+[3]3)[3]§[7]a’
oh 84 34 [2]4[3]3 84
12l A 2
oy = [P gl - 29 Tl
SV ER S oA ww  ZaBEEl PR
! 7] 2 [2]
dig = [ AJA — =23 |dgA — I — g,
4 o AL 25 BR
1 7]4 al3la[713(8ls —&*[7)3 = @2 4[7]4
dsg = [, (1= A) A — =23 {dgA =2 -
9= Jaa - g s 2Bl 2l
N [2]a([3]§4 [2]3) ﬁ[2]2§[7]a,
313 [31518]4
and 0 < § < 1.
Proof. Applying the modulus to Lemma 4, we attain
1 p1+p2— \pa—3 .
Y‘i"/PﬁPz*y o(A) e Tar
43161 - &121 x5 52761 - Y
_[81]61{9@1 +pz—y)+q[2[]6j]q 9<P1 +p2_y+[g][2]q >+q[2[]6;q g(m +p2 - [2}q;[73;: A )
+dg(pr +p2 — %)] ’
Sd(y—%)/om )‘_sl]q Pt %Dag(o1 + 02 — (Ay + (1 = A)))| daA
12l
+4a(y — ») /E‘* A—[Sl]q [(15P27%Dag(p1 + 2 — (Ay + (1 — A)3))| dgA

PP Dag(po1 + 2 — (Ay + (1 — A)x)) | dgA.

+a<y—z>/ﬁ 'A—QZ

It is now sufficient to use similar steps to those in the results of Theorem 5 to find the
desired outcomes. [

We give the following example to show the validity of the results given in Theorem 5.

Example 2. Let x, y, and the function g be as in Example 1. Then, |P1TP2~*Dqg| is convex, and
we get
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L/PH—Pz—%g(A) p1+p27%dq/\
Yy — % Jp1+pa—y

A3[4T . . . A L
- oter )+ L0y 4y YA [6}qg<pl+p2_w>

4

+ag(p1+ 2 — %)] ‘

25
9(P1+PZ*%)=5,
and + 1 10 1
P12
a0 mergg = L 01
Sripney ) 77N = 5 |25 pp
Therefore, we have the equality from (9),
L/pl“’PZ*%g(A) P1+p2_%dq/\
Y= %oty
A3 A a2 42
Q[6]q< Y+q[2]q%> G°[6]q [2]qy + >4
— = |8(p1+ o2 —y) + gl o1+p02— + g +p02—
B 10+ 29+ o e = N P

+dg(p1 +p2 — %)] |

1o 10 1] 1 [16+25  @lelg (58l —1\" alolq (43l +a?)’
51 mqﬂsﬂJ [sﬂ 9 *[z]q( o) ( : H
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By using the equalities (5), we can write the right-hand side of the inequality (9) as

A e e ( al2la[Sla— Blal2le . 1

aly ) || Dalon)| + 1 D@W)<[% 0aBEs, |
T Pl s 2[5 2RO+ TR

TBe BEB. PHEE )

Pﬁm%mmwkm+%+%d—mw‘@wMM@wdm+¢ﬂ

v [8726  +a| al2q[8la —[3lal2lq , 1
=aty 0|57+ B 52 [eBEBl | 2k

A 2 2 2
_Wh_mwmm—mwh+mwhﬂ%“+mﬂ)
8la EHOT PHDA

10 9—4§
— ?[ng + c4q + C5q] — Tq[d3q + d4q + d5q]:| .

Finally, one can write the inequality (9) as follows and can see the validity of this inequality

in Figure 2.

1. 10 1] 17[16+258  &ela(5Bla—1\*  &[6la (4Bla+a*)’
1 [ﬂq+[ﬂJ Bh{ CR ( 36T, ) + 2, ( 303, ) H

v |82, +all a2l [8la—[3lal2a , 1

<aty— S5+ B 8% [2aBEE, | [Pla
Jm_mwmm—mmmf“%+m%+mﬂ>

8ls 328 PHOE

9-q

10
- f[C3q + 49 + C5q} [dgq + d4q + d5q]:| .

3 3

Remark 6. If we choose s = p1 and y = po in Theorem 5, we get Theorem 6 of [31].

