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Abstract: The word “symmetry” is a Greek word that originated from “symmetria”. It means an
agreement in dimensions, due proportion, and arrangement; however, in complex analysis, it means
objects remaining invariant under some transformation. This idea has now been recently used in
geometric function theory to modify the earlier classical q-derivative introduced by Ismail et al. due
to its better convergence properties. Consequently, we introduce a new class of analytic functions by
using the notion of q-symmetric derivative. The investigation in this paper obtains a number of the
latest important results in q-theory, including coefficient inequalities and convolution characterization
of q-symmetric starlike functions related to Janowski mappings.

Keywords: univalent functions; subordination; analytic functions; q-symmetric derivative; Janowski
function

1. Introduction and Preliminaries

LetH be the class of analytic functions f (ν) having the series form

f (ν) = ν+
∞

∑
n=2

anν
n, ν ∈ f := {ν ∈ C : |ν| < 1}. (1)

Let S denote the subclasses ofH consisting of functions that are univalent in f. We
say f (ν) ∈ H is subordinate to g(ν) ∈ H (written as f ≺ g or f (ν) ≺ g(ν)) if there exists
a Schwarz function w(ν) such that f (ν) = g(w(ν)) for all ν ∈ f [1]. For f , g ∈ H with

f (ν) = ν+
∞
∑

n=2
anν

n and g(ν) = ν+
∞
∑

n=2
bnν

n, the convolution of f and g depicted by

f (ν) ∗ g(ν) is defined as

f (ν) ∗ g(ν) = ν+
∞

∑
n=2

anbnν
n.

LetP(Φ̃, Ψ̃) denote the class of all functions p(ν) such that the following subordination
condition is satisfied:

p(ν) ≺ 1 + Φ̃ν

1 + Ψ̃ν
, ν ∈ f. (2)

If we choose p(ν) = ν f ′(ν)/ f (ν) and (ν f ′(ν))′/ f ′(ν) in (2), then f ∈ S∗(Φ̃, Ψ̃) and
f ∈ C(Φ̃, Ψ̃), respectively [2]. In particular, if Φ̃ = 1, Ψ̃ = −1, the class P(Φ̃, Ψ̃) reduces to
the usual class P of functions with positive real part, and S∗(Φ̃, Ψ̃) ≡ S∗ and C(Φ̃, Ψ̃) ≡ C
of starlike and convex functions, respectively.
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q-calculus is a significant concept in modern mathematics. It also plays a crucial role
in many fields of physics such as cosmic strings and black holes, nuclear and high energy
physics [3]. This idea of q-calculus was developed by Jackson [4] and its calculus is based
on q-derivative

f (qν)− f (ν)
(q− 1)ν

, 0 < q < 1, ν ∈ f.

We observed that several results in the area of q-theory are analogs of the important
results from the classical analysis.

In geometric function theory (GFT), Ismail et al. [5] first utilized the q-derivative to
define the class of starlike functions. As a result, numerous articles (which contain new
ideas or nice extensions of the classical classes in GFT) are scattered in the literature. We
refer the reader to [6–11] and the references cited therein, for the most recent work; therefore,
the generalization of q-calculus popped up in different subjects, such as complex analysis,
hypergeometric series, statistics and particle physics. Alb Lupaş [12] used the techniques
of differential subordination to study the geometric properties of q-Sălăgean differential
operator. Altintaş and Mustafa [13] introduced new classes of analytic functions defined by
q-operator and gave the necessary condition for analytic functions to be members of those
classes. In addition, they established the growth and distortion results related with these
families of functions. Closely related to the classes of Altintaş and Mustafa, Orhan et al. [14]
studied the Fekete–Szegö problem connected to a new class of analytic functions.

However, in the “Survey-cum-expository” by Srivastava [10] , it was noted that the
so-called (p, q)-calculus extension is a rather trivial and inconsequential variation of the
classical q-calculus, the additional parameter p being redundant.

For a fixed q ∈ (0, 1) and ν 6= 0, the q-symmetric derivative of a function f ∈ H at a
point ν is defined by

f (qν)− f (q−1ν)

(q− q−1)ν
, 0 < q < 1, ν ∈ f.

The q-symmetric quantum calculus has been resourceful in many areas of study; for
instance, in quantum mechanics. It was noted in [3] that the q-symmetric derivative has, in
general, better convergence properties than the classical q-derivative.

