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1. Introduction

Fix integers k > 0 and mi, 1 ≤ i ≤ k. Fix a base field K, say algebraically closed, and
let V1, . . . , Vk be K-vector spaces of dimension m1, . . . , mk. An element T ∈ V1⊗K · · · ⊗K Vk
is called a tensor of format (m1, . . . , mk). Now, assume T 6= 0. A rank 1 tensor is a tensor
of the form v1 ⊗ · · · ⊗ vk with vi ∈ Vi and vi 6= 0 for all i. The tensor T is said to be
concise if there are not subspaces Wi ⊆ Vi, i = 1, . . . , k with Wi 6= Vi for at least one i and
T ∈W1 ⊗K · · · ⊗K Wk. The tensor rank rank(T) of T is the minimal integer m such that T
is a sum of m rank 1 tensors ([1]). In many applications, it is very important to know if the
rank 1 tensor decompositions T = T1 + · · ·+ Tm, m = rank(T), with each Ti a rank 1 tensor,
are “ unique ”, i.e., unique up to the ordering of the rank(T) rank 1 tensors. The uniqueness
is essential to have low rank robust approximations of tensors ([2,3]). There are many
criteria to say that a specific T has a unique rank 1 tensor decomposition, starting with the
famous Kruskal’s criterion ([4–10]). Even the original Kruskal’s criterion is sharp ([11]) and
each of its extensions has a way to construct examples of non-uniqueness just outside the
range of its assumptions. We recommend [10]; as far as we know, it is the more general one,
well-written, full of references, and here, the main proofs are combinatorial.

Our work is different. We try to describe all tensors of low rank for which the rank 1
decomposition is not unique. This was done in [12] for rank 2 and rank 3 tensors. In this
paper, we introduce a new class of tensors with non-unique rank 1 tensor decomposition
with exactly rank(T) terms, tensors of Type II (they occur only in rank at least 4).

Take T ∈ V1 ⊗K · · · ⊗K Vk , T 6= 0, and any non-zero constant c. Obviously
rank(T) = rank(cT) and the rank 1 tensor decompositions of T and cT are the same. Thus,
it is natural to work with the projective space P(V1 ⊗K · · · ⊗K Vk) and consider the rank 1
decompositions of the equivalence class [T] ∈ P(V1 ⊗K · · · ⊗K Vk). Set r: = −1 + ∏k

i=1 mi.
Note that r = dimP(V1 ⊗K · · · ⊗K Vk). From now on, we call Pr the latter projective space
and often call its elements “ tensors ” instead of “ equivalent classes of non-zero tensors ”.
Set ni: = mi − 1, 1 ≤ i ≤ k, and Y: = ∏k

i=1 Pni . All our proofs involve the multiprojective
space Y. We recall that Pr is the target of the Segre embedding ν of Y, i.e., the embedding of
Y by the complete linear system |OY(1, . . . , 1)|. For any set E in a projective space let 〈E〉
denote its linear span. For any q = [T] ∈ Pr the solution set S(q) is the set of all finite sets
A ⊂ Y such that #A = rank(T) and q ∈ 〈ν(A)〉. The solution set S(q) is exactly the set of
all rank 1 tensor decompositions of T with rank(T) terms, up to an order of the addenda.
The set S(q) has an algebraic structure (it is a constructible set in the Zariski topology) and
so it makes sense to consider the integer dimS(q) as in many of our results.

Symmetry 2022, 14, 1889. https://doi.org/10.3390/sym14091889 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091889
https://doi.org/10.3390/sym14091889
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-1432-7413
https://doi.org/10.3390/sym14091889
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091889?type=check_update&version=1


Symmetry 2022, 14, 1889 2 of 13

Our aim is to introduce some ways to produce tensors with non-uniqueness. In [12],
from rank 3 on the authors met the following type of non-uniqueness.

Definition 1. Take q ∈ Pr concise for Y and A, B ∈ S(q) such that A 6= B. We say that the triple
(q, A, B) is of Type I if there is q′ ∈ Pr such that A 6= B, A ∩ B 6= ∅, q′ ∈ 〈ν(A \ A ∩ B)〉 ∩
〈ν(B \ A ∩ B)〉 and q ∈ 〈{q′} ∪ ν(A ∩ B)〉. We say that (q, A, B) has Type Ix if x = #(A ∩ B).
We say that q has Type I (resp. Type Ix) if there is a triple (q, A, B) of Type I (resp. Ix).

In some cases, even if q has Type I, not all triples (q, A, B) are of Type I (Remark 1).
Note that rank(q) = rank(q′) + #(A ∩ B) if (q, A, B) has Type I with q′ as in Definition 1.
Type I only occurs from rank 3 on (see [12] (Case (6) of Th. 7.1) for the rank 3 case). For
rank 3 non-uniqueness of Type I was the only class which occurs for multiprojective spaces
of large dimension. This is not true for tensors of rank at least 4. The main actor of this
paper is the following definition.

Definition 2. Take q ∈ Pr concise for Y and take A, B ∈ S(q) such that A 6= B. We say that the
triple (q, A, B) is of Type II or it has Type II non-uniqueness if there are q1, q2 ∈ Pr (not necessarily
concise for Y) and partitions A = A1 t A2, B = B1 t B2, such that q ∈ 〈{q1, q2}〉, Ai, Bi ∈ S(qi)
and Ai 6= Bi for all i = 1, 2. We say that q has Type II if there are A, B ∈ S(q) such that A 6= B
and (q, A, B) has Type II.

Type II only occurs from rank 4 on. Note that in Definition 2 the rank of q is the sum
of the ranks of q1 and q2. Proposition 2 describes the multiprojective spaces having a Type
II non-uniqueness for rank 4 concise tensors. In Section 5, we provide the examples needed
to prove the following results.

