
����������
�������

Citation: Xu, C.; Liu, Y.; Chen, D.;

Yang, Y. Direct Training via

Backpropagation for

Ultra-Low-Latency Spiking Neural

Networks with Multi-Threshold.

Symmetry 2022, 14, 1933. https://

doi.org/10.3390/sym14091933

Academic Editors: Lorentz

JÄNTSCHI and Nicola Mastronardi

Received: 11 August 2022

Accepted: 13 September 2022

Published: 16 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Direct Training via Backpropagation for Ultra-Low-Latency
Spiking Neural Networks with Multi-Threshold

Changqing Xu 1,2,*,† , Yi Liu 2,†, Dongdong Chen 2 and Yintang Yang 2,*

1 Guangzhou Institute of Technology, Xidian University, Xi’an 710071, China
2 School of Microelectronics, Xidian University, Xi’an 710071, China
* Correspondence: cqxu@xidian.edu.cn (C.X.); ytyang@xidian.edu.cn (Y.Y.)
† These authors contributed equally to this work.

Abstract: Spiking neural networks (SNNs) can utilize spatio-temporal information and have the
characteristic of energy efficiency, being a good alternative to deep neural networks (DNNs). The
event-driven information processing means that SNNs can reduce the expensive computation of
DNNs and save a great deal of energy consumption. However, high training and inference latency is
a limitation of the development of deeper SNNs. SNNs usually need tens or even hundreds of time
steps during the training and inference process, which causes not only an increase in latency but also
excessive energy consumption. To overcome this problem, we propose a novel training method based
on backpropagation (BP) for ultra-low-latency (1–2 time steps) SNNs with multi-threshold. In order
to increase the information capacity of each spike, we introduce the multi-threshold Leaky Integrate
and Fired (LIF) model. The experimental results show that our proposed method achieves average
accuracy of 99.56%, 93.08%, and 87.90% on MNIST, FashionMNIST, and CIFAR10, respectively,
with only two time steps. For the CIFAR10 dataset, our proposed method achieves 1.12% accuracy
improvement over the previously reported directly trained SNNs with fewer time steps.

Keywords: spiking neural networks; multi-threshold; backpropagation; ultra-low latency

1. Introduction

Spiking neural networks (SNNs) constitute a brain-inspired neural model, which can
utilize spatio-temporal information and has an event-driven nature [1–4]. Unlike traditional
artificial neural networks (ANNs), which consist of static and continuous-valued neuron
models, SNNs process dynamic and discrete-valued spike events via more biological
spiking neuron models [1]. These characteristics mean that SNNs have potential to improve
computational and energy efficiency in hardware neuromorphic computing systems [5].
For instance, IBM’s TrueNorth [6] and Intel’s Loihi [7] process a single spike with a few pJ
of energy. IMEC proposed a spiking neural network-based chip for radar signal processing
that consumes 100 times less power than traditional implementations [8].

However, unlike ANNs, which only need one time forward pass, SNNs usually require
multiple time steps of computation to achieve decent performance, resulting in high latency
and difficulty to scale up to deeper architectures. Thus, there are two challenges for training
an efficient and high-performance SNN. From the algorithmic perspective, the question
of how to make full use of rich spatial-temporal information to train SNNs is the greatest
challenge of training algorithms. The non-differentiability of discrete spike events makes
it difficult to transmit errors precisely. Second, the question of how to minimize the time
steps of SNNs without accuracy loss is the key to scaling SNNs to deeper architectures.
Fewer time steps, which mean less temporal information that SNNs can utilize, make it
difficult to train SNNs with decent performance.

In recent years, many researchers have focused on the problem of the latency of SNNs
and tried to solve the problems mentioned above. Some researchers try to propose novel
encoding methods to improve the efficiency of information representation to reduce the

Symmetry 2022, 14, 1933. https://doi.org/10.3390/sym14091933 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091933
https://doi.org/10.3390/sym14091933
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-3827-8820
https://orcid.org/0000-0002-5065-4374
https://doi.org/10.3390/sym14091933
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091933?type=check_update&version=1

Symmetry 2022, 14, 1933 2 of 15

latency of SNNs [5,9–13]. In [11], the authors proposed an asymmetric gradient weight
update method to reduce the training latency, in which the time consumption in Hebbian
matrix plastic weight calculations is reduced by performing fewer backpropagation steps
by the algorithm. In [13], the authors proposed a phase coding method to encode input
spikes by the phase of a global reference clock and achieve latency reduction over the
rate coding for image recognition. Compared with rate coding, the proposed method can
reduce the number of time steps from hundreds to tens. In [5], the authors proposed a
time compression method to compress the temporal domain of spike training, which can
achieve up to 16× speedup with little accuracy loss. However, the achievable latency/spike
reduction of a particular code can vary widely with the network architecture and applica-
tion. Furthermore, due to the decrease in the temporal information, the latency of SNNs
is difficult to reduce to fewer than ten time steps without accuracy loss by improving the
coding methods.