Recently, this concept of the derivative has been used to introduce and study different
classes of univalent functions. In this direction, Kanas et al. [15], using the notion of
the symmetric operator of q-derivative, defined and studied a new family of univalent
functions in a conic region. Khan et al. [16,17] slightly modified this Kanas class and
investigated certain properties associated with the class, which include structural formula,
necessary and sufficient conditions, coefficient estimates, Fekete–Szegö problem, distortion
inequalities, closure theorem and subordination results. It is worthy of note that results
presented by Khan et al. in [16,17] have no significant difference. Moreover, Seoudy [18]
introduced certain classes of symmetric q-starlike and symmetric q-convex functions. For
these classes, he obtained convolution properties and coefficient inequalities. Zhang
et al. [19] initiated symmetric Salagean q-differential operator and then used it to introduce
the class of harmonic univalent functions. Then, they examined many interesting properties
associated with the defined class. Furthermore, very recently, Khan et al. [20] extended the
notion of q-symmetric derivative to multivalent functions. They introduced multivalent
q-symmetric starlike functions and obtained its geometric characterizations.

Motivated by these current developments, we initiate the class of q-symmetric starlike
functions of the Janowski type and examine many coefficient inequalities and sufficient
conditions for this class. In addition, a convolution property for it is established.

Next, we present some fundamental preliminaries which are necessary for our findings.
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Definition 1 ([21]). Let 0 < q < 1, n ∈ N. Then, the symmetric q-number denoted by [̃n]q is
defined as

[̃n]q =


qn−q−n

q−q−1 , n ∈ N,

n, as q→ 1−,
(3)

and the symmetric q-derivative of a function f ∈ H in f is given by

D̃q f (ν) =



f (qν)− f (q−1ν)
(q−q−1)ν

, ν 6= 0

f ′(0), ν = 0,

f ′(ν), as q→ 1−.

(4)

We note that the symmetric q- number is not reducible to the classical q-number. It is
cleared from the above definition that for f ∈ H given by (1), we have

D̃q f (ν) = 1 +
∞

∑
n=2

[̃n]qanν
n.

Let f , g ∈ H, we have the following rules for q-symmetric difference operator.

Theorem 1 ([3]). Let f , g ∈ H be q-symmetric differentiable and α, β ∈ C. Then

(a) D̃q f (ν) = 0 if and only f (ν) is a constant;
(b) D̃q(α f + βg)(ν) = αD̃q f (ν) + βD̃qg(ν);
(c) D̃q( f g)(ν) = g(qν)D̃q f (ν) + f (q−1ν)D̃qg(ν);

(d) D̃q

(
f
g

)
(ν) =

g(q−1ν)D̃q f (ν)− f (q−1ν)D̃qg(ν)
g(qν)g(q−1ν)

, g(qν)g(q−1ν) 6= 0.

Definition 2 ([17]). Let f ∈ H and 0 < q < 1. Then f ∈ S̃T q if and only if∣∣∣∣∣∣νD̃q f (ν)
f (ν)

− 1
1− q

q−1

∣∣∣∣∣∣ ≤ 1
1− q

q−1

, ν ∈ f. (5)

By the principle of subordination, f ∈ S̃T q if and only if

νD̃q f (ν)
f (ν)

≺ 1 + ν

1− q
q−1 ν

, ν ∈ f.

Definition 3 ([2]). Let f ∈ H and −1 ≤ Ψ̃ < Φ̃ ≤ 1. Then f ∈ ST (Φ̃, Ψ̃) if and only if

ν f ′(ν)
f (ν)

=

(
1 + Φ̃

)
p(ν) +

(
1− Φ̃

)
(

1 + Ψ̃
)

p(ν) +
(

1− Ψ̃
) ,

where
p(ν) ≺ 1 + ν

1− ν
, ν ∈ f.

One way to extend the class ST (Φ̃, Ψ̃) is to assume that the function

p(ν) ≺ 1 + ν

1− q
q−1 ν

, ν ∈ f.
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Then, the appropriate definition of the corresponding class S̃T q(Φ̃, Ψ̃) is given as:

Definition 4. Let f ∈ H, 0 < q < 1 and −1 ≤ Ψ̃ < Φ̃ ≤ 1. Then f ∈ S̃T q(Φ̃, Ψ̃) if and only if

νD̃q f (ν)
f (ν)

≺ ϕ(ν), ν ∈ f,

where

ϕ(ν) =
2q−1 + (1 + Φ̃)ν+ (Φ̃− 1)qν
2q−1 + (1 + Ψ̃)ν+ (Ψ̃− 1)qν

.

Equivalently, f ∈ S̃T q(Φ̃, Ψ̃) if and only if∣∣∣∣∣∣∣
(Ψ̃− 1)νD̃q f (ν)

f (ν) − (Φ̃− 1)

(Ψ̃+ 1)νD̃q f (ν)
f (ν) − (Φ̃+ 1)

− 1
1− q

q−1

∣∣∣∣∣∣∣ ≤
1

1− q
q−1

, ν ∈ f.

