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Abstract: In the present paper, some new generalizations of dynamic inequalities of Gronwall–
Bellman–Pachpatte-type on time scales are established. Some integral and discrete Gronwall–Bellman–
Pachpatte-type inequalities that are given as special cases of main results are original. The main
results are proved by using the dynamic Leibniz integral rule on time scales. To highlight our research
advantages, several implementations of these findings are presented. Symmetry plays an essential
role in determining the correct methods to solve dynamic inequalities.
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1. Introduction

Time scales calculus with the objective to unify discrete and continuous analysis was
introduced by S. Hilger [1]. We assume that the reader has a good background on time
scales calculus. For additional subtleties on time scales, we allude the peruser to the books
by Bohner and Peterson [2,3].

Theorem 1 ([4], Leibniz Integral Rule on Time Scales). In the following by φ∆($, ς) we mean
the delta derivative of φ($, ς) with respect to $. Similarly, φ∇($, ς) is understood. If φ , φ∆ and
φ∇ are continuous, and u, h : T→ T are delta differentiable functions, then the following formulas
holds ∀$ ∈ Tκ .

(i)
[∫ h($)

u($)
φ($, ς)∆ς

]∆

=
∫ h($)

u($)
φ∆($, ς)∆ς + h∆($)φ(σ($), h($))− u∆($)φ(σ($), u($));

(ii)
[∫ h($)

u($)
φ($, ς)∆ς

]∇
=
∫ h($)

u($)
φ∇($, ς)∆ς + h∇($)φ(ρ($), h($))− u∇($)φ(ρ($), u($));

(iii)
[∫ h($)

u($)
φ($, ς)∇ς

]∆

=
∫ h($)

u($)
φ∆($, ς)∇ς + h∆($)φ(σ($), h($))− u∆($)φ(σ($), u($));

(iv)
[∫ h($)

u($)
φ($, ς)∇ς

]∇
=
∫ h($)

u($)
φ∇($, ς)∇ς + h∇($)φ(ρ($), h($))− u∇($)φ(ρ($), u($)).

Recently, Gronwall–Bellman-type inequalities, that have several applications in qual-
itative and quantitative behavior, have been developed by many mathematicians, and
several refinements and extensions have been made to the previous results, such as bound-
edness, stability, existence, uniqueness and oscillation behavior, we refer the reader to the
works [5–19].
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Gronwall–Bellman’s inequality [13] in the integral form stated: Let υ and f be continu-
ous and non-negative functions defined on [a, b], and let υ0 be non-negative constant. Then
the inequality

υ(t) ≤ υ0 +
∫ t

a
f (s)υ(s)ds, for all t ∈ [a, b], (1)

implies that

υ(t) ≤ υ0 exp
( ∫ t

a
f (s)ds

)
, for all t ∈ [a, b].

Baburao G. Pachpatte [20] proved the discrete version of (1). In particular, he proved
that: if υ(n), a(n), γ(n) are non-negative sequences defined for n ∈ N0 and a(n) is non-
decreasing for n ∈ N0, and if

υ(n) ≤ a(n) +
n−1

∑
s=0

γ(n)υ(n), n ∈ N0, (2)

then

υ(n) ≤ a(n)
n−1

∏
s=0

[1 + γ(n)], n ∈ N0.

Bohner and Peterson [2] unify the integral form (2) and the discrete form (1) by
introducing a dynamic inequality on a time scale T stated: If υ, ζ are right dense continuous
functions and γ ≥ 0 is regressive and right dense continuous functions, then

υ(t) ≤ ζ(t) +
∫ t

t0

υ(η)γ(η)∆η, for all t ∈ T,

implies

υ(t) ≤ ζ(t) +
∫ t

t0

eγ(t, σ(η))ζ(η)γ(η)∆η, for all t ∈ T,

The authors [21] studied the following result:

Ξ(υ(`, t)) ≤ a(`, t) +
∫ θ(`)

0

∫ ϑ(t)

0
=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

0
=2(χ, η)ζ(υ(χ, η))v(υ(χ, η))dχ

]
dηdς,

where υ, f , = ∈ C(I1 × I2,R+), a ∈ C(ζ,R+) are nondecreasing functions, I1, I2 ∈ R,
θ ∈ C1(I1, I1), ϑ ∈ C1(I2, I2) are nondecreasing with θ(`) ≤ ` on I1, ϑ(t) ≤ t on I2,
=1, =2 ∈ C(ζ,R+), and Ξ, ζ, v ∈ C(R+,R+) with {Ξ, ζ, v}(υ) > 0 for υ > 0, and

lim
υ→+∞

Ξ(υ) = +∞.

