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Abstract: In this work it is proven that the governing equations for the fluid velocity and non-
trivial shear stress corresponding to some isothermal MHD unidirectional motions of incompressible
second-grade fluids through a porous medium have identical forms. This important remark is used
to provide exact steady-state solutions for motions with shear stress on the boundary when similar
solutions of some motions with velocity on the boundary are known. Closed-form expressions are
provided both for the fluid velocity and the corresponding shear stress and Darcy’s resistance. As a
check of the results that are obtained here, the solutions corresponding to motions over an infinite
flat plate are presented in different forms whose equivalence is graphically proven. In the case of the
motions between infinite parallel plates, the fluid behavior is symmetric with respect to the median
plane due to the boundary conditions.
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1. Introduction

Fluids’ motions over an infinite plate or between two infinite parallel plates have been
extensively studied in time. They are some of the most important motion problems near
moving bodies having multiple applications in engineering and science in general. The ex-
act solutions for the governing equations of these motions are important for many reasons.
First of all, they describe the behavior of respective fluids in different circumstances. Sec-
ondly, they can be used as tests to verify numerical schemes which are used to study more
complex motion problems. Although the numerical integration of the governing equations
corresponding to such motions of fluids can be realized using computers, the accuracy
of results can be established by comparing with exact solutions. The first exact solutions
for unsteady motions of incompressible second-grade fluids seem to be those of Ting [1].
Other interesting solutions for the same fluids have been obtained by Siddiqui et al. [2] and
Hayat et al. [3].

The magnetohydrodynamic (MHD) motions of fluids have many applications in
hydrology, polymer technology, petroleum industry, nuclear reactors, and MHD generators.
The interaction between the magnetic field and the electrical conducting fluid produces
effects with important applications in physics, chemistry, engineering, horticulture, and
hydrology. The MHD steady Couette flow of incompressible viscous fluids between
parallel plates was studied by Kiema et al. [4] using the Sumudu transform. The same
problem was also studied by Onyango et al. [5] when the magnetic-field lines are fixed
relative to the moving upper plate. At the same time, the motions of incompressible fluids
through porous media have received special attention due to their practical applications in
geophysical and astrophysical studies, agricultural engineering, petroleum industries, and
oil reservoir technology. Some interesting studies on porosity can be found, for instance,
in the book of Vafai [6]. The most recent results regarding motions of non-Newtonian
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fluids through porous media seem to be those of Fetecau et al. [7,8]. Viscoelastic MHD
flow between porous parallel plates has been studied by Dash and Ojha [9] in the presence
of a sinusoidal pressure gradient. The combined magnetic and porous effects have been
taken into consideration by Hayat et al. [10] and Khan et al. [11] for unsteady motions of
second-grade and generalized Burgers fluids, respectively. However, the first exact general
solution for isothermal MHD unsteady motions of viscous fluids over an infinite plate or
between infinite parallel plates embedded in a porous medium have been established by
Fetecau et al. [12,13] using a marvelous remark regarding the governing equations of the
fluid velocity and the corresponding non-trivial shear stress.

The main purpose of this work is to show that the above-mentioned remark is also
valid for incompressible second-grade fluids performing the same MHD motions through
porous media. More precisely, the governing equations for velocity and shear stress corre-
sponding to some MHD motions of incompressible second-grade fluids through a porous
medium are identical in form. On the basis of this remark, the solutions corresponding
to some unidirectional MHD motions of incompressible second-grade fluids through a
porous medium with velocity or shear stress on the boundary can be immediately obtained
if similar solutions for MHD motions of the same fluids through a porous medium are
known when the shear stress or the fluid velocity is given on the boundary, respectively.
In order to bring to light the advantages of this remark, some significant examples are
provided, and new exact solutions for MHD motions of incompressible second-grade fluids
through porous media are easily determined.