Remark 1.

(a) lim
q→1−

S̃T q(Φ̃, Ψ̃) = S̃T (Φ̃, Ψ̃).

(b) For Φ̃ = 1 and Ψ̃ = −1, then S̃T q(Φ̃, Ψ̃) reduces to S̃T q.
(c) For Φ̃ = 1, Ψ̃ = −1 and as q → 1, then S̃T q(Φ̃, Ψ̃) is equivalent to the usual class S∗ of

starlike functions.

Definition 5 (Subordinating Factor Sequence). A sequence {bn}∞
n=1 of complex number is

called a subordinating factor sequence if, whenever f (ν) of the form (1) is analytic, univalent and
convex in f, we have the subornation given by

∞

∑
n=1

anbnν
n ≺ f (ν) ν ∈ f, a1 := 1.

The following results are required for our findings.

Lemma 1 ([22]). Let h(ν) = 1 +
∞
∑

n=1
cnν

n ∈ P . Then for a real σ,

|c2 − σc2
1| ≤


−4σ + 2, for σ ≤ 0,

2, for 0 ≤ σ ≤ 1,

4σ + 2 for σ ≥ 1.

When σ < 0 or σ > 1, equality holds if and only if h(ν) = (1 + ν)/(1− ν) or one of its
rotations. If 0 < σ < 1, then equality holds if and only if h(ν) = (1 + ν2)/(1− ν2) or one of its
rotations. Equality holds for σ = 0 if and only if

h(ν) =
(

1 + v
2

)(
1 + ν

1− ν

)
+

(
1− v

2

)(
1− ν

1 + ν

)
, 0 ≤ v ≤ 1, ν ∈ f

or one of its rotations while for σ = 1, equality holds if and only if h(ν) is the reciprocal of one of
the functions such that the equality holds true in the case when v = 0.

In addition, the sharp upper bound above can be improved as follows when −1 ≤ σ ≤ 1:

|c2 − σc2
1|+ σ|c1|2 ≤ 2, 0 < σ ≤ 1

2
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and
|c2 − σc2

1|+ (1− σ)|c1|2 ≤ 2,
1
2
≤ σ < 1.

Lemma 2 ([23]). The sequence {bn}∞
n=1 is a subordinating factor sequence if and only if

Re

(
1 + 2

∞

∑
n=1

bnν
n

)
> 0, ν ∈ f.

2. Main Results

In this section, we present our main findings and assume 0 < q < 1 and −1 ≤ Ψ̃ <
Φ̃ ≤ 1 in the entire presentation.

Theorem 2. Let f ∈ S̃T q(Φ̃, Ψ̃) be of the form, as given in (1). Then for n ≥ 2,

4q−1
(
[̃n]q − 1

)2
|a2|2 ≤ q(q + q−1)2(Φ̃− Ψ̃)2 +

n−1

∑
k=2

[(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)2
q

− 4q−1
(
[̃k]q − 1

)2
]
|ak|2,

where
Lq(x) = (1 + x)q−1 + (x− 1)q. (6)

Proof. From the definition of S̃T q(Φ̃, Ψ̃), we have

νD̃q f (ν)
f (ν)

=
2q−1 + (1 + Φ̃)w(ν) + (Φ̃− 1)qw(ν)

2q−1 + (1 + Ψ̃)w(ν) + (Ψ̃− 1)qw(ν)
,

where w(0) = 0 with |w(ν)| < 1 (ν ∈ f), and w(ν) =
∞
∑

k=1
ckν

k. A computation gives

(
Lq(Φ̃)νD̃q f (ν)−Lq(Ψ̃)

)
w(ν) = 2q−1

(
D̃q f (ν)− f (ν)

)
, (7)

where Lq(Φ̃) and Lq(Ψ̃) are defined by (6). From (7), we have[(
Lq(Φ̃)−Lq(Ψ̃)

)
ν+

∞

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

]
∞

∑
k=1

ckν
k = 2q−1

∞

∑
k=2

(
[̃k]q − 1

)
akν

k. (8)

Comparing coefficients for n ≥ 2, we have(
˜[n− 1]qLq(Φ̃)−Lq(Ψ̃)

)
an−1c1 +

(
˜[n− 2]qLq(Φ̃)−Lq(Ψ̃)

)
an−2c2

+
(

˜[n− 3]qLq(Φ̃)−Lq(Ψ̃)
)

an−3c3 + · · ·+
(
Lq(Φ̃)−Lq(Ψ̃)