Besides studying various coding methods, there are also some researchers trying to
obtain low-latency SNNs from a neuron model and training algorithm perspective [14–16].
In [16], the authors proposed a method to obtain the derivative of the postsynaptic poten-
tial (PSC) to solve the problem of non-differentiability, enabling the learning of targeted
temporal sequences with high timing precision. The proposed method can train a decent-
performance SNN in five time steps, but a warm-up mechanism is applied to bring up
the firing activity of the network before applying the proposed method, which means that
the actual number of time steps is larger than five. In [14], the authors proposed a novel
BP-based method that aggregates the finite differences of the loss over multiple perturbed
membrane potential waveforms in the neighborhood to compute accurate error gradients.
Compared with [16], this training method can achieve a decent-performance SNN in five
time steps, without extra steps such as the warm-up mechanism. In [16], an Iterative
Initialization and Retraining method for SNNs is proposed in which an ANN is pre-trained
and the weights are transmitted to the SNN. The authors explore the feasibility of directly
reducing the latency to one time step by modifying the weights and thresholds. Though the
proposed method can reduce the latency to one time step, it is still a type of ANN-to-SNN
method in which only spatial information is used during the training process. This method
neglects the potential of spatio-temporal information, which causes the performance of the
converted SNNs to hardly outperform the corresponding ANNs.

In this paper, we propose an architecture of SNN with multi-threshold LIF models,
which can transmit and process more information at each time step, and the corresponding
direct training method based on the BP algorithm to reduce the latency requirement of
SNNs. The main contributions of this article include the following.

(1) To address the issue of non-differentiability, we propose two axisymmetric surrogate
functions and a non-axisymmetric surrogate function to approximate the derivative
of spike activity of multi-threshold LIF models.

(2) Combining the SNN with multi-threshold LIF models and our proposed training
algorithm, we can successfully train SNNs at a very short latency, e.g., two time steps.

(3) We test our SNN framework by using the fully connected and convolution architecture
on MNIST [17], FashionMNIST [18], and CIFAR10 [19], and results show that our
proposed method achieves an accuracy improvement over the previously reported
SNN work with lower latency.

(4) In addition, we also explore the impact of the symmetry of derivative approximation
curves, the number of time steps, etc. This work may help researchers to choose the
proper parameters for the method and achieve higher-performance SNNs.

2. Approach

In this section, we introduce our proposed multi-threshold spiking neuron model
and the forward pass and the backforward pass of the spiking neural network, which is
constructed with multi-threshold LIF models.

Symmetry 2022, 14, 1933 3 of 15

2.1. Multi-Threshold Spiking Neuron Model

It is known that the Leaky Integrate and Fire (LIF) model is one of the most widely
applied models to describe the neuronal dynamics in SNNs. In this paper, we introduce the
LIF neuron model and synaptic model [1] adopted in our work. The neuronal membrane
potential of neuron i at time t, ui(t), is governed by

τm
dui(t)

dt
= −ui(t) + I(t) + ureset(t) (1)

where I(t) is the pre-synaptic input current at time t and τm is a time constant of membrane
voltage. ureset(t) denotes the reset function, which reduces the membrane potential by a
certain amount Vth after the neuron i fires. The pre-synaptic input I(t) is given by

I(t) =
N

∑
j=1

ωijaj(t) (2)

where N is the number of the pre-synaptic neurons, ωij is the pre-synaptic weight from
the neuron j in the pre-synaptic layer to the neuron i in the post-synaptic layer, aj(t) is the
synapse response of the pre-synaptic neuron j. In this paper, we apply the zero-th order
synaptic model and (2) can be simplified to

I(t) =
N

∑
j=1

ωijsj(t) (3)

where sj(t) is the output spike of pre-synaptic neuron j at time t. Due to the discrete time
steps in simulation, we apply the fixed-step first-order Euler method to discretize (1) to

ui[t] = (1− 1
τm

)ui[t− 1] + I[t] + ureset[t] (4)

where ureset[t] is equal to−si[t]Vth and si[t] is the output spike of neuron i. In this paper, we
extend the LIF model into a multi-threshold LIF model, in which the output of the neuron i
can be expressed by

si[t] =

0, ui[t] < Vth

f loor(ui [t]
Vth

), Vth ≤ ui[t] < SmaxVth

smax, ui[t] ≥ SmaxVth

(5)

where Smax is the upper limit of the output spikes and f loor() is the function that rounds
the elements to the nearest integers towards minus infinity. Figure 1 shows the difference
between the LIF model and the multi-threshold LIF model. so(t) is the output of LIF models
and so(t) is the output of multi-threshold LIF models. When the input spike is sparse, the
LIF model and multi-threshold LIF model can transmit the same information by generating
output spikes. However, the membrane voltage may reach several times the threshold at
one time step, when input spikes are dense.

In this case, the LIF model will drop some information during the information trans-
mission in the network, which may cause the network to require more time steps to com-
pensate for the loss of information. However, as Figure 1b shows, the multi-threshold LIF
model can keep the information by introducing a multi-threshold mechanism. Comparing
Figure 1a,b, we can see that the multi-threshold LIF model only needs two time steps to
obtain a correct classification, but the LIF model cannot make a distinction even in six time
steps. In other words, the multi-threshold LIF model has more power information capacity
and the network constructed with the multi-threshold LIF model has more potential for
low latency.

It should be noticed that the multi-threshold mechanism has no biological representation.

Symmetry 2022, 14, 1933 4 of 15

w1

w2

w3

u(t)

so(t)

so(t)

Vth

t

(a)

w1

w2

w3

u(t)

so(t)

so(t)

Vth

2Vth

3Vth

t

(b)

Figure 1. Illustration of discrete LIF model and multi-threshold LIF model: (a) sparse spiking input,
(b) dense spiking input.