Theorem 1. Fix integers k ≥ 3 and ni > 0, 1 ≤ i ≤ k, such that n1 + · · · + nk = 5. Set
Y = Pn1 × · · · × Pnk . Then there is a concise rank 4 tensor q with dimS(q) > 0 and (q, A, B)
neither of Type I nor of Type II for any A, B ∈ S(q).

Theorem 2. Fix integers k ≥ 3 and ni > 0, 1 ≤ i ≤ k, such that ni ≤ 3 for all i and
n1 + · · · + nk = 6. Set Y = Pn1 × · · · × Pnk . Then there is a concise rank 4 tensor q with
dimS(q) > 0 and (q, A, B) neither of Type I nor of Type II for any A, B ∈ S(q).

Conjecture 1. We conjecture that if k ≥ 3 and n1 + · · ·+ nk ≥ 7, then all rank 4 tensors q on Y:
= Pn1 × · · · × Pnk with S(q) not a singleton is either of Type Ix, x ∈ {1, 2}, or of Type II.

We do not know, in general, how to prove that if A, B ∈ S(q) and A ∩ B = ∅, then
(q, A, B) is of Type II. Remark 1 shows that in general not all triples (q, A, B) with q of rank
4 and A ∩ B = ∅ have Type II. We prove the following result.

Theorem 3. Take Y = Pn1 × · · · × Pnk , k ≥ 3, such that n1 = n2 = 3. Take any concise
q ∈ 〈ν(Y)〉 such that rank(q) = 4 and #S(q) > 1. Then either (q, A, B) is of Type II for all
A, B ∈ S(q) or there is x ∈ {1, 2} such that (q, A, B) has Type Ix for all A, B ∈ S(q) and the set
A ∩ B only depends on q.

Proposition 1. Assume n1 ≥ · · · ≥ nk > 0, k ≥ 3, such that n1 = 3, n2 ≤ 2, n3 ≤ 2, ni = 1
for all i ≥ 4 and n2 + · · ·+ nk ≥ 3. Take Y = Pn1 × · · · × Pnk . Then there is a concise q with
rank 4 such that dimS(q) ≥ 4 and there is A, B ∈ S(q) with (q, A, B) of Type I2.

Remark 1. Proposition 1 means that most sets E ∈ S(q) do not contain A ∩ B. A dimensional
count shows the existence of E, F ∈ S(q) such that E∩ F = ∅ (this is even true for the related rank
3 case [12] (Example 3.6)). This is one of the main technical problems to prove that q has Type I or
Type II. Proposition 6 shows that this problem never occurs for Y and q as in Theorem 3, i.e., with
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the assumptions of Theorem 3 if there are E, F ∈ S(q) such that E ∩ F = ∅, then q has Type II and
all triples (q, A, B) have Type II.

Section 7 shows that the results just stated are effective. Remarks 7–9 show how to
test if a low rank tensor q has a triple (q, A, B) of Type II. We conclude the section with two
open problems.

We work over an algebraically closed base field, but this case is extended to any infinite
field (Remark 6). The examples work for finite fields with cardinality not very small, but
we do not know in each case the minimal cardinality allowed for a field.

2. Preliminaries

Take a multiprojective space Y = Pn1 × · · · × Pnk . Fix i = 1, . . . , k. Let πi : Y → Pni

denote the projection onto the i-th factor of Y. Set Yi: = ∏h 6=i Pnh . Let ηi : Y → Yi denote
the projection (it is the map that forget the i-th component of any p = (p1, . . . , pk) ∈ Y). Let
εi (resp. ε̂i) denote the multiindex (a1, . . . ak) ∈ Nk such that ai = 1 and aj = 0 for all j 6= i
(resp. ai = 0 and aj = 1 for all j 6= i).

Let C ⊂ Y be an integral curve. The multidegree (a1, . . . , ak) ∈ Nk of C is defined by the
formula ai: = deg(OC(εi)), 1 ≤ i ≤ k.

Take A, B ∈ S(q) such that A 6= B. Since q /∈ 〈ν(E)〉 for any E ( A and any E ( A,
ν(A) and ν(B) are linearly independent, i.e., h1(IA(1, . . . , 1)) = h1(IB(1, . . . , 1)) = 0. Since
q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉, h1(IA∪B(1, . . . , 1)) > 0.

Remark 2. Take (q, A, B) of Type II. Then h1(IA∪B(1, . . . , 1)) ≥ 2. Now, assume that q is concise
and that it has rank 4. By [12] (Proposition 3.2) we have ∑k

i=1(ni − 1) ≤ 4. We say that (q, A, B)
splits if ∑i(ni − 1) = 4 (see Proposition 2 for the existence of split triples). If n1 ≥ · · · ≥ nk > 0,
(q, A, B) splits if and only if (omitting all ni = 1) either n1 = n2 = 3 or n1 = 3, n2 = n3 = 2 or
n1 = n2 = n3 = n4 = 2. All Type II triples (q, A, B) of rank 4 which do no not split are obtained
by a finite sequence of linear projections (in the sense of Section 2.1) from a Type II concise triple
(q̃, Ã, B̃) on a bigger projective space Ỹ with the same number of factors, k, of Y.

Remark 3. Take (q, A, B) of Type Ix and set E: = A ∩ B. Since E is contained in an element, A, of
S(q), ν(E) is linearly independent. Since A 6= E, q /∈ 〈ν(E)〉 and hence dim(〈ν(A)〉 ∩ 〈ν(B)〉) ≥ x.

Remark 4. Take (q, A, B) of Type II. Obviously, h1(IA∪B(1, . . . , 1)) ≥ 2 and dim〈ν(A)〉 ∩
〈ν(B)〉 ≥ 1.