Additionally, Anderson [22] studied the following result.

ω(υ(t, s)) ≤ a(t, s) + c(t, s)
∫ t

t0

∫ ∞

s
ω′(υ(τ, η))[d(τ, η)w(υ(τ, η)) + b(τ, η)]∇η∆τ, (3)

where υ, a, c, d are non-negative continuous functions defined for (t, s) ∈ T×T, and b is a
non-negative continuous function for (t, s) ∈ [t0, ∞)T × [t0, ∞)T and ω ∈ C1(R+,R+) with
ω′ > 0 for υ > 0.

We will start with the following basic lemma:

Lemma 1. Suppose T1, T2 are two times scales and a ∈ C(Ω = T1 ×T2,R+) is nondecreasing
with respect to (`, t) ∈ Ω. Assume that =, υ, f ∈ Crd(Ω,R+), λ1 ∈ C1

rd(T1,T1) and λ2 ∈
C1

rd(T2,T2) be nondecreasing functions with λ1(`) ≤ ` on T1, λ2(t) ≤ t on T2 . Furthermore,
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suppose Ξ, ζ ∈ C(R+,R+) are nondecreasing functions with {Ξ, Ω}(υ) > 0 for υ > 0, and
lim

υ→+∞
Ξ(υ) = +∞. If υ(`, t) satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)ζ(υ(ς, η))∆η∆ς (4)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1G(a(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

]
(5)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where

G(v) =
∫ v

v0

∇ς

ζ(Ξ−1(ς))
, v ≥ v0 > 0, G(+∞) =

∫ +∞

v0

∇ς

ζ(Ξ−1(ς))
= +∞ (6)

and (`1, t1) ∈ Ω is chosen so that(
G(a(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)
∈ Dom

(
G−1

)
.

Proof. First we assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a
positive and nondecreasing function ψ(`, t) by

ψ(`, t) = a(`0, t0) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)ζ(υ(ς, η))∆η∆ς (7)

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ψ(`0, t) = ψ(`, t0) = a(`0, t0) and

υ(`, t) ≤ Ξ−1(ψ(`, t)) (8)

Taking ∇-derivative for (7) with employing Theorem 1(ii), we have

ψ∇`(`, t) = λ∇1 (`)
∫ λ2(t)

t0

=(λ1(`), η) f (λ1(`), η)ζ(υ(λ1(`), η))∆η

≤ λ∇1 (`)
∫ λ2(t)

t0

=(λ1(`), η) f (λ1(`), η)ζ
(

Ξ−1(ψ(λ1(`), η))
)

∆η

≤ ζ
(

Ξ−1(ψ(λ1(`), λ2(t)))
)

λ∇1 (`)
∫ λ2(t)

t0

=(λ1(`), η) f (λ1(`), η)∆η (9)

Inequality (9) can be written in the form

ψ∇`(`, t)
ζ(Ξ−1(ψ(`, t)))

≤ λ∇1 (`)
∫ λ2(t)

t0

=(λ1(`), η) f (λ1(`), η)∆η. (10)

Taking ∇-integral for Inequality (10), obtains

G(ψ(`, t)) ≤ G(ψ(`0, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

≤ G(a(`0, t0)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)∆η∇ς.

Since (`0, t0) ∈ Ω is chosen arbitrary,

ψ(`, t) ≤ G−1
[

G(a(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=(ς, η) f (ς, η)∆η∇ς

]
. (11)
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From (11) and (8) we obtain the desired result (5). We carry out the above procedure
with ε > 0 instead of a(`, t) when a(`, t) = 0 and subsequently let ε→ 0.

Remark 1. If we take T = R, `0 = 0 and t0 = 0 in Lemma 1, then, inequality (4) becomes the
inequality obtained in [21] (Lemma 2.1).

In this article, by employing the results of Theorems 1, we prove the delayed time scale
versions of the inequalities proved in [21]. Further, these results are proved here extend
some known results in [23–25]. Symmetry plays an essential role in determining the correct
methods to solve dynamic inequalities.