2.2. Proposed Methods

In this subsection, we will introduce the information transmission in the forward pass
and the gradient calculation in the backforward pass in detail.

2.2.1. Forward Pass

Without loss of generality, we use two adjacent layers, l − 1 and l, with Nl−1 and Nl
neurons, respectively, to show the forward pass of a fully connected feed-forward SNN,
which is shown in Figure 2. In the forward pass, spike train s(l−1)[t] = [s(l−1)

1 [t], . . . , s(l−1)
Nl−1

[t]]

of the l − 1 layer generates the pre-synaptic input I(l−1)[t] = [i(l−1)
1 [t], . . . , i(l−1)

Nl−1
[t]] by mul-

tiplying the corresponding synaptic weight matrix W(l) = [ω
(l)
1 , . . . , ω

(l)
Nl
], in which ω

(l)
Nl

=

[ω
(l)
1,Nl

; ω
(l)
2,Nl

; . . . ; ω
(l)
Nl−1,Nl

]. The membrane potentials ul [t] = [ul
1[t], . . . , ul

Nl
[t]] update based

on (4) and trigger the output spikes of the layer l neurons s(l)[t] = [s(l)1 [t], . . . , s(l)Nl
[t]] based

on (5) when the membrane potentials exceed the threshold. We give a concise pseudo-code
based on Pytorch for an explicitly iterative multi-threshold LIF model in Algorithm 1.

...

...

...

...

Layer l-1

s(l-1)

Weight

Matrix

W(l) u(l)

Fire Function

s(l)

...
...

...
...

Layer l

ui[t]

Synapic

Model

Synapic

Model

Synapic

Model

...

Vmem(VTH)

Spike
Value

0

1

2

3

1 2 3 40

4

I(l-1)

Figure 2. Forward pass of SNN.

Symmetry 2022, 14, 1933 5 of 15

Algorithm 1: State update for an explicitly iterative multi-threshold LIF neuron
at time step t in the l-th layer.

Input: previous membrane potential ul [t− 1], output spikes of the layer l-1
s(l−1)[t], and corresponding synaptic weight matrix W(l)

Output: current membrane potential ul [t], spike output of the layer ls(l)[t]
1 Calculate the current pre-synaptic input I(l−1)[t] //Equation (3);
2 Update the membrane potential ul [t] //Equation (4);
3 if membrane potential of neuron i is larger than Vth then
4 Neuron i is fired and spike output si[t] is updated //Equation (5);
5 Membrane potential is reset to ul [t]− si[t]Vth
6 else
7 spike output si[t] is 0 //Equation (5);
8 membrane potential ul [t] remains unchanged
9 end

2.2.2. Backforward Pass

In order to present our proposed learning algorithm, we define the following loss
function L[tk] in which the mean square error for each output neuron at time step tk is to be
minimized

L[tk] =
1
2

No

∑
i=0

(yi[tk]− si[tk])
2 (6)

where No is the number of neurons in the output layer; yi[tk] and si[tk] denote the desired
and the actual firing event of neurons i in the output layer at time step tk.

By combining Equations (1)–(6) together, it can be seen that loss function L[tk] is
a function of synaptic weight W, which is required for our proposed algorithm based
on gradient descent. Figure 3 shows the error propagation in the spatial and temporal
domain (STD). The data flow of error propagation in the SD is similar to [20]. Each neuron
accumulates the weighted error from the upper layer and updates its parameter using the
chain rule. In the TD, the current state of membrane voltage is dependent on its previous
state, which makes it complicated to obtain the ∂L[tk]/∂W. Equations (7)–(13) show the
error calculation process. It should be noticed that the two-sense red arrow in the forward
path means that the output spike s(l)[tn] is calculated based on the membrane potential
u(l)[tn], and if the neuron is fired, the membrane potential u(l)[tn] will be reset based on the
output spike s(l)[tn] in the forward pass process.

The goal of the backforward pass is to update the synaptic weights W using the error
gradient ∂L[tk]/∂W at time step tk. Using the chain rule, the error gradient with respect to
the pre-synaptic weight W(l) in the layer l is

∂L[tk]

∂W(l)
=

∂L[tk]

∂u(l)[tk]

∂u(l)[tk]

∂W(l)
(7)

We use δ(l)[tk] to denote ∂L[tk]/∂u(l)[tk], which is the backpropagated error of layer l
at time tk, and (7) can be written as

∂L[tk]

∂W(l)
= δ(l)[tk]

∂u(l)[tk]

∂W(l)
(8)

Symmetry 2022, 14, 1933 6 of 15

u(l)[tn-1]

u(l)[tn]

u(l)[tn+1]

s(l)[tn]s(l-1)[tn] u(l+1)[tn]

TD

SDl-1 Layer l Layer l+1 Layer

tn-1

tn

tn+1

𝛛𝒖(𝒍+𝟏)[𝒕𝒏]

𝛛𝒔(𝒍)[𝒕𝒏]

𝛛𝒖(𝒍)[𝒕𝒏]

𝛛𝒔(𝒍−𝟏)[𝒕𝒏]

𝛛𝒔(𝒍)[𝒕𝒏]

𝛛𝒖(𝒍)[𝒕𝒏]

𝛛𝒖(𝒍)[𝒕𝒏]

𝛛𝒖(𝒍)[𝒕𝒏−𝟏]

𝛛𝒖(𝒍)[𝒕𝒏+𝟏]

𝛛𝒖(𝒍)[𝒕𝒏]

Forward path

Backward path

Figure 3. Error propagation in the STD.