25

The left term
The right term

05

05 I . I I . . I I I
0 0.1 02 03 04 05 06 07 08 0.9 1

Figure 2. An example of the dependence of the inequality (9) on § was computed and plotted with
MATLAB.
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Theorem 6. With the suppositions of Theorem 3, we have following inequality:

+ —
7/(31 02 %g(/\) Plﬂoz*%dq/\
Y — % Jp1tp2—y

~3 R
- i {Q(Pl +p2-y)+ q[z[iqg(m +p2—

A @5l |\
<4(y —») ( [3]?2“[8}?2)
o1
PI+e2=%Dayg(y) 4
1 1 D — . 1 D — n _ d _ [S]A [2} - 1 D — I n o1 “1
(g [ eston)| + Dt | PR, BEn | Pasl) )

X §2[2]4 — 262 72
- (Bl[pl+p2_”Da9(Pl) + Pl*"z‘”Dqg(Pz)}
[2)2 -1 o1 [3]g[2qd — 203 +1

PP =%Dag(y)

-9 -

Blal2la 32,
o §’%>  [2]q([7]a[3]q — [8a[2]a)" o
+ Q(Y ) ( [8]232 [8]232 [3]?2-&-1 )
s 2 — p 21
: <[g]q [mm “Dagler)| + "7 Dag(p2) } - [3[]2‘4](3[3[;]‘4 P1+02=#Dag(y)
q

I
where or + o

Proof. By applying Holder’s inequality in Lemma 4, we attain
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n + —
1 P1+p2—7 g(/\) p1 +p27%dq/\
Y = % Jpi+pa—y

1 43[6]q ( Y+ﬁ[2]q%) %[6]4 [2]qy + xd?
— —lalp1+p2—y) + al o1 +p02— + gl 1 +p— =9 70
8l [ (o102 =y) e\ e ) 2l P\ T,
+4ag(y +p2 — %)} ‘
B 1 |%2 é ﬁ 1 ﬁ
<§(y —») (/O ) A*m da/\> (/0 @2 Dag(pr +p2 — (Ay + (1 — A)x)) dM)
% 1 2 é % 1 ﬁ
+q(y—%)</1q A_W dq)\> (/1q PER%Dag(y +p2 — (Ay + (1= A) %)) da")
Blg 9 Blg

PrEee=*Daa(pr +p2 — (Ay + (1= A)3))

R 1 [7}61 2 é 1 1 ﬁ
+Q(Y—%) /‘% A— [8}51 qu /% dq/\ .
 Blg " Bla

By applying a similar method to that used in the results of Theorem 3, we find the
desired outcomes. []

Remark 7. If we put s« = p1 and y = p, into Theorem 6, we get Theorem 8 of [31].

Theorem 7. With the suppositions of Theorem 4, we have the inequality

+ —
1 /Pl 02 %g(/\) o1 +p2_%dq)\
Y = % Jpi+pa—y

A3 . R e Az A A %Az
Bl {g(pl thoyt q[z[]iqg(pl +pp— Y42 ) + qé?“g(m + 02— [2]qY+q>

4 (3la 4 [3la

+q4g(p1 +p2 — %)] ‘

+

PIHP2=*Dag(p2)

1
o1 > o1

|

—d3(@)|* 27 *Dag ()

1

@1) 01

1

Pl+pzfxDqg(p2) p1+p27%Dqg(y) —d4q P1+P27%Dqg(%)

+

<2é| a2 {
22 B3

<z Wk | B+ PR [7]a([3]a+[2]a)>1“11
q

EHESHAR [3al8ls
2973 1 7l [2alBlal7la ~ [21a[8la [[pyspsp, v,
([Z]a[S]é 2y (8l 312(8]5 [" : Dqg(l)‘+” P Dqg(Pz)}
01 01 fJT
—esa|P P Dgaly)| g P Dag)| )7

€3q, €44, €54, d3q, d4q, and d5q are deﬁned in Theorem 5.
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Proof. The proof of the theorem is analogous to the proof of Theorem 4. [

Remark 8. If we put 3¢ = py and y = py into Theorem 7, we get Theorem 9 of [31].

4. Conclusions

In this article, we developed new analogs of Simpson-Mercer-like identities. Thus, by
employing quantum integration and the Jensen—Mercer inequality for convex functions,
we computed new quantum bounds. This novel framework is a convolution of the Simpon-
Mercer concept and the estimation of the §-definite integral. Some examples are also
provided for the main inequalities. By employing the quantum Holder and power mean
integral inequalities, we analyzed new quantum inequalities that are in connection with
previously published results. Little work has been done on quantum Mercer inequalities to
date, so it is interesting to extend these findings to other general inequalities and convexities.
One of the important problems is to check the validity of such results for their coordinate
convexity. We presume that our newly announced concept will be the focus of much
research in this fascinating field of quantum inequalities.