2. Statement of the Problem

The Cauchy stress tensor T for incompressible second-grade fluids is given by the
relation [1–3]

T = −pI + µA1 + α1A2 + α2A2
1, (1)

where −pI is the spherical stress due to the constraint of incompressibility, µ is the fluid
viscosity, α1 and α2 are material constants also called normal stress moduli [14], while the
first two Rivlin–Ericksen tensors A1 and A2 are defined as

A1 = L + LT , A2 =
dA1

dt
+ A1L + LTA1. (2)

In the last relation, L is the gradient of the velocity vector υ. The Clausius–Duhem
inequality and the assumption that the Helmholtz free energy is minimum when the fluid
is at rest imply the following restrictions [3]

µ ≥ 0, α1 ≥ 0, and α1 + α2 = 0. (3)

If α1 = α2 = 0, Equation (1) represents the constitutive equation of incompressible
viscous fluids. Because incompressible fluids undergo isochoric motions only, the continuity
equation

divυ = 0 or equivalent trA1 = 0, (4)

has to be satisfied. In addition, in the absence of body forces, the balance of linear momen-
tum for MHD unsteady fluid motions through porous media is given by the following
relation [10]

ρ
dυ

dt
= divT + R + J× B. (5)

In the above equation, ρ is the fluid density and R is the Darcy’s resistance defined by

R = −µϕ

k

(
1 +

α1

µ

∂

∂t

)
υ, (6)

where ϕ (0 < ϕ < 1) is the porosity and k > 0 is the permeability of the porous medium.
The last term from the right part of Equation (5) represents the Lorentz force due to the
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interaction between the current density J and the magnetic induction B. We also assume
that the fluid is finitely conducting so that the Joule heat due to the presence of magnetic
field is negligible. In addition, there is no surplus electric charge distribution present in
the fluid and the magnetic Reynolds number is small enough. Consequently, the induced
magnetic field can be neglected. In these conditions, we can obtain [10]

J× B = −σB2υ, (7)

where σ is the electrical conductivity of the fluid and B is the magnitude of the applied
magnetic field.

In the following, we shall consider isothermal unidirectional motions whose velocity
field υ reports to a suitable Cartesian coordinate system x, y, and z, and is of the form

υ = υ(y, t) = u(y, t)ex, (8)

where ex is the unit vector along the x-direction. Substituting the fluid velocity υ(y, t) from
Equation (8) in (1), making use of the equalities (6) and (7), and assuming that there exists
no pressure gradient in the flow direction, the equality (5) becomes

ρ
∂u(y, t)

∂t
=

∂τ(y, t)
∂y

− σB2u(y, t)− µϕ

k

(
1 + α

∂

∂t

)
u(y, t), (9)

where the non-trivial component τ(y, t) = Txy(y, t) of T is given by the next relation

τ(y, t) = µ

(
1 + α

∂

∂t

)
∂u(y, t)

∂y
, (10)

and α = α1/µ.
Eliminating τ(y, t) between Equations (9) and (10), one obtains the governing equation

ρ
∂u(y, t)

∂t
= µ

(
1 + α

∂

∂t

)
∂2u(y, t)

∂y2 − σB2u(y, t)− µϕ

k

(
1 + α

∂

∂t

)
u(y, t), (11)

for the dimensional velocity field u(y, t). Deriving Equation (9) with respect to y, we can
obtain

ρ
∂

∂t

[
∂u(y, t)

∂y

]
=

∂2τ(y, t)
∂y2 − σB2 ∂u(y, t)

∂y
− µϕ

k

(
1 + α

∂

∂t

)
∂u(y, t)

∂y
. (12)

Further, deriving Equation (12) with respect to the temporal variable t and multiplying
the obtained result with α, one finds that

ρα
∂

∂t

{
∂

∂t

[
∂u(y, t)

∂y

]}
= α

∂

∂t

[
∂2τ(y, t)

∂y2

]
− σB2α

∂

∂t

[
∂u(y, t)