From (8), the first term δ(l)[tk] can be computed from

δ(l)[tk] =
∂u(l+1) [tk]

∂u(l) [tk]

∂L[tk]

∂u(l+1) [tk]

= ∂s(l) [tk]

∂u(l) [tk]

∂u(l+1) [tk]

∂s(l) [tk]
δ(l+1)[tk]

= ∂s(l) [tk]

∂u(l) [tk]
(W(l+1))Tδ(l+1)[tk]

(9)

For the output layer l, (9) can be computed from

δ(l)[tk] =
∂L[tk]

∂s(l) [tk]

∂s(l) [tk]

∂u(l) [tk]

= (s(l)[tk]− y[tk])
∂s(l) [tk]

∂u(l) [tk]

(10)

From (4), the second term ∂u(l)[tk]/∂W(l) is given by

∂u(l) [tk]

∂W(l) = (1− 1
τm
)

∂u(l) [tk−1]

∂W(l) + sl−1[tk]−
∂s(l) [tk]

∂W(l) Vth

=(1− 1
τm
)

∂u(l) [tk−1]

∂W(l) + sl−1[tk]−
∂s(l) [tk]

∂u(l) [tk]

∂u(l) [tk]

∂W(l) Vth
(11)

Based on (11), we can obtain

∂u(l)[tk]

∂W(l)
=
(1− 1

τm
)

∂u(l) [tk−1]

∂W(l) + sl−1[tk]

1 + ∂s(l) [tk]

∂u(l) [tk]
Vth

(12)

When tk−1 is 0, (12) can be simplified to

∂u(l)[tk]

∂W(l)
=

sl−1[tk]

1 + ∂s(l) [tk]

∂u(l) [tk]
Vth

(13)

As shown above, for both the output layer and hidden layers, once ∂s(l) [tk]

∂u(l) [tk]
is known,

the error can be backpropagated and the gradient of each layer and the update of weights
can be calculated.

Symmetry 2022, 14, 1933 7 of 15

Theoretically, s(l)[t] is a non-differentiable function, which greatly challenges the
effective learning of SNNs. Figure 4 shows the multi-step activation function of the spike
activity and its original derivative function, which is a set of Dirac functions with infinite
value at u = nVth, (n > 0) and zero value at other points. To solve this problem, we

introduce three curves to approximate ∂s(l) [tk]

∂u(l) [tk]
by f1, f2, and f3.

f1(u) =
smax

∑
i=1

iαHe−(u−iVth)
2/(αW /i) (14)

f2(u) =
smax

∑
i=1

αHe−(u−iVth)
2/αW (15)

f3(u) =

0, u < 0||u ≥ (Smax + 1)Vth

αHu
Vth

, 0 ≤ u < Vth

αH , Vth ≤ u < SmaxVth
αH(Smax + 1− u

Vth
), SmaxVth ≤ u < (Smax + 1)Vth

(16)

where αH and αW determine the curve shape and steep degree. smax is the upper limit of
the output spikes. In Section 3.4, we will compare and analyze the influence on the SNNs’
performance with different curves and different values of parameters, such as αH and smax.
Figure 5 shows the curve of f1, f2, and f3, when smax is 3 and αH and αW are both 1.

- 1 0 1 2 3 4
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

� � (u)
� � (u)Sp

ike
 Va

lue

M e m b r a n e V o l t a g e (V t h)

 s (u)
 � s / � u

� (u)

Figure 4. Multi-step activation function of the spike activity and its original derivative function.

- 1 0 1 2 3 4 5 6
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

M e m b r a n e V o l t a g e (V t h)

 f 1 (u)
 f 2 (u)
 f 3 (u)

Figure 5. Three curves to approximate the derivative of spike activity.

Symmetry 2022, 14, 1933 8 of 15

3. Experiments and Results

We test our proposed SNN model and training method on three image datasets,
MNIST [17], FashionMNIST [18], and CIFAR10 [19], with different sizes and structures
of SNNs. Then, we compare our training method with several previously reported state-
of-the-art results obtained with the same or similar networks, including different SNNs
trained by BP-based methods, converted SNNs, and traditional ANNs.

3.1. Experimental Settings

All reported experiments below are conducted on an NVIDIA Tesla V100 GPU. The
implementation of our proposed method is based on the Pytorch framework [21]. The
experimented SNNs are based on the multi-threshold LIF model described in (3)–(5). The
simulation step size is set to 1 ms. Function f2 is applied to approximate the derivative
of spike activity. Only two time steps are used to demonstrate the proposed ultra-low-
latency spiking neural network. No refractory period is used. Adam [22] is applied as
the optimizer. In this paper, the accuracy is calculated by AC = RN/n, where RN is the
number of the correctly classified samples, n is the total number of samples, AC = accuracy.
If not otherwise specified, the accuracy in this paper refers to the mean of the accuracy
obtained by repeating the experiments five times.

3.2. Parameter Initialization

The initialization of parameters, such as the weights, threshold, time constant of
membrane voltage, and other parameters, directly affects the convergence speed and
stability of the whole network. We should simultaneously ensure that enough spikes
transmit information between neural network layers and avoid too many spikes, which
could reduce the neuronal selectivity. As it is known that weight and threshold are two key
factors for the LIF model in the forward pass [20], in this paper, we use a fixed threshold in
each neuron for simplification and initialize the weight W(l) parameters sampling from the
normal distribution.