Lemma 1. Take any finite set A ⊂ Y evincing the rank of a tensor, q. Let k be the number of factors
of Y. If u, v ∈ A and πi(u) = πi(v) for at least k− 1 indices i, then u = v.

Proof. Assume u 6= v. Since ηj(u) = ηj(v) for some j, there is L ⊂ Y such that ν(L)
is a line contained in the j-th ruling of the Segre variety ν(Y) and {u, v} ⊂ L. Since
u, v ∈ L and u 6= v, ν(L) ⊆ 〈ν(A)〉. Since ν(L) is a line, there is w ∈ L such that
q ∈ 〈ν((A \ {u, v}) ∪ {w})〉. Thus, q has rank at most #A− 1, a contradiction.

Lemma 2. Assume k ≥ 3. Take a concise q of rank 4 such that #S(q) > 1 and take A, B ∈ S(q)
such that A 6= B. Then #(A ∩ B) ≤ 2.

Proof. Assume #(A∩ B) = 3. Since ν(A) and ν(B) are linearly independent, 〈ν(A∩ B)〉 is a
hyperplane of 〈ν(A)〉 and of 〈ν(B)〉. Since q ∈ 〈ν(A)〉 ∩ 〈ν(B)〉, q /∈ 〈ν(A′)〉 for any A′ ( A
and q /∈ 〈ν(B′)〉 for any B′ ( B, we get 〈ν(A)〉 = 〈ν(B)〉. Hence, 〈ν(A)〉 is a 3-dimensional
space containing at least 5 points of ν(Y). Since Y is the minimal multiprojective space
containing A and k ≥ 3, [13] gives k = 3 and Y = P1 × P1 × P1. No such q has rank 4 ([1]
(Theorem 3.11.1.1)).
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Lemma 3. Assume k ≥ 3. Take a concise q such that there are A, B ∈ S(q) such that A 6= B and
A ∩ B 6= ∅. Set x: = #(A ∩ B). Then (q, A, B) is of Type Ix.

Proof. Set A′: = A \ A ∩ B and B′: = B \ B ∩ A. Since q is concise, q /∈ 〈ν(A ∩ B)〉. Thus,
〈ν(A′)〉 ∩ 〈ν(B′)〉 6= ∅, i.e., h1(IA′∪B′(1, . . . , 1)) > 0, and there is q′ ∈ 〈ν(A′)〉 ∩ 〈ν(B′)〉
such that q ∈ 〈{q′} ∪ ν(A ∩ B)〉. Since A evinces a rank, A′ evinces the rank of q′. Thus,
(q, A, B) is of Type Ix.

Lemma 4. Take Y = P1 × P1 and take any q ∈ 〈ν(Y)〉 \ ν(Y). Then q has rank 2, S(q) is
isomorphic to the complement of a smooth conic in a projective plane and ∪A∈S(q)A = Y \ C
where C ∈ |OY(1, 1)| and C is smooth. Fix any A ∈ S(q). Then π1|A and π2|A are injective,
h1(IA(1, 0)) = h1(IA(0, 1)) = 0 and Y is the minimal multiprojective space containing A.

Proof. We have 〈ν(Y)〉 ∼= P3 and ν(Y) is a smooth quadric. Fix a line L ⊂ P3 containing
q. Since q /∈ ν(Y), Bezout theorem gives deg(L ∩ ν(Y)) = 2. Thus, either L is tangent to
ν(Y) and meets ν(Y) only at the tangency point or L ∩ ν(Y) is the union of 2 distinct points
and (L ∩ ν(Y)) ∈ S(q). The set of all p ∈ ν(Y) such that the line 〈{p, q}〉 is tangent to
ν(Y) is the polar conic D of q with respect to ν(Y) and D is smooth. Write D = ν(C) with
C ∈ |OY(1, 1)|. Note that ∪A∈S(q)A = Y \ C. The set of all lines of P3 passing through
q is a projective plane and the set of all lines through q and meeting the plane section D
of ν(Y) is a smooth conic of this projective plane. Fix A ∈ S(q), say A = {a, b}. Set L: =
〈{q, ν(a)}〉. Since q /∈ ν(Y), L * ν(Y). Thus, π1|A and π2|A are injective. Hence, Y is the
minimal multiprojective space containing A and h1(IA(1, 0)) = h1(IA(0, 1)) = 0.

2.1. Linear Projections

We use the following construction, called linear projection from a point of the i-th factor.
Fix i ∈ {1, . . . , k}, o ∈ Pni and a concise q ∈ Pr = 〈ν(Y)〉. Let Y′ be the product of k
projective spaces Pm1 , . . . ,Pmk with mj = nj if j 6= i and mi = ni − 1, with the convention
that P0 is a point if ni = 1. Call ν also the Segre embedding of Y′. Call Y′′ the multiprojective
space with k factors, one of them being a point, with Pnj as a factor if j 6= i and {o} as its i-th
factor. Let `i,o : Y \Y′′ → Y′ be the morphism which is the identity map for all factors j 6= i,
while on the i-th factor `i,o is the linear projection from o. Since Y′′ ⊂ Y we see 〈ν(Y′′)〉
as a linear subspace of 〈ν(Y)〉. Thus, the linear projection µ of Pr from its linear subspace
〈ν(Y′′)〉 is well-defined outside 〈ν(Y′′)〉. We may see 〈ν(Y′)〉 as the target of µ, i.e., we
may see µ as a submersion µ : 〈ν(Y)〉 \ 〈ν(Y′′)〉 → 〈ν(Y′)〉 with all fibers isomorphic to A1.
Since q is concise, q /∈ 〈ν(Y′′)〉 and hence µ(q) ∈ 〈ν(Y′)〉 is well-defined. Since q is concise
for Y, µ(q) is concise for Y′. We say that a multiprojective space W is obtained from Y by
a finite sequence of linear projections if there is a finite sequence of linear projections from
a point of one of the factors; at different steps we allow to change the factor. Note that
dim Y− dim W is the number of linear projections from one point used to get W from Y. If
q is concise, we get a unique q′ ∈ 〈W〉 concise for W iterating the definition of µ.