2. Main Results

Theorem 2. Let υ, a, f , λ1 and λ2 be as in Lemma 1. Let =1,=2 ∈ Crd(Ω,R+). If υ(`, t) satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(υ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(υ(χ, η))∆χ

]
∆η∆ς (12)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1
(

p(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)}
(13)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where G is defined by (6) and

p(`, t) = G(a(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς (14)

and (`1, t1) ∈ Ω is chosen so that(
p(`, t) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

)
∈ Dom

(
G−1

)
.

Proof. By the same steps of the proof of Lemma 1 we can obtain (13), with suitable
changes.

Remark 2. If we take =2(`, t) = 0, then Theorem 2 reduces to Lemma 1.

Corollary 1. Let the functions υ, f , =1, =2, a, λ1 and λ2 be as in Theorem 2. Further suppose
that q > p > 0 are constants. If υ(`, t) satisfies

υq(`, t) ≤ a(`, t) +
q

q− p

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)υp(ς, η)

+
∫ ς

`0

=2(χ, η)υp(χ, η)∆χ

]
∆η∆ς (15)

for (`, t) ∈ Ω, then

υ(`, t) ≤
{

p(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p

(16)

where

p(`, t) = (a(`, t))
q−p

q +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.
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Proof. In Theorem 2, by letting Ξ(υ) = υq, ζ(υ) = υp we have

G(v) =
∫ v

v0

∇ς

ζ(Ξ−1(ς))
=
∫ v

v0

∇ς

ς
p
q
≥ q

q− p

(
v

q−p
q − v

q−p
q

0

)
, v ≥ v0 > 0

and

G−1(v) ≥
{

v
q−p

q
0 +

q− p
q

v
} 1

q−p

we obtain the inequality (16).

Theorem 3. Under the hypotheses of Theorem 2. Suppose Ξ, ζ, v ∈ C(R+,R+) be nondecreasing
functions with {Ξ, Ω, v}(υ) > 0 for υ > 0 and υ(`, t) satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(υ(χ, η))∆χ

]
∆η∆ς (17)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1
(

F−1
[

F(p(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(18)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1, where G and p are as in (A1) and

F(v) =
∫ v

v0

∇ς

v(Ξ−1(G−1(ς)))
, v ≥ v0 > 0, F(+∞) = +∞ (19)

and (`1, t1) ∈ Ω is chosen so that[
F(p(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

)
.

Proof. Assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(`, t) by

ψ(`, t) = a(`0, t0) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(υ(χ, η))∆χ

]
∆η∆ς (20)

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ψ(`0, t) = ψ(`, t0) = a(`0, t0) and

υ(`, t) ≤ Ξ−1(ψ(`, t)) (21)

Taking ∇-derivative for (20) with employing Theorem 1 (i), gives
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ψ∇`(`, t) = λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)[ f (λ1(`), η)ζ(υ(λ1(`), η))v(υ(λ1(`), η))

+
∫ λ1(`)

`0

=2(χ, η)ζ(υ(χ, η))∆χ

]
∆η

≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)
[

f (λ1(`), η)ζ
(

Ξ−1(ψ(λ1(`), η))
)

v
(

Ξ−1(ψ(λ1(`), η))
)

+
∫ λ1(`)

`0

=2(χ, η)ζ
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η (22)

≤ λ∇1 (`).ζ
(

Ξ−1(ψ(λ1(`), λ2(t)))
)
×∫ λ2(t)

t0

=1(λ1(`), η)

[
f (λ1(`), η)v

(
Ξ−1(ψ(λ1(`), η))

)
+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η

From (22), we have

ψ∇`(`, t)
ζ(Ξ−1(ψ(`, t)))

≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)
[

f (λ1(`), η)v
(

Ξ−1(ψ(λ1(`), η))
)

+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η. (23)

Taking ∇-integral for (23), gives

G(ψ(`, t)) ≤ G(ψ(`0, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς

≤ G(a(`0, t0)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς.