∂y

]
− µϕ

k
α

∂

∂t

[(
1 + α

∂

∂t

)
∂u(y, t)

∂y

]
. (13)

Finally, adding the equalities (12) and (13) and bearing in mind the equality (10), one
obtains for the dimensional shear stress τ(y, t) the following partial differential equation

ρ
∂τ(y, t)

∂t
= µ

(
1 + α

∂

∂t

)
∂2τ(y, t)

∂y2 − σB2τ(y, t)− µϕ

k

(
1 + α

∂

∂t

)
τ(y, t), (14)

which is identical in form to that of the velocity field u(y, t).

3. Applications

In the previous section, it was proven that the governing equations of the fluid velocity
u(y, t) and the adequate non-trivial shear stress τ(y, t) corresponding to a large class of
isothermal MHD unidirectional motions (whose velocity field is given by Equation (8))
of incompressible second-grade fluids through a porous medium are identical in form.
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In order to bring to light the power of this important remark, some applications will be
provided in the next section.

3.1. Motions over an Infinite Flat Plate
3.1.1. Stokes’ Second Problem (Motions with Velocity on the Boundary)

Let us consider the isothermal MHD unsteady unidirectional motion of an electri-
cally conducting incompressible second-grade fluid (ECISGF) over an infinite flat plate
embedded in a porous medium. The fluid motion is due to the plate that moves in its plane
according to one of the relations

υ = U cos(ωt)ex or υ = U sin(ωt)ex, (15)

where U and ω are the amplitude and the frequency of the oscillations, respectively. The
fluid velocity u(y, t) and the corresponding shear stress τ(y, t) have to satisfy the governing
Equations (9) and (10) from the previous section. The next boundary conditions

u(0, t) = U cos(ωt), lim
y→∞

u(y, t) = 0, (16)

or
u(0, t) = U sin(ωt), lim

y→∞
u(y, t) = 0, (17)

have to be satisfied. The second condition from Equations (16) and (17) indicates the fact
that the fluid is quiescent far away from the plate. We also assume that there is no shear in
the free stream, i.e.,

lim
y→∞

τ(y, t) = 0. (18)

The dimensionless forms of the governing Equations (9) and (10) and of the boundary
conditions (16) and (17), namely

τ(y, t) =
(

1 + α
∂

∂t

)
∂u(y, t)

∂y
, (19)

∂u(y, t)
∂t

=

(
1 + α

∂

∂t

)
∂2u(y, t)

∂y2 −Mu(y, t)− K
(

1 + α
∂

∂t

)
u(y, t) (20)

and
u(0, t) = cos(ωt), lim

y→∞
u(y, t) = 0, (21)

or
u(0, t) = sin(ωt), lim

y→∞
u(y, t) = 0, (22)

are obtained using the next non-dimensional variables, functions, and parameters

y∗ =
U
ν

y, t∗ =
U2

ν
t, u∗ =

u
U

, τ∗ =
1

ρU2 τ, ω∗ =
ν

U2 ω, α∗ =
U2

ν
α. (23)

For simplicity, the star notation has been eliminated. In addition, in the above relations,
ν = µ/ρ is the kinematic viscosity of the fluid and the magnetic and porous parameters M
and K, respectively, which are defined by the next relations

M =
σB2

ρ

ν

U2 , K =
ϕ

k

( ν

U

)2
. (24)

From Equations (6) and (8), we can see that Darcy’s resistance R has only one compo-
nent, R, different from zero, which in non-dimensional form is given by the equation
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R(y, t) = K
(

1 + α
∂

∂t

)
u(y, t). (25)