3. Existence Results for Type I and Type II Tensors

Proposition 2. Write Y = Pn1 × · · · × Pnk , k ≥ 3, such that n1 ≥ · · · ≥ nk > 0.
(i) If Y has a type II concise rank 4 triple (q, A, B), then

n1 ≤ 3 and
k

∑
i=1

(ni − 1) ≤ 4 (1)

(ii) Assume (1). Y has a Type II concise rank 4 triple (q, A, B) if either n1 = n2 = 3 or n2 = 2
and k ≥ 4 or k ≥ 5.

Proof. Take q1, q2, A = A1 t A2, B = B1 t B2 as in Definition 2. Since #Ai = #Bi ≥ 2,
we get that q1 and q2 have rank 2. Let Y′ (resp. Y′′) be the minimal multiprojective space
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containing q1 (resp. q2). We have Y′ ∼= Y′′ ∼= P1 × P1 ([14] (Proposition 3.2)). Thus, n1 ≤ 3
and ∑k

i=1(ni − 1) ≤ 4 are the conditions required to be the minimal multiprojective space
containing 2 different multiprojective subspaces isomorphic to P1 × P1, concluding the
proof of (i). Now, we prove part (ii).

(a) Assume n1 = 3. Since the case n1 = n2 = 3 is done in Proposition 6, we assume
n2 ≤ 2. Fix lines L, R ⊂ P3 such that L ∩ R = ∅, i.e., 〈L ∪ R〉 = P3. Fix lines D ⊆ Pn2 and
D′ ⊆ Pn3 . Fix oi ∈ Pni , 3 ≤ i ≤ k and uj, j = 2 and j ≥ 4. For 3 < i ≤ k assume oi 6= ui.
If n2 = 2, assume u2 /∈ R. If n3 = 2 assume o3 /∈ D′. Set Y′: = L× D× {o3} × · · · × {ok}
and Y′′: = R× {u2} × D′ × · · · × {uk}. Fix a general q1 ∈ 〈ν(Y′)〉, a general q2 ∈ 〈ν(Y′′)〉
and a general (Ai, Bi) ∈ S(qi)× S(qi), i = 1, 2. Set A: = A1 ∪ A2 and B = B1 ∪ B2. Take a
general q ∈ 〈{q1, q2}〉. Since n1 = 3, to prove that (q, A, B) has Type II and that q is concise
it is sufficient to prove that q is concise. Note that Y is the minimal multiprojective space
containing A. Assume that q is not concise. Thus, there is i ∈ {1, . . . , k} such that q ∈ 〈ν(H)〉
for some H ∈ |OY(εi)|. Since A * H, Ref. [14] (Lemma 5.1) gives h1(IA\A∩H(ε̂i)) > 0.
Thus h1(IA(ε̂i)) > 0. First assume i > 1. Note that 〈π1(A)〉 = 〈L ∪ R〉 = P3 (Lemma 4).
Thus, h1(IA(ε1)) = 0. Hence, h1(IA(ε̂i)) = 0, a contradiction. Now assume i = 1. Take
E ∈ S(q). By concision ([1] (Proposition 3.1.3.1)) E ⊂ H. Thus, Ref. [14] (Lemma 5.1) gives
h1(IA\A∩H(ε̂1)) > 0. Thus, h1(IA(ε̂1)) > 0. Since k ≥ 3, we get h1(IA(0, 1, 1, 0, . . . )) > 0,
contradicting Lemma 4.

(b) Assume n1 = 2 and k ≥ 4.
(b1) Assume n4 = 1. We take as L, R two general lines of Pn1 , D as a line of Pn2 and D′

as a line of Pn3 . We also take points oi ∈ Pni for all i ≥ 3 and points ui ∈ Pni for i = 2 and
i ≥ 4 such that ui 6= oi for all i ≥ 4. If n2 = 2 assume u2 /∈ D. If n3 = 2 assume o3 /∈ D′. Set
Y′: = L× D× {o3} × · · · × {ok} and Y′′: = R× {u2} × D′ × {u4} · · · × {uk}. Note that Y
is the minimal multiprojective space containing Y′ ∪Y′′ and hence (Lemma 4) the minimal
multiprojective space containing A (or containing B). Thus, to prove that (q, A, B) is a
concise triple of Type II it is sufficient to prove that q has rank 4. Assume that q has rank
≤ 3 and take E ∈ S(q). Since #E ≤ 3, there is H1 ∈ |OY(ε1)| and H4 ∈ |OY(ε4)| such that
E ⊂ H1 ∪ H4. Since o4 6= u4, A * H1 ∪ H4. Thus, h1(IA\(A∩(H1∪H4))

(0, 1, 1, 0, . . . )) > 0
([14] (Lemma 5.1)). Hence, h1(IA(0, 1, 1, 0, . . . )) > 0, contradicting Lemma 4.

(b2) Assume n4 = 2. This case is easier, but we need different Y′ and Y′′ to get a
concise q. We take as L, R, D, D′ lines of P2 and points oi ∈ Pni , i ≥ 3, ui ∈ Pni , i = 1, 2
and i ≥ 4. We assume oi 6= ui for i > 4, u1 /∈ L, u2 /∈ D, o3 /∈ R and o4 /∈ D′. We take
Y′ = L× D× {o3} × · · · × {ok} and Y′: = {u1} × {u2} × R× D′ × · · · . Then we continue
as in step (b1).