W(l)∼ [
Vth

Nl−1
, 0.5] (17)

where Vth is the threshold of membrane voltage, and Nl−1 is the number of neurons of
pre-layer. The set of other parameters is presented in Table 1. In addition, we do not
apply complex steps, such as error normalization [23], dropout, weight regularization [24],
warm-up mechanism [16], etc. In the preprocessing step, the dataset is normalized and
only random cropping is applied for data augmentation. All testing accuracy is reported
after training 200 epochs in our experiments.

Table 1. Parameter settings.

Parameter Description Value

τm Time constant of membrane voltage 10 ms
Vth Threshold 10 mV
αm Derivative approximation parameters 1
αW Derivative approximation parameters 20
Smax Upper limit of output spikes 15
NBatch Batch size 128

η
Learning rate
(MNIST/FashionMNIST/CIFAR10) 0.005, 0.005, 0.0005

β1, β2, λ Adam parameters 0.9, 0.999, 1− 10−8

3.3. Dataset Experiments

In this subsection, we compare our method with state-of-the-art methods on the
MNIST, FashionMNIST, and CIFAR 10 datasets.

Symmetry 2022, 14, 1933 9 of 15

3.3.1. MNIST

The MNIST dataset of handwritten digits [17] consists of a training set with 60,000
labeled hand-written digits, and a test set of 10,000 labeled hand-written digits, each of
which is a 28× 28 grayscale image. Each pixel value of images is converted into a real-
valued input current as in [16]. For the MNIST dataset [17], we compare several similar
spiking Multi-Layer Perceptron (MLP) models, each of which consists of one to three hidden
layers. The converted SNN applies the ANN-to-SNN method, and STDP [25], BP [24],
and STBP [20] all train the spiking neural network by the BP algorithm, directly. Table 2
shows that the spiking MLP trained by our method can achieve 99.15%, which outperforms
other reported results and obtains a large reduction in time step count. Moreover, we also
compare several spiking Convolutional Neural Networks (CNNs), each of which consists
of two convolutional layers, two pooling layers, and a fully connected layer. Table 2 shows
that the spiking MLP trained by our method can achieve 99.15%, which outperforms other
reported results and obtains a large reduction in time step count. SLAYER [26], HM2BP [27],
ST-RSBP [28], and TSSL-BP [16] all use BP algorithms to train the spiking neural network,
directly. Table 3 shows the test accuracies of the spiking CNNs trained by our proposed
method and other reported algorithms, except for the method in [28], whose accuracy is
only slightly higher by 0.01%. However, our proposed method obtains up to 99.56% in only
two time steps, which is much fewer than the 400 time steps that [28] needs.

Table 2. Comparison with similar spiking MLP models on MNIST.

Methods Network Time Steps Accuracy

Converted SNN [23] * 784-1200-1200-10 20 98.64%
STDP [25] 784-6400-10 350 95.00%
BP [24] 784-800-10 200-1000 98.71%
STBP [20] 784-800-10 50-300 98.89%
Proposed Method 784-800-10 2 99.15%

* means that their model is converted from the pre-trained ANN model.

Table 3. Comparison with similar spiking CNNs on MNIST.

Methods Network Time Steps Accuracy

SLAYER [26] 12C5-P2-64C5-p2 1 300 99.36%
HM2BP [27] 15C5-P2-40C5-P2-300 400 99.42%
ST-RSBP [28] 15C5-P2-40C5-P2-300 400 99.57%
TSSL-BP [16] 15C5-P2-40C5-P2-300 5 99.47%
Proposed Method 15C5-P2-40C5-P2-300 2 99.56%

1 12C5 represents convolution layer with 12 of the 5 × 5 filters; P2 represents pooling layer with 2 × 2 filters;
300 means fully connected layers with 300 neurons.

3.3.2. FashionMNIST

The FashionMNIST dataset of clothing items contains 60,000 labeled training images
and 10,000 labeled testing images, each of which is also a 28× 28 grayscale image, as
with MNIST. Compared with MNIST, FashionMNIST is a more challenging dataset that
can serve as a direct drop-in replacement for the original MNIST dataset. We compare
trained spiking MLPs and CNNs on FashionMNIST. In Table 4, ANN [28] is the non-spiking
ANN trained by a standard BP method. HM2BP [27], ST-RSBP [28], and TSSL-BP [16] use
BP algorithms to train the spiking neural network, directly. We compare our proposed
method with other methods on the same architecture of two hidden layers. Our proposed
method obtains 91.08% test accuracy, outperforming the TSSL-BP method [16], which is the
best previously reported algorithm for SNNs, as far as we know. In addition, compared
with [16], our method reduces the training time steps from 5 to 2, further. Table 5 compares
CNNs with similar architectures. Our method achieves 93.08% in two time steps, which
shows that it outperforms other methods and reduces the training time steps noticeably.

Symmetry 2022, 14, 1933 10 of 15

Table 4. Comparison with spiking MLPs on FashionMNIST.

Methods Network Time Steps Accuracy

ANN [28] * 784-512-512-10 89.01%
HM2BP [27] 784-400-400-10 400 88.99%
ST-RSBP [28] 784-400-400-10 400 90.13%
TSSL-BP [16] 784-400-400-10 5 90.19%
Proposed Method 784-400-400-10 2 91.08%

* means that their model is the non-spiking ANN trained by a standard BP method.