In the following, in order to avoid confusion, we denote by uc(y, t), τc(y, t), Rc(y, t),
and us(y, t), τs(y, t), Rs(y, t) the dimensionless starting solutions of the partial differential
Equations (19), (20), and (25) with the boundary conditions (21) and (22), respectively. The
initial condition u(y, 0) = 0 also has to be satisfied. These solutions can be written as the
sum of steady-state (permanent or long time) and transient components, namely

uc(y, t) = ucp(y, t) + uct(y, t), τc(y, t) = τcp(y, t) + τct(y, t), Rc(y, t) = Rcp(y, t) + Rct(y, t), (26)

us(y, t) = usp(y, t) + ust(y, t), τs(y, t) = τsp(y, t) + τst(y, t), Rs(y, t) = Rsp(y, t) + Rst(y, t). (27)

The dimensionless steady-state solutions ucp(y, t) and usp(y, t) are independent of the
initial condition u(y, 0) = 0, but they have to satisfy the governing Equation (20) and the
boundary conditions (21) and (22), respectively.

Direct computations show that the dimensionless steady-state velocity fields ucp(y, t)
and usp(y, t) corresponding to these motions can be presented in the simple forms

ucp(y, t) = e−my cos(ωt− ny), usp(y, t) = e−my sin(ωt− ny), (28)

or equivalently

ucp(y, t) = <e
{

e−δy+iωt
}

, usp(y, t) = Im
{

e−δy+iωt
}

, (29)

where <e and Im are the real and the imaginary part of that which follows, respectively.
The real constants m and n are defined by the equalities

m =

√
ω

2

√√√√ aω +
√
(aω)2 + b2

1 + (αω)2 , n =

√
ω

2

√√√√−aω +
√
(aω)2 + b2

1 + (αω)2 , (30)

where
a = α(1 + αK) +

M + K
ω2 , b = 1− αM, (31)

while δ =
√

M+iω+K(1+iαω)
1+iαω . Equivalence of the expressions of ucp(y, t) and usp(y, t) given

by Equations (28) and (29) is graphically proven by Figure 1. In addition, taking α = 0 in
Equations (28) and neglecting magnetic and porous effects, steady-state solutions obtained
by Erdogan [15] are recovered. Furthermore, coming back to the dimensional variables,
functions, and parameters and, again, neglecting the magnetic and porous effects, the
present solutions (28) become identical to those obtained by Rajagopal [14].
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Figure 1. Profiles of velocities ucp(y, t) and usp(y, t) given by Equations (28)1 and (29)1, respectively:
(28)2 and (29)2 for α = 0.8, ω = π/12, M = 0.6, K = 0.4, and t = 5.

The corresponding dimensionless non-trivial steady-state shear stresses τcp(y, t) and
τsp(y, t), as obtained from the equalities (19), (28), and (29), are given by the relations

τcp(y, t) =
1√

p2 + q2
e−my cos(ωt− ny− ψ), τsp(y, t) =

1√
p2 + q2

e−my sin(ωt− ny− ψ), (32)

or equivalently

τcp(y, t) = −Re
{
(1 + iαω)δe−δy+iωt

}
, τsp(y, t) = −Im

{
(1 + iαω)δe−δy+iωt

}
, (33)

where p = αωm + n, q = αωn−m, and ψ = arctg(p/q).
Introducing ucp(y, t) and usp(y, t) from Equations (28) and (29) in (25), one obtains the

dimensionless expressions for the corresponding Darcy’s resistances, namely

Rcp(y, t) = K
√

1 + (αω)2 e−my cos(ωt− ny + β) ,

Rsp(y, t) = K
√

1 + (αω)2 e−my sin(ωt− ny + β) ,
(34)

or equivalently

Rcp(y, t) = K<e
{
(1 + iαω)e−δy+iωt

}
, Rsp(y, t) = KIm

{
(1 + iαω)e−δy+iωt

}
, (35)

where β = arctg(αω).
The equivalence of the expressions of Rcp(y, t) and Rsp(y, t) from Equations (34) and (35)

is shown in Figure 2.
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Figure 2. Profiles of Darcy’s resistances Rcp(y, t) and Rsp(y, t) given by Equations (34)1 and (35)1,
respectively: (34)2 and (35)2 for α = 0.8, ω = π/12, M = 0.6, K = 0.4, and t = 5.