Since (`0, t0) ∈ Ω is chosen arbitrarily, the last inequality can be rewritten as

G(ψ(`, t)) ≤ p(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

∆η∇ς. (24)

Since p(`, t) is a nondecreasing function, an application of Lemma 1 to (24) gives us

ψ(`, t) ≤ G−1
(

F−1
[

F(p(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])
. (25)

From (21) and (25) we obtain the desired inequality (18).
Now we take the case a(`, t) = 0 for some (`, t) ∈ Ω. Let aε(`, t) = a(`, t) + ε,

for all (`, t) ∈ Ω, where ε > 0 is arbitrary, then aε(`, t) > 0 and aε(`, t) ∈ C(Ω,R+)
be nondecreasing with respect to (`, t) ∈ Ω. We carry out the above procedure with
aε(`, t) > 0 instead of a(`, t), and we obtain

υ(`, t) ≤ Ξ−1
{

G−1
(

F−1
[

F(pε(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
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where

pε(`, t) = G(aε(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς.

Letting ε→ 0+, we obtain (18). The proof is complete.

Remark 3. If we take T = R, `0 = 0 and t0 = 0 in Theorem 3, then, inequality (17) becomes the
inequality obtained in [21] (Theorem 2.2(A_2)).

Corollary 2. Let the functions υ, a, f , =1, =2, λ1 and λ2 be as in Theorem 2. Further suppose
that q, p and r are constants with p > 0, r > 0 and q > p + r. If υ(`, t) satisfies

υq(`, t) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)υp(ς, η)υr(ς, η)

+
∫ ς

`0

=2(χ, η)υp(χ, η)∆χ

]
∆η∆ς (26)

for (`, t) ∈ Ω, then

υ(`, t) ≤
{
[p(`, t)]

q−p−r
q−p +

q− p− r
q

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p−r

(27)

where

p(`, t) = (a(`, t))
q−p

q +
q− p

q

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς

Proof. An application of Theorem 3 with Ξ(υ) = υq, ζ(υ) = υp and v(υ) = υr yields the
desired inequality (27).

Theorem 4. Under the hypotheses of Theorem 3. If υ(`, t) satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(υ(χ, η))v(υ(χ, η))∆χ

]
∆η∆ς (28)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1
(

F−1
[

p0(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(29)

for 0 ≤ ` ≤ `1, 0 ≤ t ≤ t1 where

p0(`, t) = F(G(a(`, t))) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς

and (`1, t1) ∈ Ω is chosen so that[
p0(`, t) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

)
.
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Proof. Assume that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(`, t) by

ψ(`, t) = a(`0, t0) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)ζ(υ(ς, η))v(υ(ς, η))

+
∫ ς

`0

=2(χ, η)ζ(υ(χ, η))v(υ(χ, η))∆χ

]
∆η∆ς

for 0 ≤ ` ≤ `0 ≤ `1, 0 ≤ t ≤ t0 ≤ t1, then ψ(`0, t) = ψ(`, t0) = a(`0, t0) and

υ(`, t) ≤ Ξ−1(ψ(`, t)). (30)

By the same steps as the proof of Theorem 3, we obtain

ψ(`, t) ≤ G−1
{

G(a(`0, t0)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

`0

=2(χ, η)v
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η∇ς

}
.

We define a non-negative and nondecreasing function v(`, t) by

v(`, t) = G(a(`0, t0)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[[

f (ς, η)v
(

Ξ−1(ψ(ς, η))
)]

+
∫ ς

`0

=2(χ, η)v
(

Ξ−1(ψ(χ, η))
)

∆χ

]
∆η∇ς

then v(`0, t) = v(`, t0) = G(a(`0, t0)),

ψ(`, t) ≤ G−1[v(`, t)] (31)

and then

v∇`(`, t) ≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)
[

f (λ1(`), η)v
(

Ξ−1
(

G−1(v(λ1(`), t))
))

+
∫ λ1(`)

`0

=2(χ, η)v
(

Ξ−1
(

G−1(v(χ, t))
))

∆χ

]
∆η

≤ λ∇1 (`)v
(

Ξ−1
(

G−1(v(λ1(`), λ2(t)))
)) ∫ λ2(t)

t0

=1(λ1(`), η)[ f (λ1(`), η)

+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η

or

v∇`(`, t)
v(Ξ−1(G−1(v(`, t))))

≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)[ f (λ1(`), η)

+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η.