)
a1cn−1

= 2q−1
(
[̃n]q − 1

)
an, a1 = 1. (9)

It is observed that the coefficient an on the right side of (9) depends only on an−1, an−2,
an−3, . . . , a2 on the left side; therefore, we can write (8) as[(

Lq(Φ̃)−Lq(Ψ̃)
)
ν+

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k +
∞

∑
k=n

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

]
w(ν)

= 2q−1

[
n

∑
k=2

(
[̃k]q − 1

)
akν

k +
∞

∑
k=n+1

(
[̃k]q − 1

)
akν

k

]
.
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That is

[(
Lq(Φ̃)−Lq(Ψ̃)

)
ν+

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

]
w(ν)

= 2q−1

[
n

∑
k=2

(
[̃k]q − 1

)
akν

k +
∞

∑
k=n+1

(
[̃k]q − 1

)
akν

k

]
−
[

∞

∑
k=n

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

]
w(ν).

Applying the method of Clunie and Keogh [24], we arrive at

2q−1
n

∑
k=2

(
[̃k]q − 1

)
akν

k +
∞

∑
k=n+1

dkν
k =

[(
Lq(Φ̃)−Lq(Ψ̃)

)
ν

+
n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

]
w(ν),

where

dk = 2q−1
(
[̃k]q − 1

)
ak −

k−n

∑
j=2

(
˜[k− j]qLq(Φ̃)−Lq(Ψ̃)

)
ak−jcj, n + 1 ≤ k < ∞.

This means that∣∣∣∣∣2q−1
n

∑
k=2

(
[̃k]q − 1

)
akν

k +
∞

∑
k=n+1

dkν
k

∣∣∣∣∣
2

=

∣∣∣∣∣(Lq(Φ̃)−Lq(Ψ̃)
)
ν+

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

∣∣∣∣∣
2

|w(ν)|2

<

∣∣∣∣∣(Lq(Φ̃)−Lq(Ψ̃)
)
ν+

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)
akν

k

∣∣∣∣∣
2

.

Integrating around the circle |ν| < r (0 < r < 1) and on the account of Parseval’s
identity ([25], p. 100), we have

4q−1
n

∑
k=2

(
[̃k]q − 1

)2
|ak|2r2k +

∞

∑
k=n+1

|dk|2r2k

< q
(
Lq(Φ̃)−Lq(Ψ̃)

)2
r2 + q

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)2
|ak|2r2k.

Letting r → 1, we have

4q−1
n

∑
k=2

(
[̃k]q − 1

)2
|ak|2 +

∞

∑
k=n+1

|dk|2

≤ q
(
Lq(Φ̃)−Lq(Ψ̃)

)2
+ q

n−1

∑
k=2

(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)2
|ak|2,
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where we obtain

4q−1
(
[̃n]q − 1

)2
|an|2

≤ q(q + q−1)2(Φ̃− Ψ̃)2 +
n−1

∑
k=2

[(
[̃k]qLq(Φ̃)−Lq(Ψ̃)

)2
q

− 4q−1
(
[̃k]q − 1

)2
]
|ak|2 n ≥ 2.

As (a) q → 1−, (b) Φ̃ = 1, Ψ̃ = −1 and (c) q → 1−, Φ̃ = 1, Ψ̃ = −1 in Theorem 2,
respectively, we are led to the following results.

Corollary 1. Let f ∈ H be of the form (1). If

(a) f ∈ S̃T (Φ̃, Ψ̃), then for n ≥ 2,

(n− 1)2|an|2 ≤
(
Φ̃− Ψ̃

)2
+

n−1

∑
k=2

[
k(Φ̃+ 1)− (Ψ̃+ 1)

][
k(Φ̃− 1)− (Ψ̃− 1)

]
;

(b) f ∈ S̃T q, then

q−1([̃n]− 1)2|a2|2 ≤ q(q + q−1)

[
(q + q−1) +

n−1

∑
k=2

(2k + (q− q−1))|ak|2
]

, n ≥ 2;

(c) ([26], Theorem 4) f ∈ S∗, then

(n + 1)2|an|2 ≤ 4

(
1 +

n

∑
k=2

k|ak|2
)

, n ≥ 2.

Theorem 3. Let f ∈ H. then f ∈ S̃T q(Φ̃, Ψ̃) if

∞

∑
n=2

(
2
∣∣∣[̃n]q − 1

∣∣∣+ ∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
[̃n]q

∣∣∣) |an| < Φ̃− Ψ̃. (10)

The inequality is sharp for the function

f (ν) = ν− Φ̃− Ψ̃

2
∣∣∣[̃n]q − 1

∣∣∣+ ∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
[̃n]q

∣∣∣νn.