Author Contributions: Investigation, S.I.B. and H.B.; writing—original draft preparation, S.L.B. and
H.B.; writing—review and editing, S.I.B., H.B. and K.N.; funding acquisition, K.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded in part by the National Natural Science Foundation of China (grant
no. 62002079).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Mitrinovi¢, D.S.; Pecari¢, J.E.; Fink, A.M. Classical and New Inequalities in Analysis; Mathematics and Its Applications (East and
European Series); Kluwer Academic Publishers Group: Dordecht, The Netherlands, 1993; Volume 61.

2. Qin, Y. Integral and Discrete Inequalities and Their Applications; Birkhauser; Springer International Publishing: Basel, Switzer-
land, 2016.

3. Agarwal, P; Dragomir, S.S.; Jleli, M.; Samet, B. Advances in Mathematical Inequalities and Applications; Springer: Singapore, 2018.

4. Butt, S.I; Bakula, M.K,; Pecari¢, D.; Pecari¢, J. Jensen-Griiss Inequality and its Applications for the Zipf-Mandelbrot Law. Math.
Methods Appl. Sci. 2021, 44, 1664-1673. [CrossRef]

5. Khan, S.; Khan, M.A,; Butt, S.I.; Chu, YM. A New Bound for the Jensen Gap Pertaining Twice Differentiable Functions with
Applications. Adv. Differ. Equ. 2020, 1, 1-11. [CrossRef]

6.  Mercer, A M. A Variant of Jensens Inequality. . Inequal. Pure Appl. Math. 2003, 4, 73.

7.  Kian, M.; Moslehian, M.S. Refinements of the Operator Jensen—-Mercer Inequality. Electron. J. Linear Algebra 2013, 26, 742-753.
[CrossRef]

8.  Anjidani, E. Jensen-Mercer Operator Inequalities Involving Superquadratic Functions. Mediterr. J. Math. 2018, 15, 31. [CrossRef]

9.  Moradi, H.R,; Furuichi, S. Improvement and Generalization of Some Jensen-Mercer-Type Inequalities. ]. Math. Inequal. 2020, 14,
377-383. [CrossRef]

10. Khan, M.A.; Husain, Z.; Chu, Y.M. New Estimates for Csiszar Divergence and Zipf-Mandelbrot Entropy via Jensen-Mercer’s
Inequality. Complexity 2020, 2020. [CrossRef]

11.  Dragomir, S.S.; Agarwal, R.P; Cerone, P. On Simpson’s Inequality and Applications. J. Inequal. Appl. 2000, 5, 533-579. [CrossRef]

12. Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On New Inequalities of Simpson’s Type for s-Convex Functions. Comput. Math. Appl. 2010,
60, 2191-2199. [CrossRef]

13.  Chen, ]J.; Huang, X. Some New Inequalities of Simpson’s Type for s—Convex Functions via Fractional Integrals. Filomat 2017, 31,
4989-4997. [CrossRef]

14.  Jackson, EH. On a g-Definite Integrals. Q. J. Pure Appl. Math. 1910, 41, 193-203.

15. Al-Salam, W. Some Fractional g-Integrals and g-Derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135-140. [CrossRef]

16. Ernst, T. A Comprehensive Treatment of Q-Calculus; Springer: Basel, Switzerland, 2012.

17.  Bokulich, A.; Jaeger, G. Philosophy of Quantum Information Theory and Entaglement; Cambridge University Press: Cambridge,
UK, 2010.

18. Kac, V,; Cheung, P. Quantum Calculus; Springer: Berlin, Germany, 2001.

19. Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ.

Equ. 2013, 1, 1-19. [CrossRef]


http://doi.org/10.1002/mma.6869
http://dx.doi.org/10.1186/s13662-020-02794-8
http://dx.doi.org/10.13001/1081-3810.1684
http://dx.doi.org/10.1007/s00009-017-1058-8
http://dx.doi.org/10.7153/jmi-2020-14-24
http://dx.doi.org/10.1155/2020/8928691
http://dx.doi.org/10.1155/S102558340000031X
http://dx.doi.org/10.1016/j.camwa.2010.07.033
http://dx.doi.org/10.2298/FIL1715989C
http://dx.doi.org/10.1017/S0013091500011469
http://dx.doi.org/10.1186/1687-1847-2013-282

Symmetry 2022, 14, 1935 21 of 21

20.