Taking ∇-integral for the above inequality, gives

F(v(`, t)) ≤ F(v(`0, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

[
f (ς, η) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς
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or

v(`, t) ≤ F−1
{

F(G(a(`0, t0))) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς

}
. (32)

From (30)–(32), and since (`0, t0) ∈ Ω is chosen arbitrarily, we obtain the desired
inequality (29). If a(`, t) = 0, we carry out the above procedure with ε > 0 instead of a(`, t)
and subsequently let ε→ 0. The proof is complete.

Remark 4. If we take T = R and `0 = 0 and t0 = 0 in Theorem 4, then, inequality (28) becomes
the inequality obtained in [21] (Theorem 2.2(A3)).

Corollary 3. Under the hypothesise of Corollary 2. If υ(`, t) satisfies

υq(`, t) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)[ f (ς, η)υp(ς, η)υr(ς, η)

+
∫ ς

`0

=2(χ, η)υp(χ, η)υr(χ, η)∆χ

]
∆η∆ς (33)

for (`, t) ∈ Ω, then

υ(`, t) ≤
{

p0(`, t) +
q− p− r

q

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

} 1
q−p−r

(34)

where

p0(`, t) = (a(`, t))
q−p−r

q +
q− p− r

q

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς

Proof. An application of Theorem 4 with Ξ(υ) = υq, ζ(υ) = υp and v(υ) = υr yields the
desired inequality (16).

Theorem 5. Under the hypotheses of Theorem 3. If υ(`, t) satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)v(υ(ς, η))×[
f (ς, η)ζ(υ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς (35)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(36)

for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∇ς

v(Ξ−1(ς))
, v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∇ς

v(Ξ−1(ς))
= +∞ (37)

F1(v) =
∫ v

v0

∇ς

ζ
[
Ξ−1

(
G−1

1 (ς)
)] , v ≥ v0 > 0, F1(+∞) = +∞ (38)

p1(`, t) = G1(a(`, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς (39)
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and (`2, t2) ∈ Ω is chosen so that[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

1

)
.

Proof. Suppose that a(`, t) > 0. Fixing an arbitrary (`0, t0) ∈ Ω, we define a positive and
nondecreasing function ψ(`, t) by

ψ(`, t) = a(`0, t0) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)v(υ(ς, η))[ f (ς, η)ζ(υ(ς, η))

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς

for 0 ≤ ` ≤ `0 ≤ `2, 0 ≤ t ≤ t0 ≤ t2, then ψ(`0, t) = ψ(`, t0) = a(`0, t0),

υ(`, t) ≤ Ξ−1(ψ(`, t)) (40)

and

ψ∇`(`, t) ≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)η
[
Ξ−1(ψ(λ1(`), η))

][
f (λ1(`), η)ζ

(
Ξ−1(ψ(λ1(`), η))

)
+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η

≤ λ∇1 (`)η
[
Ξ−1(ψ(λ1(`), λ2(t)))

] ∫ λ2(t)

t0

=1(λ1(`), η)
[

f (λ1(`), η)ζ
(

Ξ−1(ψ(λ1(`), η))
)

+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η

then

ψ∇`(`, t)
η[Ξ−1(ψ(`, t))]

≤ λ∇1 (`)
∫ λ2(t)

t0

=1(λ1(`), η)
[

f (λ1(`), η)ζ
(

Ξ−1(ψ(λ1(`), η))
)

+
∫ λ1(`)

`0

=2(χ, η)∆χ

]
∆η.

Taking ∇-integral for the above inequality, gives

G1(ψ(`, t)) ≤ G1(ψ(0, t)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[

f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς

then

G1(ψ(`, t)) ≤ G1(a(`0, t0)) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)
[

f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

+
∫ ς

`0

=2(χ, η)∆χ

]
∆η∇ς.

Since (`0, t0) ∈ Ω is chosen arbitrary, the last inequality can be restated as

G1(ψ(`, t)) ≤ p1(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)ζ
(

Ξ−1(ψ(ς, η))
)

∆η∆ς (41)
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It is easy to observe that p1(`, t) is positive and nondecreasing function for all (`, t) ∈ Ω,
then an application of Lemma 1 to (41) yields the inequality

ψ(`, t) ≤ G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])
. (42)

From (42) and (40) we obtain the desired inequality (36).
If a(`, t) = 0, we carry out the above procedure with ε > 0 instead of a(`, t) and

subsequently let ε→ 0. The proof is complete.