3.1.2. Motions with Shear Stress on the Boundary

Let us now assume that the motion of the fluid is induced by the plate that applies a
shear stress S cos(ωt) or S sin(ωt) to the fluid. It is clear that its velocity vector is also given
by Equation (8) and the dimensional governing equations corresponding to this motion are
identical to those from the previous section. Instead, the boundary conditions are given by
the relations

τ(0, t) = S cos(ωt), lim
y→∞

τ(y, t) = 0, (36)

or
τ(0, t) = S sin(ωt), lim

y→∞
τ(y, t) = 0. (37)

Introducing the next non-dimensional variables, functions, and parameters

y∗ =
y
ν

√
S
ρ

, t∗ =
S
µ

t, u∗ = u
√

ρ

S
, τ∗ =

τ

S
, ω∗ =

µ

S
ω, α∗ =

S
µ

α (38)

and, again, giving up the star notation, one obtains for the dimensionless velocity and
shear stress fields τ(y, t), u(y, t) and the corresponding Darcy’ resistance R(y, t) the same
governing Equations (19), (20), and (25). However, as we have to solve problems with shear
stress on the boundary, the non-dimensional form of the governing Equation (14), namely

∂τ(y, t)
∂t

=

(
1 + α

∂

∂t

)
∂2τ(y, t)

∂y2 −Mτ(y, t)− K
(

1 + α
∂

∂t

)
τ(y, t), (39)

will be used. As expected, its form is identical to Equation (20) for velocity. In the above
equation, the new magnetic and porous parameters M and K are defined by the relations

M =
σB2

ρ

µ

S
, K =

ϕ

k
µν

S
. (40)

The corresponding dimensionless boundary conditions are

τ(0, t) = cos(ωt), lim
y→∞

τ(y, t) = 0, (41)

or
τ(0, t) = sin(ωt), lim

y→∞
τ(y, t) = 0. (42)
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Consequently, keeping the same notations for the dimensionless solutions correspond-
ing to these new motion problems and bearing in mind the results of the previous section,
the dimensionless shear stresses τcp(y, t) and τsp(y, t) are given by the relations

τcp(y, t) = e−my cos(ωt− ny), τsp(y, t) = e−my sin(ωt− ny), (43)

or equivalently

τcp(y, t) = <e
{

e−δy+iωt
}

, τsp(y, t) = Im
{

e−δy+iωt
}

, (44)

in which m, n, and δ have been defined in the previous section.
The velocity fields ucp(y, t) and usp(y, t) corresponding to the shear stresses given by

Equation (43), namely

ucp(y, t) = −
√

p2
1 + q2

1e−my cos(ωt− ny− γ), usp(y, t) = −
√

p2
1 + q2

1e−my sin(ωt− ny− γ), (45)

where γ = arctg(q1/p1) and

p1 =
αωn−m

(αωn−m)2 + (αωm + n)2 , q1 = − αωm + n

(αωn−m)2 + (αωm + n)2 , (46)

are determined using the relations (10) and (43). Their equivalent forms

ucp(y, t) = −<e
{

1
(1 + iαω)δ

e−δy+iωt
}

, usp(y, t) = −Im
{

1
(1 + iαω)δ

e−δy+iωt
}

, (47)

are obtained using Equations (10) and (44). The equivalence of dimensionless velocity
fields given by the equalities (45) and (47) is graphically proven in Figure 3.
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Introducing ucp(y, t) and usp(y, t) from Equations (45) and (47) in (25), the expressions
of the Darcy’s resistances, namely