Proof. Suppose (10) holds. We need to show that∣∣∣∣∣∣∣
(Ψ̃− 1)νD̃q f (ν)

f (ν) − (Φ̃− 1)

(Ψ̃+ 1)νD̃q f (ν)
f (ν) − (Φ̃+ 1)

− 1
1− q

q−1

∣∣∣∣∣∣∣ ≤
1

1− q
q−1

, ν ∈ f.
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Now, ∣∣∣∣∣∣∣
(Ψ̃− 1)νD̃q f (ν)

f (ν) − (Φ̃− 1)

(Ψ̃+ 1)νD̃q f (ν)
f (ν) − (Φ̃+ 1)

− 1
1− q

q−1

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
(Ψ̃− 1)νD̃q f (ν)

f (ν) − (Φ̃− 1)

(Ψ̃+ 1)νD̃q f (ν)
f (ν) − (Φ̃+ 1)

− 1

∣∣∣∣∣∣∣+
q

q−1 − q

=

∣∣∣∣∣ (Ψ̃− 1)νD̃q f (ν)− (Φ̃− 1) f (ν)

(Ψ̃+ 1)νD̃q f (ν)− (Φ̃+ 1) f (ν)

∣∣∣∣∣+ q
q−1 − q

= 2

∣∣∣∣∣ f (ν)− νD̃q f (ν)

(Ψ̃+ 1)νD̃q f (ν)− (Φ̃+ 1) f (ν)

∣∣∣∣∣+ q
q−1 − q

= 2

∣∣∣∣∣∣∣∣
∞
∑

n=2

(
[̃n]q − 1

)
anν

n−1

(
Φ̃− Ψ̃

)
+

∞
∑

n=2

(
Φ̃+ 1−

(
Ψ̃+ 1

)
[̃n]q

)
anνn−1

∣∣∣∣∣∣∣∣+
q

q−1 − q

≤ 2

∞
∑

n=2

∣∣∣[̃n]q − 1
∣∣∣ |an|(

Φ̃− Ψ̃
)
+

∞
∑

n=2

∣∣∣Φ̃+ 1−
(
Ψ̃+ 1

)
[̃n]q

∣∣∣ |an|
+

q
q−1 − q

.

This last inequality is bounded by 1
1− q

q−1
provided (10) is satisfied. Thus, f ∈

S̃T q(Φ̃, Ψ̃).

Corollary 2. Let f ∈ H. then f ∈ S̃T q(Φ̃, Ψ̃) if

|an| <
Φ̃− Ψ̃

2
∣∣∣[̃n]q − 1

∣∣∣+ ∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
[̃n]q

∣∣∣ , n ≥ 2.

Setting (a) Φ̃ = 1, Ψ̃ = −1 and (b) q→ 1−, Φ̃ = 1, Ψ̃ = −1 in Theorem 3, respectively,
we have the following results.

Corollary 3. Let f ∈ H.

(a) If
∞

∑
n=2

(∣∣∣[̃n]q − 1
∣∣∣+ 1

)
|an| < 1,

then f ∈ S̃T q.
(b) If

∞

∑
n=2

n|an| < 1,

then f ∈ S∗.
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Theorem 4. Let f ∈ S̃T q(Φ̃, Ψ̃) be of the form (1). Then

|a3 − µa2
2| ≤



q(q−1+q)(Φ̃−Ψ̃)
4(q−2+q2)

ρq

(
Φ̃, Ψ̃

)
, µ < σ

1

q

(
Φ̃, Ψ̃

)
,

q(q−1+q)(Φ̃−Ψ̃)
4(q−2+q2)

, σ
1

q

(
Φ̃, Ψ̃

)
≤ µ ≤ σ

2

q

(
Φ̃, Ψ̃

)
,

q(q−1+q)(Ψ̃−Φ̃)
4(q−2+q2)

ρq

(
Φ̃, Ψ̃

)
, µ > σ

2

q

(
Φ̃, Ψ̃

)
,

where

ρq

(
Φ̃, Ψ̃

)
=

1
(q−1 + q− 1)2

{
q(q−1 + q)

(
Φ̃− Ψ̃

)
+
[
2(q−1 + q− 1)

−
(
3 + Ψ̃+ q2(Ψ̃− 1

))]
(q−1 + q− 1)− µ q(q−1 + q)(q−2 + q2)

(
Φ̃− Ψ̃

)}
,

σ
1

q

(
Φ̃, Ψ̃

)
=

q(q−1 + q)
(
Φ̃− Ψ̃

)
−
(
3 + Ψ̃+ q2(Ψ̃− 1

))
(q−1 + q− 1)

q(q−1 + q)(q−2 + q2)
(
Φ̃− Ψ̃

) ,

σ
2

q

(
Φ̃, Ψ̃

)
=

q(q−1 + q)
(
Φ̃− Ψ̃

)
+
[
4(q−1 + q− 1)−

(
3 + Ψ̃+ q2(Ψ̃− 1

))]
(q−1 + q− 1)

q(q−1 + q)(q−2 + q2)
(
Φ̃− Ψ̃

) .