(c) Assume k ≥ 5. By steps (a) and (b) we may assume n1 = 1. Fix oi ∈ P1, 3 ≤ i ≤ k
and ui ∈ P1, i = 1, 2 and 5 ≤ i ≤ k. Assume oi 6= ui for all i ≥ 5. We take Y′ =
P1 × P1 × {o3} × · · · × {ok} and Y′′ = {u1} × {u2} × P1 × P1 × {u5} × · · · {uk}. We
first check that q is concise. Assume that q is not concise. Thus, there is i ∈ {1, . . . , k}
such that q ∈ 〈ν(Hi)〉 for some Hi ∈ |OY(εi)|. Since A * Hi, [14] (Lemma 5.1) gives
h1(IA\A∩H(ε̂i)) > 0. Thus h1(IA(ε̂i)) > 0. This is false because h1(IA1(ε j)) = 0 for j = 1, 2
and h1(IA2(εh)) = 0 for h = 3, 4 (Lemma 4). Thus, it is sufficient to prove that q has
rank 4. Assume that q has rank ≤ 3 and take E ∈ S(q). Take ai ∈ P1, i = 2, 4, 5 such
that E ⊂ H2 ∪ H4 ∪ H5, where Hi: = π−1

i (ai). Since π2(A1) spans P1 and π3(A2) spans P1

(Lemma 4), we have h1(IA(1, 0, 1, 0, 0) = 0, contradicting [14] (Lemma 5.1). Now assume
A ⊂ H2 ∪ H4 ∪ H5. By Lemma 4 ∪B1∈S(q1)

B1 is a non-empty open subset of Y′ and that
∪B2∈S(q2)

B2 is an open subset of Y′′. Thus, taking another E1, E2, Ei ∈ S(qi) instead of
A1, A2 we get Y′ ∪Y′′ ⊆ H2 ∪ H3 ∪ H5 contradicting the assumption o5 6= u5.

Proposition 3. Write Y = Pn1 × · · · × Pnk , k ≥ 3, with n1 ≥ · · · ≥ nk > 0. Assume n1 ≤ 3,
n2 ≤ 3 and k ≥ 5. Then Y has a concise rank 2 tensor q of Type I2.

Proof. Take lines L ⊆ Pn1 , R ⊆ Pn2 and oi ∈ Pni , 3 ≤ i ≤ k, and set Y′: = L× R× {o3} ×
· · · × {ok} ⊂ Y. Fix a general q′ ∈ 〈ν(Y′)〉 and take A′ ∈ S(q′). Note that #A′ = 2. Fix
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2 generals u, v ∈ Y and set A: = {u, v} ∪ A′. Note that Y is the minimal multiprojective
space containing A. Fix a general q ∈ 〈{q′, ν(u), ν(v)}〉. To complete the proof it is sufficient
to prove that q is concise and that it has rank 4. Fix E ∈ S(q).

(a) Assume that q is not concise, i.e., assume the existence of i ∈ {1, . . . , k} and
H ∈ |OY(εi)| such that q ∈ 〈ν(H)〉. Concision ([1] (Proposition 3.1.3.1)) gives E ⊂ H. We
have h1(IA\A∩H(ε̂i)) > 0 ([14] (Lemma 5.1)) and hence h1(IA(ε̂i)) > 0. Lemma 4 gives
h1(IA′(εh)) = 0 for h = 1, 2 and hence for some h 6= i. Since we took (u, v) general in Y×Y
after fixing A′, we get h1(IA(ε̂i)) = 0, a contradiction.

(b) Now, we prove that q has rank 4, i.e., #E = 4. Assume #E ≤ 3. Set S: = A ∪ E.
Since q /∈ 〈ν(A1)〉 for any A1 ( A, h1(IS(1, . . . , 1)) > 0. Take a general M ∈ |OY(εk)| such
that ok ∈ πk(M). By [14] (Lemma 5.1) h1(IS\S∩M)(ε̂k)) > 0. Recall that u, v are general in
Y and that A′ ⊂ S ∩M. Hence, #(S \ S ∩M) ≤ 5. Since E evinces a rank, ηk|E is injective
(Lemma 1). Thus #(ηk(S \ S ∩ M)) = #(S \ S ∩ M) and h1(Yk, Iηk(S\S∩M)(1, . . . , 1)) > 0.
The generality of (u, v) ∈ Y×Y means that the minimal multiprojective space containing
{ηk(u), ηk(v)} is isomorphic to (P1)k−1. Since #E ≤ 3 and k ≥ 5, Ref. [13] (Theorem 1.1 and
Proposition 6.2) provide a contradiction.

Definition 3. Take a concise q of rank 4. We say that (q, A, B) has Type I2(e) if it has Type I2 and
e = h1(IA∪B(1, . . . , 1)).

Proposition 4. Assume k ≥ 3. Take a concise q of rank 4 such that (q, A, B) has Type I2(e). Set
A′: = A \ A ∩ B and B′: = B \ A ∩ B. Let Y′ ⊂ Y be the minimal multiprojective space containing
A′.

(a) Y′ ∼= P1 × P1 and there is a smooth curve C ⊂ Y′ of bidegree (1, 1) containing A′ ∪ B′.
(b) We have 1 ≤ e ≤ 2 and e = 2 if and only if C ∩ (A ∩ B) 6= ∅.
(c) If (q, A, B) has Type I2(2), then #(C ∩ (A ∩ B)) = 1, ni ≤ 2 for the 2 factors of Y

containing Y′ and nh = 1 for all h such that πh(Y′) is a point.