Rcp(y, t) = −K
√
(p2

1 + q2
1)[1 + (αω)2] e−my cos(ωt− ny + β− γ) ,

Rsp(y, t) = −K
√
(p2

1 + q2
1)[1 + (αω)2] e−my sin(ωt− ny + β− γ) ,

(48)
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or equivalent

Rcp(y, t) = −K<e
{

1
δ

e−δy+iωt
}

, Rsp(y, t) = −KIm
{

1
δ

e−δy+iωt
}

, (49)

corresponding to this motion of incompressible second-grade fluids are obtained. The
angle β from Equations (48) is equal with arctg(αω), and the equivalence of the expressions
of Rcp(y, t) and Rsp(y, t) from Equations (48) and (49) is proven in Figure 4. In conclusion,
the steady-state solutions corresponding to motions with shear stress on the boundary are
easily obtained using the steady-state solutions of some motions with velocities on the
boundary.
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3.2. Motions between Infinite Parallel Plates

Let us now consider isothermal MHD steady motions of an ECISGF between two
infinite horizontal parallel flat plates embedded in a porous medium. The velocity field of
such a motion, which can be generated by both plates, which move in their own planes with
the same velocity U cos(ωt) or U sin(ωt), or applies a shear stress S cos(ωt) or S sin(ωt)
to the fluid, is also of the form (8). In both cases, the corresponding dimensional governing
equations are identical to those from Section 2. Exact solutions for velocity and pressure
fields corresponding to isothermal steady flows of second-grade fluids in a plane channel
have been recently provided by Baranovskii and Artemov [16].

3.2.1. Motions with Velocity on the Boundary

Keeping the same notations as in the previous sections, the dimensional steady-state
velocity and shear stress fields ucp(y, t), τcp(y, t), and usp(y, t), τsp(y, t), corresponding to
these motions have to satisfy the governing Equations (9) and (10) with the boundary
conditions

u(0, t) = U cos(ωt), u(d, t) = U cos(ωt), (50)

or
u(0, t) = U sin(ωt), u(d, t) = U sin(ωt), (51)

where d is the distance between plates. Introducing the following non-dimensional vari-
ables, functions, and parameters

y∗ =
y
d

, t∗ =
U
d

t, u∗ =
u
U

, τ∗ =
1

ρU2 τ, ω∗ =
d
U

ω, α∗ =
U
d

α, (52)
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in Equations (9), (10), (50), and (51) and dropping out the star notation, one obtains for the
dimensionless velocity field u(y, t) and the corresponding shear stress τ(y, t) the following
partial differential equations

Re
∂u(y, t)

∂t
=

(
1 + α

∂

∂t

)
∂2u(y, t)

∂y2 −Mu(y, t)− K
(

1 + α
∂

∂t

)
u(y, t), (53)

τ(y, t) =
1

Re

(
1 + α

∂

∂t

)
∂u(y, t)

∂y
, (54)

with the boundary conditions

u(0, t) = cos(ωt), u(1, t) = cos(ωt), (55)

respectively
u(0, t) = sin(ωt), u(1, t) = sin(ωt). (56)

The Reynolds number Re and magnetic and porous parameters seen in the above
equations, M and K, respectively, are defined by the next relations

Re =
Ud
ν

, M =
σB2

ρ

d2

ν
, K =

ϕ

k
d2. (57)

The dimensionless Darcy’s resistance R(y, t) corresponding to these motions satisfies
Equation (25) in which the porous parameter K is given by the last equality from (57).

Direct computations show that the dimensionless steady-state velocity fields ucp(y, t)
and usp(y, t) corresponding to these motions are given by the following relations

ucp(y, t) = <e
{

sinh(δ̃y)+sinh[δ̃(1−y)]
sinh(δ̃)

eiωt
}

,

usp(y, t) = Im
{

sinh(δ̃y)+sinh[δ̃(1−y)]
sinh(δ̃)

eiωt
}

,
(58)

where δ̃ =
√

M+iωRe+K(1+iαω)
1+iαω . It is worth pointing out the fact that for ω = 0, when both

plates moves in their planes with the same constant velocity U, the dimensional form of the
steady-state solution ucp(y, t) from Equation (58)1 tends to the steady solution obtained by
Erdogan ([17], Equation (12)) if α→ 0 and magnetic and porous effects are neglected.