It is also asserted that

|a3 − µa2
2|+

(
µ− σ

1

q

(
Φ̃, Ψ̃

))
|a2|2 ≤

q(q−1 + q)
(
Φ̃− Ψ̃

)
2(q−2 + q2)

, σ
1

q

(
Φ̃, Ψ̃

)
< µ ≤ σ

3

q

(
Φ̃, Ψ̃

)
and

|a3 − µa2
2| −

(
µ− σ

2

q

(
Φ̃, Ψ̃

))
|a2|2 ≤

q(q−1 + q)
(
Φ̃− Ψ̃

)
2(q−2 + q2)

, σ
3

q

(
Φ̃, Ψ̃

)
< µ ≤ σ

2

q

(
Φ̃, Ψ̃

)
,

where

σ
3

q

(
Φ̃, Ψ̃

)
=

2(q−1 + q− 1)2

q(q−1 + q)(q−2 + q2)
(
Φ̃− Ψ̃

) − σ
1

q

(
Φ̃, Ψ̃

)
.

Each of these inequalities is sharp.

Proof. By the definition of f ∈ S̃T q(Φ̃, Ψ̃), we have that

νD̃q f (ν)
f (ν)

= ϕ(w(ν)), ν ∈ f,

where w(ν) is a Schwarz function. Using the relationship between w(ν) and h ∈ P , we
have

h(ν) =
1 + w(ν)

1− w(ν)
= 1 + c1ν+ c2ν

2 + c3ν
3 + . . . .

Therefore,

ϕ(w(ν)) =

[(
3 + Φ̃

)
q−1 +

(
Φ̃− 1

)
q
]

h(ν)− (q−1 + q)
(
Φ̃− 1

)
[(

3 + Ψ̃
)

q−1 +
(
Ψ̃− 1

)
q
]

h(ν)− (q−1 + q)
(
Ψ̃− 1

)
= 1 +

q(q−1 + q)
(
Φ̃− Ψ̃

)
c1

4
ν (11)

+
q
[
4c2 −

(
3 + Ψ̃+ q2

(
Ψ̃− 1

))
c2

1

]
(q−1 + q)

(
Φ̃− Ψ̃

)
16

ν2 + . . . .
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Similarly,

νD̃q f (ν)
f (ν)

= 1 + (q−1 + q− 1)a2ν+
[
(q−2 + q2)a3 − (q−1 + q− 1)a2

2

]
ν2 + . . . . (12)

On comparing (11) and (12), we arrive at

a2 =
q(q−1 + q)

(
Φ̃− Ψ̃

)
c1

4(q−1 + q− 1)

and

a3 =
q(q−1 + q)

(
Φ̃− Ψ̃

)
c1

4(q−2 + q2)

(
c2 − ψ

1

q

(
Φ̃, Ψ̃

)
c2

1

)
,

where

ψ
1

q

(
Φ̃, Ψ̃

)
=

(
3 + Ψ̃+ q2

(
Ψ̃− 1

))
(q−1 + q− 1)− q(q−1 + q)

(
Φ̃, Ψ̃

)
4(q−1 + q− 1)

.

Consequently, for µ ∈ R,

|a3 − µa2
2| =

q(q−1 + q)
(
Φ̃− Ψ̃

)
4(q−1 + q− 1)

|c2 − ψ
2

q

(
Φ̃, Ψ̃

)
c2

1|.

Thus, by applying Lemma 1, we obtain the required result.

In particular, when Φ̃ = 1, Ψ̃ = −1, Theorem 4 produces the following result.

Corollary 4. Let f ∈ S̃T q be of the form (1). Then

|a3 − µa2
2| ≤



q(q−1+q)
(q−2+q2)

ρq , µ < σ
1

q ,

q(q−1+q)
2(q−2+q2)

, σ
1

q ≤ µ ≤ σ
2

q ,

− q(q−1+q)
(q−2+q2)

ρq , µ > σ
2

q ,

where

ρq =
q(q−1 + q) +

[
q−1 + q− 1− q

(
q−1 − q

)]
(q−1 + q− 1)− µ q(q−1 + q)(q−2 + q2)

(q−1 + q− 1)2 ,

σ
1

q =
q(q−1 + q)− q(q−1 − q)(q−1 + q− 1)

q(q−1 + q)(q−2 + q2)
,

σ
2

q =
q(q−1 + q)−

[
2(q−1 + q− 1)− q(q−1 − q)

]
(q−1 + q− 1)

q(q−1 + q)(q−2 + q2)
.