21.

22.
23.

24.
25.

26.

27.

28.

29.

30.

31.

32.
33.

34.
35.

Bermudo, S.; Kérus, P; Valdes, ].E.N. On q-Hermite-Hadamard Inequalities for General Convex Functions. Acta Math. Hung.
2020, 162, 364-374. [CrossRef]

Sial, IB.; Mei, S.; Ali, M.A.; Nonlaopon, K. On Some Generalized Simpson’s and Newton'’s Inequalities for («, m)-Convex
Functions in q-Calculus. Mathematics 2021, 9, 3266. [CrossRef]

Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 2014, 121. [CrossRef]

Alp, N.; Sarikaya, M.Z.; Kunt, M.; Iscan, I. g4 -Hermite Hadamard Inequalities and Quantum Estimates for Midpoint Type
Inequalities Via Convex and Quasi-Convex Functions. J. King Saud Univ. Sci. 2018, 30, 193-203. [CrossRef]

Mohammed, P.O. Some integral inequalities of fractional quantum type. Malaya |. Mat. 2016, 4, 93-99.

Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite Hadamard inequalities. Appl. Math. Comput. 2015, 215,
675-679. [CrossRef]

Xu, P; Butt, S.I; Ain, Q.U.; Budak, H. New Estimates for Hermite-Hadamard Inequality in Quantum Calculus via (a, m)-
Convexity. Symmetry 2022, 14, 1394. [CrossRef]

Alqudah, M.A; Kashuri, A.; Mohammed, P.O.; Abdeljawad, T.; Raees, M.; Anwar, M.; Hamed, Y.S. Hermite-Hadamard Integral
Inequalities on Co-ordinated Convex Functions in Quantum Calculus. Adv. Differ. Equ. 2021, 2021, 264. [CrossRef]

Rashid, S.; Butt, S.I; Kanwal, S.; Ahmad, H.; Wang, M.K. Quantum integral inequalities with respect to Raina’s function via
coordinated generalized-convex functions with applications. J. Funct. Spaces 2021. [CrossRef]

Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals.
Math. Methods Appl. Sci. 2020, 44, 378-390. [CrossRef]

Alp, N. Erratum: Simpson type Quantum Integral Inequalities for Convex Functions. Miskolc Math. Notes 2021, 22, 33-36.
[CrossRef]

Siricharuanun, P,; Erden, S.; Ali, M.A.; Budak, H.; Chasreechai, S.; Sitthiwirattham, T. Some New Simpson’s and Newton's
Formulas Type Inequalities for Convex Functions in Quantum Calculus. Mathematics 2021, 9, 16. [CrossRef]

Budak, H.; Kara, H. On Quantum Hermite-Jensen-Mercer Inequalities. Miskolc Math. Notes 2016, accepted.

Mosin, B.B.; Saba, M.; Javed, M.Z.; Awan, M.U.; Budak, H.; Nonlaopon, K. A Quantum Calculus View of Hermite-Hadamard-
Jensen-Mercer Inequalities with Applications. Symmetry 2022, 14, 1246. [CrossRef]

Bohner, M.; Budak, H.; Kara, H. Post-Quantum Hermite-Jensen-Mercer Inequalities. Rocky Mt. |. Math. 2022, in Press.

Alomari, M.; Darus, M.; Dragomir, S.S. New Inequalities of Simpson’s Type for S-Convex Functions with Applications; Research Group
in Mathematical Inequalities and Applications; Victoria University: Melbourne City, Australia, 2009; Volume 12, pp. 1-18.


http://dx.doi.org/10.1007/s10474-020-01025-6
http://dx.doi.org/10.3390/math9243266
http://dx.doi.org/10.1186/1029-242X-2014-121
http://dx.doi.org/10.1016/j.jksus.2016.09.007
http://dx.doi.org/10.1016/j.amc.2014.11.090
http://dx.doi.org/10.3390/sym14071394
http://dx.doi.org/10.1186/s13662-021-03420-x
http://dx.doi.org/10.1155/2021/6631474
http://dx.doi.org/10.1002/mma.6742
http://dx.doi.org/10.18514/MMN.2021.3358
http://dx.doi.org/10.3390/math9161992
http://dx.doi.org/10.3390/sym14061246

	Introduction
	Preliminaries
	Auxiliary Results
	Simpson–Mercer 1/3 Formula-Type Inequalities
	Simpson–Mercer 3/8 Formula-Type Inequalities

	Conclusions
	References