The corresponding shear stresses, namely

τcp(y, t) = 1
Re<e

{
cosh(δ̃)−cosh[δ̃(1−y)]

sinh(δ̃)
δ̃(1 + iαω)eiωt

}
,

τsp(y, t) = 1
Re Im

{
cosh(δ̃)−cosh[δ̃(1−y)]

sinh(δ̃)
δ̃(1 + iαω)eiωt

}
,

(59)

are obtained when introducing ucp(y, t) and usp(y, t) from Equation (58) in (54).
Furthermore, introducing the expressions of ucp(y, t) and usp(y, t) from Equation (58)

in (25), one obtains the dimensionless expressions of corresponding Darcy’s resistances, i.e.,

Rcp(y, t) = K<e
{

sinh(δ̃y)+sinh[δ̃(1−y)]
sinh(δ̃)

(1 + iαω)eiωt
}

,

Rsp(y, t) = KIm
{

sinh(δ̃y)+sinh[δ̃(1−y)]
sinh(δ̃)

(1 + iαω)eiωt
}

.
(60)

Simple computations show that the obtained solutions satisfy the dimensionless
governing Equations (25), (53), (54), and the boundary conditions (55) and (56).
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3.2.2. Motions Due to Shear Stresses on the Boundary

Let us now assume that the two plates apply the same shear stress S cos(ωt) or
S sin(ωt) to the fluid. Bearing in mind the results of the second section, the dimensional
shear stresses corresponding to this problem, τcp(y, t) and τsp(y, t), have to satisfy the
governing Equation (14) with the boundary conditions

τ(0, t) = S cos(ωt), τ(d, t) = S cos(ωt), (61)

or
τ(0, t) = S sin(ωt), τ(d, t) = S sin(ωt). (62)

The corresponding velocity fields ucp(y, t) and usp(y, t) have to satisfy Equations (9) and (10).
Using the non-dimensional variables, functions, and parameters

y∗ =
y
d

, t∗ =
S
µ

t, u∗ = u
√

ρ

S
, τ∗ =

τ

S
, ω∗ =

µ

S
ω, α∗ =

S
µ

α, (63)

Equations (10) and (14) take the non-dimensional forms

τ(y, t) =
1√
Re

(
1 + α

∂

∂t

)
∂u(y, t)

∂y
, (64)

respectively,

Re
∂τ(y, t)

∂t
=

(
1 + α

∂

∂t

)
∂2τ(y, t)

∂y2 −Mτ(y, t)− K
(

1 + α
∂

∂t

)
τ(y, t), (65)

while the boundary conditions (61) and (62) become

τ(0, t) = cos(ωt), τ(1, t) = cos(ωt), (66)

or
τ(0, t) = sin(ωt), τ(1, t) = sin(ωt). (67)

Into above relations the Reynolds number Re and magnetic and porous parameters M
and K, respectively, are given by the relations

Re =
Sd2

µν
=

Vd
ν

, M =
σB2

ρ

d2

ν
, K =

ϕ

k
d2, (68)

where V = Sd/µ is a characteristic velocity. Bearing in mind the results of the last subsec-
tion, the dimensionless shear stresses τcp(y, t) and τsp(y, t) corresponding to this problem
are given by the next relations

τcp(y, t) = <e

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
, τsp(y, t) = Im

{
sinh(δ̃y) + sinh[δ̃(1− y)]

sinh(δ̃)
eiωt

}
. (69)