Proof. Since A 6= B, h1(IA∪B(1, . . . , 1)) > 0. Take q′ in the definition of Type I2. Concision
says that q′ is concise for Y′ and that Y′ is the minimal multiprojective space contain-
ing B′. Since A′, B′ ∈ S(q′), Ref. [12] (Proposition 3.2) gives Y′ ∼= P1 × P1. Note that
h1(IA′∪B′(1, 1)) = 1, i.e., q′ is in a unique hyperplane section ν(C) of ν(Y′). Up to the
identification of Y′ with P1 × P1 we have C ∈ |OP1×P1(1, 1)|. Since Y′ is the minimal
multiprojective space containing either A′ or B′, C is smooth.

Since Y is the minimal multiprojective space containing A, #(C ∩ (A ∩ B)) ≤ 1 and
h1(IA∪B(1, . . . , 1)) = h1(I(A∪B)∩C(1, . . . , 1)).

4. Y = P3 × P3 × P1

We start with a result true for all multiprojective spaces Y = Pm × Pm × P1, m ≥ 2,
although we only need the case m = 3. The following result is an easy consequence of [10]
(Theorem 2). The strength of [10] (Theorem 2) shows the usefulness of [10].

Proposition 5. Write Y = Pm × Pm × P1 for some m ≥ 2. Fix A ⊂ Y such that #(A) =
#(π3(A)) = m + 1 and 〈πi(A)〉 = Pm for i = 1, 2. Take any q ∈ 〈ν(A)〉 such that q /∈ 〈ν(A′)〉
for any A′ ( A. Then q is concise and S(q) = {A}.

Proof. Since Y is the minimal multiprojective space containing A, it is sufficient to prove
that {A} = S(q). If not, by [10] (Theorem 2)). there is a set E ⊆ A such that #E ≥ 2 and

2(#E) ≥ 2 +
3

∑
i=1

dim〈πi(E)〉 (2)

Since 〈πi(A)〉 = Pm for i = 1, 2, we have dim〈πi(E)〉 = #E− 1 for i = 1, 2. Since π3|A is
injective and #E ≥ 2, 〈π3(E)〉 = P1. Thus, (2) fails.
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Remark 5. Note that Proposition 5 gives the uniqueness of the tensor decomposition for a general
tensor of format (m + 1)× (m + 1)× 2.

Theorem 4. Take Y = P3 × P3 × P1 and q concise for Y, with rank 4 and with #S(q) > 1. Take
A, B ∈ S(q) such that A 6= B. Then either (q, A, B) is of Type II or it is of type Ix with x ∈ {1, 2}.

Proof. Set S: = A ∪ B. Since Y is the minimal multiprojective space containing A, #π3(A) ≥ 2.
Proposition 5 gives 2 ≤ #π3(A) ≤ 3.

Claim 1. For each u ∈ P1 we have #(A ∩ π−1
3 (u)) = #(B ∩ π−1

3 (u)).

Proof. Set H: = π−1
3 (u) ∈ |OY(ε3)|. Assume that Claim 1 fails for u. Exchanging if

necessary the role of A and B we may assume that e: = #(H ∩ A) > f : = #(H ∩ B). We have
#(A \ A ∩ H) = 4− e and #(B \ B ∩ H) = 4− f > 4− e. Concision gives e ≤ 3. Let M
be a general element of |IA\A∩H(ε2)|. Since 〈π2(A)〉 = 〈π2(B)〉 = P3, #(B ∩M) ≤ 4− e.
Since A ⊂ H ∪ M, B * H ∪ M and h1(IB(1, 0, 0)) = 0, Ref. [14] (Lemma 5.1) gives a
contradiction and proves Claim 1.

Observation 1. Claim 1 gives π3(A) = π3(B).

Since #π3(A) ∈ {2, 3}, there is o ∈ P1 such that g: = #(H ∩ A) > 1, where H: = π−1
3 (o).

Set A = A′ t A′′ and B = B′ t B′′ with A′ = H ∩ A and B′ = H ∩ B.

Claim 2. η3|S is injective.

Proof. Assume the existence of u, v ∈ S such that η3(u) = η3(v) and u 6= v. Lemma 1
gives #({u, v} ∩ A) = 1, say u ∈ A \ A ∩ B and v ∈ B \ A ∩ B. Take H2 ∈ |OY(ε2)| such
that (A \ {u}) ⊂ H2. Since Y is the minimal multiprojective space containing A, u /∈ H2.
Claim 1 gives #(H2 ∩ B) = 3. Since π2(u) = π2(v), v /∈ H2. Since u 6= v, Ref. [14]
(Lemma 5.1) gives h1(I{u,v}(1, 0, 1)) > 0, contradicting the assumption π3(u) 6= π3(v).

By Claim 1 and Observation 1 there is o ∈ P1 such that e: = #(A ∩ π−1
3 (o)) = #(B ∩

π−1
3 (o)) ≥ 2. Set H: = π−1

3 (o) ∈ |OY(ε2)|. Write A = A1 t A2 and B = B1 t B2 with
A1 = A ∩ H and B1 = B ∩ H.