Remark 5. If we take T = R and `0 = 0 and t0 = 0 in Theorem 5, then, inequality (36) becomes
the inequality obtained in [21] (Theorem 2.7).

Theorem 6. Under the hypotheses of Theorem 3 and let p be a non-negative constant. If υ(`, t)
satisfies

Ξ(υ(`, t)) ≤ a(`, t) +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)υp(ς, η)×[
f (ς, η)ζ(υ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς (43)

for (`, t) ∈ Ω, then

υ(`, t) ≤ Ξ−1
{

G−1
1

(
F−1

1

[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

])}
(44)

for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

G1(v) =
∫ v

v0

∇ς

[Ξ−1(ς)]
p , v ≥ v0 > 0, G1(+∞) =

∫ +∞

v0

∇ς

[Ξ−1(ς)]
p = +∞ (45)

and F1, p1 are as in Theorem 5 and (`2, t2) ∈ Ω is chosen so that[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]
∈ Dom

(
F−1

1

)
.

Proof. An application of Theorem 5, with v(υ) = υp yields the desired inequality (44).

Remark 6. Taking T = R. The inequality established in Theorem 6 generalizes [25]
(Theorem 1) (with p = 1, a(`, t) = b(`) + c(t), `0 = 0, t0 = 0, =1(ς, η) f (ς, η) = h(ς, η)

and =1(ς, η)
(∫ ς

`0
=2(χ, η)∆χ

)
= g(ς, η)).

Corollary 4. Under the hypotheses of Theorem 6 and q > p > 0 be constants. If υ(`, t) satisfies

υq(`, t) ≤ a(`, t) +
p

p− q

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)υp(ς, η)×[
f (ς, η)ζ(υ(ς, η)) +

∫ ς

`0

=2(χ, η)∆χ

]
∆η∆ς (46)

for (`, t) ∈ Ω, then

υ(`, t) ≤
{

F−1
1

[
F1(p1(`, t)) +

∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η) f (ς, η)∆η∇ς

]} 1
q−p

(47)
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for 0 ≤ ` ≤ `2, 0 ≤ t ≤ t2, where

p1(`, t) = [a(`, t)]
q−p

q +
∫ λ1(`)

`0

∫ λ2(t)

t0

=1(ς, η)

(∫ ς

`0

=2(χ, η)∆χ

)
∆η∆ς

and F1 is defined in Theorem 5.

Proof. An application of Theorem 6 with Ξ(υ(`, t)) = υp to (46) yields the inequality (47);
to save space we omit the details.

Remark 7. Taking T = R, `0 = 0, t0 = 0, a(`, t) = b(`) + c(t), =1(ς, η) f (ς, η) = h(ς, η) and
=1(ς, η)

(∫ ς
`0
=2(χ, η)∆χ

)
= g(ς, η) in Corollary 4 we obtain [26] (Theorem 1).

Remark 8. Taking T = R, `0 = 0, t0 = 0, a(`, t) = c
p

p−q , =1(ς, η) f (ς, η) = h(η) and
=1(ς, η)

(∫ ς
`0
=2(χ, η)∆χ

)
= g(η) and keeping t fixed in Corollary 4, we obtain [27] (Theorem 2.1).

3. Application

Gronwall inequality involving functions of one and more than one independent
variables, which provide explicit bounds on unknown functions, plays a fundamental role
in the development of qualitative theory and can be used as handy tools in the study of
existence, uniqueness, oscillation, stability and other qualitative properties of the solutions
of certain dynamic equations on time scales.

In this following, we discus the boundedness of the solutions of the initial boundary
value problem for partial delay dynamic equation of the form

(ψq)∆`∆t(`, t) = A
(
`, t, ψ(`− h1(`), t− h2(t)),

∫ `

`0

B(ς, t, ψ(ς− h1(ς), t))∇ς

)
(48)

ψ(`, t0) = a1(`), ψ(`0, t) = a2(t), a1(`0) = at0(0) = 0

for (`, t) ∈ Ω, where ψ, b ∈ C(Ω,R+), A ∈ C(Ω × R2, R), B ∈ C(ζ × R, R) and h1 ∈
C1

rd(T1,R+), h2 ∈ C1
rd(T2,R+) are nondecreasing functions such that h1(`) ≤ ` on T1,

h2(t) ≤ t on T2 and h∇1 (`) < 1, h∇2 (t) < 1.