The corresponding velocity fields, as it can be proven using Equation (64), have the
forms

ucp(y, t) =
√

Re <e
{

1
(1+iαω)δ̃

cosh(δ̃y)−cosh[δ̃(1−y)]
sinh(δ̃)

eiωt
}

,

usp(y, t) =
√

ReIm
{

1
(1+iαω)δ̃

cosh(δ̃y)−cosh[δ̃(1−y)]
sinh(δ̃)

eiωt
}

,
(70)

while the expressions of Rcp(y, t) and Rsp(y, t) are given by the next relations
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Rcp(y, t) = K
√

Re<e
{

cosh(δ̃y)−cosh[δ̃(1−y)]
sinh(δ)

eiωt

δ̃

}
,

Rsp(y, t) = K
√

ReIm
{

cosh(δ̃y)−cosh[δ̃(1−y)]
sinh(δ̃)

eiωt

δ̃

}
.

(71)

Direct computations clearly show that the dimensionless steady-state solutions from
Equations (69)–(71) satisfy the governing Equations (25), (53), and (54).

4. Conclusions

The establishment problem of exact solutions for motions of non-Newtonian fluids,
especially in the presence of magnetic and porous effects, is very important and still
open. In order to facilitate the possibility of obtaining new exact solutions for isothermal
MHD unidirectional motions of incompressible second-grade fluids through a porous
medium, a very important remark regarding such motions has been brought to light. More
precisely, it was proven that the governing equations for velocity and non-trivial shear
stress corresponding to the motions of fluids in discussion have identical forms. Then, in
order to stand out the power of this remark, some isothermal MHD steady or permanent
motions of incompressible second-grade fluids through a porous medium were taken into
consideration and studied. More exactly, the steady-state solutions for motions of these
fluids with velocity on the boundary were used to provide exact solutions for motions of
the same fluids with shear stress on the boundary. For results validation, some of these
solutions have been presented in different forms and their equivalence was graphically
proven. Of course, using the same remark, solutions for fluid motions with velocity on the
boundary can also be determined if similar solutions for motions with shear stress on the
boundary are known.

Finally, we mention the fact that all solutions that are presented here can be eas-
ily particularized to give similar solutions for the incompressible Newtonian fluids per-
forming the same motions. The dimensionless velocity fields ucp(y, t) and usp(y, t) given
by Equation (45) and the corresponding Darcy’s resistances Rcp(y, t) and Rsp(y, t) from
Equation (48), for instance, take the simplified forms

uNcp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y cos(ωt− gy− χ),

uNsp(y, t) = − 1
4
√

K2
e f f +ω2

e− f y sin(ωt− gy− χ),
(72)

respectively,
RNcp(y, t) = − K

4
√

K2
e f f +ω2

e− f y cos(ωt− gy− χ),

RNsp(y, t) = − K
4
√

K2
e f f +ω2

e− f y sin(ωt− gy− χ),
(73)

where

χ = arctg


√

K2
e f f + ω2 − Ke f f

ω

, f =

√√√√Ke f f +
√

K2
e f f + ω2

2
, g =

√√√√−Ke f f +
√

K2
e f f + ω2

2
(74)

and Ke f f = M + K is the effective permeability [18]. Interesting solutions for motions of
Newtonian fluids can be also obtained from the recent work of Baranovskii et al. [19].
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Nomenclature
Nomenclature
T Cauchy stress tensor
A1, A2 First two Rivlin–Ericksen tensors
L Velocity gradient
I Identity tensor
p Hydrostatic pressure
v Velocity vector
R(y, t) Darcy’s resistance
u(y, t) Fluid velocity
M Magnetic parameter
K Porous parameter
k Permeability of porous medium
B Magnitude of the applied magnetic field
Ke f f Effective permeability
Greek Symbols
ν Kinematic viscosity
µ Dynamic viscosity
ρ Fluid density
ϕ Porosity
σ Electrical conductivity
ω Frequency of oscillations
τ(y, t) Non-trivial shear stress
α1, α2 Material constants
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