(a) Assume A ∩ B = ∅. First assume e = 3. Thus, S \ S ∩ H = {u, v} with u ∈ A and
v ∈ B. Since A ∩ B = ∅, u 6= v. Thus, Ref. [14] (Lemma 5.1) gives h1(I{u,v}(1, 1, 0)) > 0.
Since OP3×P3(1, 1) is very ample, we get η3(u) = η3(v), contradicting Claim 2. Assume
e = 2. Since A2 ∩ B2 = ∅, Ref. [14] (Lemma 5.1) gives h1(IA2∪B2(1, 1, 0)) > 0. Take a
general M ∈ |IA2(0, 1, 0)|. Since A ⊂ H ∪M and h1(IB2(1, 0, 0)) = 0, we get B2 ⊂ M. In
the same way we see that A2 is contained in the general M′ ∈ |IB2(0, 1, 0)|. Take a general
D ∈ |IA1(0, 1, 0)|. Claim 2 gives #(B ∩ D) = 2. Since 〈π2(A)〉 = 〈π2(B)〉 = P3, we get
D ∩ B = B1. Similarly a general D′ ∈ |IA1(1, 0, 0)| satisfies D′ ∩ B = B1. Thus, there are
lines L1, R1 ⊂ P3 such that A1 ∪ B1 ⊂ L1 × R1 × {o}.

Claim 3. We have #π3(A2) = 1.

Proof. Assume #π3(A2) = 2, say {o1, o2} = π3(A2). We get #(π−1
3 (oi) ∩ A) = 1 and

Claim 1 gives #(π−1
3 (oi)∩ B) = 1. Set {u}: = A2 ∩π−1

3 (o2) and {v}: = B2 ∩π−1
3 (o2). Take a

general H2 ∈ |IA1(ε2)|. Note that A \ (H2 ∪π−1
3 (o1))∩ A = {u} and B \ (H2 ∪π−1

3 (o1))∩
B = {v}. We have h1(I{u,v}(1, 0, 0)) > 0 by [14] (Lemma 5.1). Thus, π1(u) = π1(v).
Using a general H1 ∈ |IA1(ε1)| instead of H2 we get π2(u) = π2(v). Thus, η3(u) = η3(v),
contradicting Claim 2.

Since #π3(A2) = 1 (Claim 3), we get in the same way the existence of lines L2, R2 of P3

and o′ ∈ P1 \ {o} such that A2∪B2 ⊂ L2×R2×{o′}. Moreover 〈L1 ∪ L2〉 = 〈R1 ∪ R2〉 = P3.
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To conclude that q is of Type II it is sufficient to prove that 〈ν(A)〉 ∩ 〈ν(B)〉 = 〈(〈ν(A1)〉 ∩
〈ν(B1)〉) ∪ (〈ν(A2)〉 ∩ 〈ν(B2)〉)〉. Since A ∩ B = ∅, we have dim(〈ν(A)〉 ∩ 〈ν(B)〉) =
h1(IA∪B(1, 1, 1))− 1, dim(〈ν(A1)〉∩ 〈ν(B1)〉) = h1(IA1∪B1(1, 1, 1))− 1, and dim(〈ν(A2)〉∩
〈ν(B2)〉) = h1(IA2∪B2(1, 1, 1))− 1 (here, we use that 〈ν(A1)〉 ∩ 〈ν(B1)〉 6= ∅ and 〈ν(A1)〉 ∩
〈ν(B1)〉 6= ∅). The residual exact sequence of H gives h1(IA∪B(1, 1, 1)) ≤ h1(IA1∪B1(1, 1, 1))
+h1(IA2∪B2(1, 1, 1)). Let Y′ be the minimal multiprojective space containing A1 and let Y′′

be the minimal multiprojective space containing A2. Since Y is the minimal multiprojective
space containing A, it is the minimal multiprojective space Y′ ∪Y′′, 〈ν(Y′)〉 ∩ 〈ν(Y′′)〉 = ∅
and 〈ν(Y)〉 = 〈ν(Y′) ∪ ν(Y′′)〉. Thus, (q, A, B) has Type II.

(b) Assume #(A ∩ B) = 1. Set A1: = A \ A ∩ B and B1: = B \ A ∩ B. Set {M}: =
|IA1(1, 0, 0)|. Since 〈π1(A)〉 = P3, M ∩ A = A1. Claim 1 gives M ∩ B = B1. Since
〈π1(A)〉 = P3 and η3|S is injective (Claim 2), h1(IA∩B(1, 0, 0)) = 0. Hence, the residual
exact sequence of M gives h1(M, IA1∪B1(1, 1, 1)) > 0. Take a general q1 ∈ (〈ν(A1)〉 ∩
〈ν(B1)〉). Since 〈π2(A)〉 = P3, h1(IA∩B(0, 1, 1)) = 0. Since dim A ∩ B = 0, we have
h2(IA∩B(0, 1, 1)) = h2(OY(0, 1, 1)) = 0. Thus, the residual exact sequence of M gives
an isomorphism

τ : H1(IA∪B(1, 1, 1))→ H1(M, IA1∪B1(1, 1, 1)) ∼= H1(IA1∪B1(1, 1, 1)).

Let Y′ be the minimal multiprojective space containing A1. Since A1 and B1 evince
the rank of q1, B1 ⊂ Y′ and ν(Y′) is the minimal Segre whose linear span contains q1.
Recall that Y is the minimal multiprojective space containing A1 and the point A ∩ B. Thus,
ν(A ∩ B) /∈ 〈ν(Y′)〉. Thus, for any linear subspace W of 〈ν(Y′)〉 we have dim〈ν(A ∩ B) ∪
W〉 = dim W + 1. We get dim(〈ν(A)〉 ∩ 〈ν(B)〉) = 1 + dim(〈ν(A1)〉 ∩ 〈ν(B1)〉). Hence,
(q, A, B) is of Type I1.