Table 5. Comparison with spiking CNNs on FashionMNIST.

Methods Network Time Steps Accuracy

ANN ∗1 32C5-P2-64C5-P2-1024 91.60%
TSSL-BP[16] 32C5-P2-64C5-P2-1024 5 92.45%
Converted SNN ∗2 16C5-P2-64C5-P2-1024 200 92.62%
Proposed Method 32C5-P2-64C5-P2-1024 2 93.08%

*1 means that their model is the non-spiking ANN trained by a standard BP method; *2 means that their model is
converted from the pre-trained ANN model.

3.3.3. CIFAR10

To validate our method, we apply a deeper CNN that contains five convolutional
layers, two pooling layers, and two fully connected layers on the more challenging dataset
of CIFAR10 [19]. Different from MNIST and FashionMNIST, CIFAR10 is a subset of
80 million tiny images and consists of 60,000 32 × 32 color images containing one of
10 object classes, with 6000 images per class. In addition, it is difficult to scale to deeper net-
works for traditional SNNs, which need long training latency. To the best of our knowledge,
only a few works report the direct training of SNNs on CIFAR10, which we list in Table 6.
Our proposed method obtains 88.17% accuracy with a mean of 87.90%. Compared with
TSSL-BP [16], our method achieves 1.12% average testing accuracy improvement with
fewer time steps and fewer additional optimization and augmentation technologies.

Table 6. Comparison with spiking CNNs on CIFAR10.

Methods Skills Time
Steps

Accuracy

ANN [29] ∗1 Random cropping 83.72%
Converted SNN [29] ∗2 Random cropping 83.52%
STBP [30] Neuron normalization, dropout, and population

decoding
8 85.24%

TSSL-BP [16] Random cropping and horizontal flipping 5 86.78%
Proposed Method Random cropping 2 87.90%

*1 means that their model is the non-spiking ANN trained by a standard BP method; *2 means that their model is
converted from the pre-trained ANN model. The network structure is 96C3-256C3-P2-384C3-P2-384C3-256C3-
1024-1024.

3.4. Performance Analysis

In this subsection, we analyze the impact of derivative approximation curves, the
impact of Smax, and the impact of the length of the spiking train.

3.4.1. The Impact of Derivative Approximation Curves

In Section 2.2.2, we introduce two axisymmetric surrogate functions and a non-
axisymmetric surrogate function to approximate the spike activity. In this section, we try to
make a comparison and analyze the impact of the symmetry of curves on the performance
of the trained network. The experiments are conducted on the CIFAR10 dataset, and
the network structure is 96C3-256C3-P2-384C3-P2-384C3-256C3-1024-1024, which is the
same as described in Section 3.3.3. The parameter of curves is the same as in Table 1. As

Symmetry 2022, 14, 1933 11 of 15

Figure 6 shows, the three curves present similar performance. For curve 1, the value of the
curve may be larger than 1 when the membrane voltage is larger than the two thresholds,
which may cause gradient exploding problems in deep networks. For curves 2 and 3, the
symmetry of the functions maintains a reasonable approximation of the network gradient
and ensures that the values of curves will not be larger than 1, which avoids the gradient
exploding problem. Compared with curve 3, curve 2 gives a more reasonable approxima-
tion and shows a slight improvement. Thus, we choose curve 2 to approximate the spike
activity in this paper.

0 2 0 4 0 6 0 8 0 1 0 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0

6 0 7 0 8 0 9 0 1 0 0
8 4

8 6

8 8

Ac
cu

rac
y(%

)

E p o c h s

 f 1 f 2 f 3

Ac
cu

rac
y(%

)

E p o c h s

 f 1 f 2 f 3

Figure 6. Comparison of different derivation approximation curves.

Furthermore, we choose curve 2 to explore the impact of the parameters of curves.
The main parameters of the derivative approximation curves are αW and αH . Due to the
gradient exploding problem mentioned above, we fix the value of αH to 1 and focus on the
impact of different widths of the curve, which is controlled by αW . αW is set to 0.2, 2, 20,
200, 2000, and two time steps are applied in the experiments. The corresponding testing
accuracy after 100 epochs is shown in Figure 7. A small αW will cause worse performance.
When αW is larger than 20, the testing accuracy has a slight decrease. The reason that the
shape of the derivative approximation curves is not very sensitive to the accuracy is that
the main function of these curves is to capture the nonlinear nature [20].

0 2 0 4 0 6 0 8 0 1 0 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Ac
cu

rac
y (

%)

E p o c h s

 A L P H A _ W = 0 . 2
 A L P H A _ W = 2
 A L P H A _ W = 2 0
 A L P H A _ W = 2 0 0
 A L P H A _ W = 2 0 0 0

Figure 7. Impact of different widths of derivation approximation curves.

Symmetry 2022, 14, 1933 12 of 15

3.4.2. The Impact of SMax

Smax is the upper limit of the output spikes, which directly affects the capacity of
information at each time step. In this section, we study the impact of Smax on the accuracy.
Curve 2 is applied and the same experiment configuration is set. To shield the influence
of the temporal domain, the training time step is set to 1. As Figure 8 shows, the network
still achieves reasonable accuracy even when only one time step is applied, if the Smax
is large enough for spikes to have enough information capacity. The testing accuracy
reaches 87.82% when Smax is 15. Moreover, the testing accuracy will be saturated when
Smax is larger than 7. As we know that SNNs can utilize the information of the temporal
domain and spatial domain, the information of each spike can be treated as spatial domain
information and the positions of spikes in the spike train carry temporal information. When
the value of Smax allows a spike to have enough capacity for information to transmit all
spatial information in the SNN, the increase in Smax will not improve the accuracy.