It is also asserted that

|a3 − µa2
2|+

(
µ− σ

1

q

)
|a2|2 ≤

q(q−1 + q)
(q−2 + q2)

, σ
1

q < µ ≤ σ
3

q

and

|a3 − µa2
2| −

(
µ− σ

2

q

)
|a2|2 ≤

q(q−1 + q)
(q−2 + q2)

, σ
3

q < µ ≤ σ
2

q ,
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where

σ
3

q =
(q−1 + q− 1)2

q(q−1 + q)(q−2 + q2)
− σ

1

q .

Each of these inequalities is sharp.

Remark 2. Corollary 4 reduces to the result of Hayami and Owa ([27], Corollary 3) for the class
S∗ as q→ 1−.

Theorem 5. Let f defined by (1) be in S̃T q(Φ̃, Ψ̃). In addition, let g ∈ C. If

<( f (ν)) > −
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ , (13)

then

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] ( f ∗ g)(ν) ≺ g(ν), ν ∈ f. (14)

The following constant factor in the subordination (14):

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] (15)

cannot be replaced by a larger one.

Proof. Let f ∈ S̃T q(Φ̃, Ψ̃). In addition, let g ∈ C and assume g(ν) = ν+
∞
∑

n=2
bnν

n ∈ C.

Then we readily have

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] ( f ∗ g)(ν)

=
2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣]
(
ν+

∞

∑
n=2

an bnν
n

)
.

Therefore, by Definition 5, (14) will hold if 2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] an


∞

n=1

is a subordinating factor sequence (with a1 = 1). Appealing to Lemma 2, we arrive at

<

1 +
∞

∑
n=1

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ anν
n

 > 0, ν ∈ f.

Now, since
2
∣∣∣[̃n]q − 1

∣∣∣+ ∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
[̃n]q

∣∣∣
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is an increasing function for n ≥ 2, we have

<

1 +
∞

∑
n=1

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ anν
n


= <

(
1 +

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ν
+

∞

∑
n=1

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ anν
n

)

≥ 1 +
2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ r
+

∞

∑
n=1

2
∣∣∣[̃n]q − 1

∣∣∣+ ∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
[̃n]q

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ |an|rn

> 1 +
2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ r
+

Φ̃− Ψ̃

Φ̃− Ψ̃+ 2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ r
> 0,

where we have used (10). This proves the result. Next, for sharpness, we consider

g(ν) =
ν

1− ν
and f (ν) = ν− Φ̃− Ψ̃

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣ν2.

Then by (14), we have

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] f (ν) ≺ ν

1− ν
, ν ∈ f.

Therefore,

<

 2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] f (ν)


=

2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣]<( f (ν))

> −1
2

,

where we have used (13). Thus, we have

min

 2(q−1 + q− 1) +
∣∣∣Φ̃+ 1−

(
Ψ̃− 1

)
(q−1 + q)

∣∣∣
2
[
Φ̃− Ψ̃+ 2(q−1 + q− 1) +

∣∣∣Φ̃+ 1−
(
Ψ̃− 1

)
(q−1 + q)

∣∣∣] f (ν)

 = −1
2

,
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which establishes that the constant (15) is the best possible.

In its particular case, when Φ̃ = 1, Ψ̃ = −1, Theorem 5 produce the following
Corollary.

Corollary 5. Let f defined by (1) be in S̃T q. In addition, let g ∈ C. If

<( f (ν)) > −2(q−1 + q) + 1
2(q−1 + q)

, (16)

then
(q−1 + q)

2(q−1 + q) + 1
( f ∗ g)(ν) ≺ g(ν), ν ∈ f. (17)

The following constant factor in the subordination (17):

(q−1 + q)
2(q−1 + q) + 1

cannot be replaced by a larger one.