Theorem 7. Assume that the functions a1, a2, A, B in (48) satisfy the conditions

|a1(`) + a2(t)| ≤ a(`, t) (49)

|A(ς, η, ψ, υ)| ≤ q
q− p

=1(ς, η)
[

f (ς, η)|ψ|p + |υ|
]

(50)

|B(χ, η, ψ)| ≤ =2(χ, η)|ψ|p (51)

where a(`, t),=1(ς, η), f (ς, η) and =2(χ, η) are as in Theorem 2, q > p > 0 are constants. If
ψ(`, t) satisfies (48), then

|ψ(`, t)| ≤
{

p(`, t) + M1M2

∫ λ1(`)

`0

∫ λ2(t)

t0

−
=1(ς, η)

−
f (ς, η)∆η∇ς

} 1
q−p

(52)

where

p(`, t) = (a(`, t))
q−p

q

+M1M2

∫ λ1(`)

`0

∫ λ2(t)

t0

−
=1(ς, η)

(
M1

∫ ς

`0

−
=2(χ, η)∆χ

)
∆η∆ς
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and
M1 = Max

`∈I1

1
1− h∇1 (`)

, M2 = Max
t∈I2

1
1− h∇2 (t)

and
−
=1(γ, ξ) = =1(γ + h1(ς), ξ + h2(η)),

−
=2(µ, ξ) = =2(µ, ξ + h2(η)),

−
f (γ, ξ) = f (γ + h1(ς), ξ + h2(η)).

Proof. If ψ(`, t) is any solution of (48), then

ψq(`, t) = a1(`) + a2(t)

+
∫ `

`0

∫ t

t0

A
(

ς, η, ψ(ς− h1(ς), η − h2(η)),
∫ ς

`0

B(χ, η, ψ(χ− h1(χ), η))∆χ

)
∆η∆ς. (53)

Using the conditions (49)–(51) in (53) we obtain

|ψ(`, t)|q ≤ a(`, t) +
q− p

q

∫ `

`0

∫ t

t0

=1(ς, η)
[

f (ς, η)|ψ(ς− h1(ς), η − h2(η))|p

+
∫ ς

`0

=2(χ, η)|ψ(χ, η)|p∆χ

]
∆η∆ς. (54)

Now making a change of variables on the right side of (54), ς− h1(ς) = γ, η− h2(η) =
ξ, `− h1(`) = λ1(`) for ` ∈ T1, t− h2(t) = λ2(t) for t ∈ T2 we obtain the inequality

|ψ(`, t)|q ≤ a(`, t) +
q− p

q
M1M2

∫ λ1(`)

`0

∫ λ2(t)

t0

−
=1(γ, ξ)

[−
f (γ, ξ)|ψ(γ, ξ)|p

+M1

∫ γ

`0

−
=2(µ, ξ)|ψ(µ, η)|p∆µ

]
∆ξ∆γ. (55)

We can rewrite the inequality (55) as follows:

|ψ(`, t)|q ≤ a(`, t) +
q− p

q
M1M2

∫ λ1(`)

`0

∫ λ2(t)

t0

−
=1(ς, η)

[−
f (ς, η)|ψ(ς, η)|p

+M1

∫ ς

`0

−
=2(χ, η)|ψ(χ, η)|p∆χ

]
∆η∆ς. (56)

As an application of Corollary 1 to (56) with υ(`, t) = |ψ(`, t)| we obtain the desired
inequality (52).

4. Conclusions

In this article, by applying the Leibniz integral rule on time scales, we examined
additional generalizations of the integral retarded inequality presented in the literature and
generalized a few of those inequalities to a general time scale. We also applied some of our
results to study the qualitative behavior of certain dynamic equations’ time-scale solutions.
In future work, I will ask if it is possible to generalize these results using a q-difference
operator. Additionally, we intend to extend these inequalities by using α-conformable
calculus and also by employing (γ, a)- nabla calculus on time scales. Moreover, we will try
to obtain the diamond alpha version for these results. Symmetry plays an essential role in
determining the correct methods to solve dynamic inequalities.
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