0 4 0 8 0 1 2 0 1 6 0 2 0 0
4 0

5 0

6 0

7 0

8 0

9 0

Te
sti

ng
 Ac

cu
rac

y(%
)

E p o c h s

 S m a x = 1
 S m a x = 3
 S m a x = 7
 S m a x = 1 5
 S m a x = 3 1

Figure 8. Impact of Smax on testing accuracy.

3.4.3. The Impact of Length of Spike Train

For SNNs, a longer spike train may carry more temporal information, theoretically.
In this section, we mainly study the impact of the length of spike trains on performance.
Curve 2, whose Smax is 1, is applied and the same experiment configuration is set. The
number of time steps is used to measure the length of spike trains. Figure 9 shows the
testing and training accuracy for different time steps. Compared with the SNN with one
time step, which contains no temporal information, the SNN with multi-time steps can
improve the performance of the SNN. Compared with the SNN with one time step, the
SNN with five time steps improves the testing accuracy from 73.60% to 87.55%. As Figure 9
shows, the testing accuracy is no longer improved when the number of time steps is larger
than 3. However, the training accuracy is still improved with the increase in the time
steps. The reason for this is that the increase in the length of spike trains improves the
capacity for temporal information, which can improve the performance. However, temporal
information is very sensitive, which may reduce the robustness of the trained networks.
An overly long spike train may cause network overfitting if other training techniques are
not applied.

Symmetry 2022, 14, 1933 13 of 15

0 4 0 8 0 1 2 0 1 6 0 2 0 0
2 0

4 0

6 0

8 0

1 0 0

Tra
ini

ng
 Ac

cu
rac

y(%
)

E p o c h s

 T i m e s t e p s = 1
 T i m e s t e p s = 3
 T i m e s t e p s = 5
 T i m e s t e p s = 7

(a)

0 4 0 8 0 1 2 0 1 6 0 2 0 0
2 0

4 0

6 0

8 0

1 0 0

Te
sti

ng
 Ac

cu
rac

y(%
)

E p o c h s

 T i m e s t e p s = 1
 T i m e s t e p s = 3
 T i m e s t e p s = 5
 T i m e s t e p s = 7

(b)

Figure 9. Impact of the length of time steps: (a) training accuracy, (b) testing accuracy.

4. Conclusions and Future Work

In this paper, we presented a novel training method based on backpropagation for
ultra-low-latency spiking neural networks. The LIF model with multi-threshold is intro-
duced to enable the SNN to carry more spatial information in each time step. We also
proposed three approximated derivative curves to address the non-differentiable problem
of multi-threshold spike activity and proposed a training method based on backpropaga-
tion. We demonstrated the state-of-the-art performance in comparison with the SNN BP
method, converted SNNs, and even traditional ANNs on the MNIST, FashionMNIST, and
CIFAR10 datasets. Experimental results showed that our proposed method outperformed
other SNN BP methods with the same or similar network architecture, regardless of ac-
curacy and latency. In short, we tried to propose a method to address the high training
and inference latency issue of SNNs and present the possibility of training an SNN with
ultra-low latency directly.

In this paper, we merely tried to modify the LIF model to improve its information
capacity by introducing a multi-threshold mechanism. In the future, we will explore
an efficient information transmission mechanism in biological organisms to propose a
biologically inspired mechanism to improve the efficiency of information transmission in
spiking neural networks.

Symmetry 2022, 14, 1933 14 of 15

Author Contributions: Methodology, C.X.; writing—review and editing, C.X.; investigation, D.C.;
data curation, Y.L. and Y.Y. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
Youth Fund under Grant 62004146, by the China Postdoctoral Science Foundation funded project
under Grant 2021M692498, and by the Natural Science Foundation of Guangdong, China, under
Grant 2021A1515012293.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gerstner, W.; Kistler, W.M. Spiking Neuron Models: Single Neurons, Populations, Plasticity; Cambridge University Press: Cambridge,

UK, 2002.
2. Xiang, S.; Jiang, S.; Liu, X.; Zhang, T.; Yu, L. Spiking vgg7: Deep convolutional spiking neural network with direct training for

object recognition. Electronics 2022, 11, 2097. [CrossRef]
3. Zhong, X.; Pan, H. A spike neural network model for lateral suppression of spike-timing-dependent plasticity with adaptive

threshold. Appl. Sci. 2022, 12, 5980. [CrossRef]
4. Dora, S.; Kasabov, N. Spiking neural networks for computational intelligence: An overview. Big Data Cogn. Comput. 2021, 5, 67.