Theorem 6. Let f ∈ H. Then f ∈ S̃T q(Φ̃, Ψ̃) if and only if

1
ν

(
f (ν) ∗

ν−Nq(Φ̃, Ψ̃; θ)ν2 +Mq(Φ̃, Ψ̃; θ)ν3

(1− qν)(1− q−1ν)(1− ν)

)
6= 0, ν ∈ f,

where

Nq(Φ̃, Ψ̃; θ) =

[
(q + q−1)(1 + Φ̃)− (1− Ψ̃)

]
p̃(eiθ) + (q + q−1)(1− Φ̃)− (1− Ψ̃)

(Φ̃− Ψ̃)( p̃(eiθ)− 1)
(18)

and

Mq(Φ̃, Ψ̃; θ) =
(1 + Φ̃) p̃(eiθ) + (1− Φ̃)

(Φ̃− Ψ̃)( p̃(eiθ)− 1)
(19)

with
p̃(ν) =

1 + ν

1− q
q−1 ν

, for ν = eiθ .

Proof. Let f ∈ ST (Φ̃, Ψ̃). Then f (ν) is analytic in f. Therefore, f (ν)/ν 6= 0 in f. Thus,
there exists w(ν) analytic in f with w(0) = 0 and |w(ν)| in f such that

νD̃q f (ν)
f (ν)

=

(
1 + Φ̃

)
˜p(w(ν)) +

(
1− Φ̃

)
(

1 + Ψ̃
)

˜p(w(ν)) +
(

1− Ψ̃
) ,

which is equivalent to

νD̃q f (ν)
f (ν)

6=

(
1 + Φ̃

)
p̃(eiθ) +

(
1− Φ̃

)
(

1 + Ψ̃
)

p̃(eiθ) +
(

1− Ψ̃
) . (20)
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That is,

0 6= 1
ν

[
νD̃q f (ν)

(
(1 + Ψ̃) p̃(eiθ) + (1− Ψ̃)

)
− f (ν)

(
(1 + Φ̃) p̃(eiθ) + (1− Φ̃)

)]
=

1
ν

[(
f (ν) ∗ ν

(1− qν)(1− q−1ν)

)(
(1 + Ψ̃) p̃(eiθ) + (1− Ψ̃)

)

−
(

f (ν) ∗ ν

1− ν

)(
(1 + Φ̃) p̃(eiθ) + (1− Φ̃)

)]

=
1
ν

 f (ν) ∗

ν

(
(1 + Ψ̃) p̃(eiθ) + (1− Ψ̃)

)
(1− qν)(1− q−1ν)

−
ν

(
(1 + Φ̃) p̃(eiθ) + (1− Φ̃)

)
1− ν




=

(
Φ̃− Ψ̃

)
(1− p̃(eiθ))

ν

(
f (ν) ∗

ν−Nq(Φ̃, Ψ̃; θ)ν2 +Mq(Φ̃, Ψ̃; θ)ν3

(1− qν)(1− q−1ν)(1− ν)

)
,

where Nq(Φ̃, Ψ̃; θ) andMq(Φ̃, Ψ̃; θ) are given by (18) and (19).

Conversely, since f ∈ H, then f (ν) 6= 0 in f. Therefore, the function γ(ν) =
νD̃q f (ν)

f (ν)
is analytic in f with γ(0) = 1. In the first part of the proof, we observe that (20) and

1
ν

(
f (ν) ∗

ν−Nq(Φ̃, Ψ̃; θ)ν2 +Mq(Φ̃, Ψ̃; θ)ν3

(1− qν)(1− q−1ν)(1− ν)

)
6= 0, ν ∈ f,

are equivalent. Let

λ(ν) =

(
1 + Φ̃

)
p̃(eiθ) +

(
1− Φ̃

)
(

1 + Ψ̃
)

p̃(eiθ) +
(

1− Ψ̃
) , ν ∈ f.

Then
γ(f) ∩ λ(∂f) = ∅.

Thus, the connected part of (C− {λ(∂f)}) contains the simply connected domain
γ(f); therefore, the univalence of the function λ(ν) in f and the fact that γ(0) = λ(0) = 1
affirm that γ(ν) ≺ λ(ν) in f. Hence, f ∈ S̃T q(Φ̃, Ψ̃).

3. Conclusions

In this findings, we introduced the class S̃T q(Φ̃, Ψ̃) of analytic functions by using
the notion of q-symmetric derivative, and obtained coefficient related results. Further-
more, some convolution characterization associated with S̃T q(Φ̃, Ψ̃) were presented. The
consequences of our investigation include known and new results.

It is interesting to note that this presented work could be investigated under the context
of multivalent functions and some geometric characterizations such as the Fekete–Szegö
inequality, Hankel determinant, growth and distortion problems could be explored. In
addition, using the theory of differential subordination, Sandwich-type results could be
examined for this present class of functions. For more details about the suggested work,
one may go through [28,29]. Overall, the results presented here could represent a starting
point for full investigations into the study of Janowski functions in the framework of
q-symmetric calculus.
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