[CrossRef]
5. Xu, C.; Zhang, W.; Liu, Y.; Li, P. Boosting throughput and efficiency of hardware spiking neural accelerators using time

compression supporting multiple spike codes. Front. Neurosci. 2020, 14, 104.[CrossRef] [PubMed]
6. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.; Guo, C.; Nakamura,

Y.; et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 2014, 345,
668–673. [CrossRef]

7. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Joshi, P.; Lines, A.; Wild, A.; Wang, H. Loihi: A neuromorphic manycore processor
with on-chip learning. IEEE Micro. 2018, 38, 82–99. [CrossRef]

8. Imec Builds World’s First Spiking Neural Network-Based Chip for Radar Signal Processing. Available online: https://www.im
ec-int.com/en/articles/imec-builds-world-s-first-spiking-neural-network-based-chip-for-radar-signal-processing (accessed on
31 October 2021).

9. Thorpe, S.; Delorme, A.; Rullen, R.V. Spike-based strategies for rapid processing. Neural Netw. 2001, 14, 715–725.[CrossRef]
10. Kayser, C.; Montemurro, M.A.; Logothetis, N.K.; Panzeri, S. Spike-phase coding boosts and stabilizes information carried by

spatial and temporal spike patterns. Neuron 2009, 61, 597–608. [CrossRef]
11. Magotra, A.; Kim, J. Neuromodulated dopamine plastic networks for heterogeneous transfer learning with hebbian principle.

Symmetry 2021, 13, 1344. [CrossRef]
12. Alhmoud, L.; Nawafleh, Q.; Merrji, W. Three-phase feeder load balancing based optimized neural network using smart meters.

Symmetry 2021, 13, 2195. [CrossRef]
13. Jaehyun, K.; Heesu, K.; Subin, H.; Jinho, L.; Kiyoung, C. Deep neural networks with weighted spikes. Neurocomputing 2018, 311,

373–386.
14. Chowdhury, S.S.; Rathi, N.; Roy, K. One timestep is all you need: Training spiking neural networks with ultra low latency. arXiv

2021, arXiv:2110.05929.
15. Yang, Y.; Zhang, W.; Li, P. Backpropagated neighborhood aggregation for accurate training of spiking neural networks. In

Proceedings of the 38th International Conference on Machine Learning (ICML2021), Virtual, 18–24 July 2021.
16. Zhang, W.; Li, P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. arXiv 2020,

arXiv:2002.10085.
17. Lecun, Y.; Bottou, L. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
18. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
19. Krizhevsky, A.; Nair, V.; Hinton, G. The Cifar-10 Dataset. 2014. Available online: http://www.cs.toronto.edu/kriz/cifar.html

(accessed on 1 September 2022).
20. Wu, Y.; Lei, D.; Li, G.; Zhu, J.; Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks.

Front. Neurosci. 2018, 12, 331. [CrossRef]
21. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Chintala, S. Pytorch: An imperative style, high-performance deep learning library. Adv.

Neural Inf. Process. Syst. 2019, 32.
22. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://doi.org/10.3390/electronics11132097
http://dx.doi.org/10.3390/app12125980
http://dx.doi.org/10.3390/bdcc5040067
http://dx.doi.org/10.3389/fnins.2020.00104
http://www.ncbi.nlm.nih.gov/pubmed/32140093
http://dx.doi.org/10.1126/science.1254642
http://dx.doi.org/10.1109/MM.2018.112130359
https://www.imec-int.com/en/articles/imec-builds-world-s-first-spiking-neural-network-based-chip-for-radar-signal-processing
https://www.imec-int.com/en/articles/imec-builds-world-s-first-spiking-neural-network-based-chip-for-radar-signal-processing
http://dx.doi.org/10.1016/S0893-6080(01)00083-1
http://dx.doi.org/10.1016/j.neuron.2009.01.008
http://dx.doi.org/10.3390/sym13081344
http://dx.doi.org/10.3390/sym13112195
http://dx.doi.org/10.1109/5.726791
 http://www.cs. toronto.edu/kriz/cifar.html
http://dx.doi.org/10.3389/fnins.2018.00331

Symmetry 2022, 14, 1933 15 of 15

23. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.-C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through
weight and threshold balancing. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015; pp. 1–8.

24. Lee, J.H.; Delbruck, T.; Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 2016, 10, 508.
[CrossRef]

25. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef]

26. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: Vgg and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

27. Jin, Y.; Zhang, W.; Li, P. Hybrid macro/micro level backpropagation for training deep spiking neural networks. Adv. Neural Inf.
Process. Syst. 2018, 31.

28. Zhang, W.; Li, P. Spike-train level backpropagation for training deep recurrent spiking neural networks. Adv. Neural Inf. Process.
Syst. 2019, 32.

29. Hunsberger, E.; Eliasmith, C. Training spiking deep networks for neuromorphic hardware. arXiv 2016, arXiv:1611.05141.
30. Wu, Y.; Deng, L.; Li, G.; Zhu, J.; Shi, L. Direct training for spiking neural networks: Faster, larger, better. InProceedings of the

AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 1311–1318.

http://dx.doi.org/10.3389/fnins.2016.00508
http://dx.doi.org/10.3389/fncom.2015.00099
http://dx.doi.org/10.3389/fnins.2019.00095
http://www.ncbi.nlm.nih.gov/pubmed/30899212

	Introduction
	Approach
	Multi-Threshold Spiking Neuron Model
	Proposed Methods
	Forward Pass
	Backforward Pass

	Experiments and Results
	Experimental Settings
	Parameter Initialization
	Dataset Experiments
	MNIST
	FashionMNIST
	CIFAR10

	Performance Analysis
	The Impact of Derivative Approximation Curves
	The Impact of SMax
	The Impact of Length of Spike Train

	Conclusions and Future Work
	References