(c) Assume #(A ∩ B) = 2. Set A1: = A \ A ∩ B and B1: = B \ A ∩ B. Take a general
M ∈ |IA1(1, 0, 0)|. Since 〈π1(A)〉 = P3, M ∩ A = A1. Claim 1 gives M ∩ B = B1. Since
〈π1(A)〉 = P3 and η3|S is injective (Claim 2), h1(IA∩B(1, 0, 0)) = 0. Hence, the residual exact
sequence of M gives h1(M, IA1∪B1(1, 1, 1)) > 0. Since 〈π2(A)〉 = P3, h1(It A ∩ B(0, 1, 1)) =
0. Since dim A ∩ B = 0, we have h2(IA∩B(0, 1, 1)) = h2(OY(0, 1, 1)) = 0. Thus, the residual
exact sequence of M gives an isomorphism H1(IA∪B(1, 1, 1))→ H1(M, IA1∪B1(1, 1, 1)) ∼=
H1(IA1∪B1(1, 1, 1)). Thus we have 〈ν(A1)〉 ∩ 〈ν(B1)〉 6= ∅ and any q1 ∈ 〈ν(A1)〉 ∩ 〈ν(B1)〉
is associated to a tensor equivalent to a 2× 2 matrix. To conclude it would be sufficient
to prove that q ∈ 〈(〈ν(A1)〉 ∩ 〈ν(B1)〉) ∪ ν(A ∩ B))〉. Write A ∩ B = {u, v}. Let Y′ be the
minimal multiprojective space containing A1 and Y′′ the minimal multiprojective space
containing A1 ∪ {u}. Since 〈π1(A)〉 = P3, we have Y′ ( Y′′ ( Y. Apply twice the last part
of step (b).

Proposition 6. Take Y = P3 × P3 × P1 and q concise for Y and of rank 4.
(a) Assume that (q, A, B) has Type II for some A, B ∈ S(q) such that A 6= B. Then (q, E, F)

has Type II for all E, F ∈ S(q) such that E 6= F. Moreover the rank 2 tensors {q1, q2} associated to
partitions A = A1 t A2 and B = B1 t B2 are uniquely determined by q. Moreover S(q) ∼= U×U
with U the complement of a smooth conic in a projective plane.

(b) Assume that (q, A, B) has Type Ix. Then (q, E, F) has Type Ix for all E, F ∈ S(q) such that
E 6= F. Moreover the rank 4− x tensor q′ such that (A \ A∩ B) ∈ S(q′) and (B \ A∩ B) ∈ S(q′)
does not depend on the choice of A and B.

Proof. Fix E ∈ S(q) such that E 6= A and E 6= B. It is sufficient to prove that (q, A, B) and
(q, A, E) have the same type.

(a) Assume that (q, A, B) has Type II, i.e., assume A ∩ B = ∅. In step (a) of the proof
of Theorem 4 we proved that #π3(A) = 2, say π3(A) = {o1, o2}, that π3(A) = π3(B) and
that the partitions A = A1 t A2 and B = B1 t B2 with associated rank 2 tensors q1 and
q2 is given by Ai = A ∩ π−1

3 (oi) and Bi = B ∩ π−1
3 (oi). Since ν(A) irredundantly spans

q, qi is the unique element of 〈ν(Ai)〉 such that q ∈ 〈ν(Ai)〉. First assume E ∩ A = ∅.
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Theorem 4 gives that (q, A, E) has Type II, say with respect to q′1 and q′2. Step (a) of the
proof of Theorem 4 gives π3(F) = {o1, o2}, that F = F1 t F2 with Fi: = F ∩ π−1

3 (oi) and that
the decomposition of A is the same as the decomposition of (q, A, B). Thus, q′i = qi, i = 1, 2.
Thus, Ei ∈ S(qi).

Now, assume E∩ A 6= ∅. Fix a finite set K ⊂ Y. Note that ∩U∈S(qi)
U = ∅. Thus, there

if F ∈ S(q) such that (q, A, F) has Type II with q1 and q2 and K ∩ F = ∅. Taking K: = E we
get that (q, F, E) has Type II with q1 and q2 as rank 2 tensors. Recall that S(qi) is isomorphic
to the complement of a smooth conic in a projective plane (Lemma 4). We proved that
S(q) ∼= S(q1)× S(q2).

(b) Assume that (q, A, B) has Type Ix, x = 1, 2, with x = #(A∩ B). Set A1: = A \ A∩ B,
B1: = B \ A ∩ B and call q′ ∈ 〈ν(A1)〉 ∩ 〈ν(B1)〉 such that q ∈ 〈{q′} ∪ ν(A ∩ B)〉. Take
E ∈ S(q) such that E 6= A and E 6= B. It is sufficient to prove that A ∩ E = A ∩ B. Since
A ∩ B 6= ∅, part (a) proved in step (a) gives A ∩ E 6= ∅ and B ∩ E 6= ∅. By Proposition 4
(q, A, E) and (q, B, E) have Type I with q1 ∈ 〈ν(E \ A ∩ E)〉 and q1 ∈ 〈ν(E \ B ∩ E)〉. Since
q1 has rank 4− x, we get #(B ∩ E) = #(A ∩ E) = x. Fix a finite set K. In all cases listed
in [12] there is G1 ∈ S(q1) such that G1 ∩ K = ∅ and G1 ∩ A ∩ B = ∅. Thus, (q, A, G) has
Type I with A ∩ B = A ∩ G. Taking K: = E we get G ∩ E ⊆ A ∩ B. Thus, E ∩ A = A ∩ B
and (q, A, E) has Type Ix with q1 = q′.

5. Examples

For any Segre variety ν(Y) ⊂ Pr let τ(ν(Y)) denote its tangential variety. The following
result shows that the tangential variety produces a large family of tensors q for which
uniqueness fails and for which dimS(Y, q) is very large.

Proposition 7. Fix a concise q ∈ τ(ν(Y)) \ ν(Y) and call k the rank of q. Then Y = (P1)k and
dimS(Y, q) ≥ 2k− 2.

Proof. Since q is concise, Y = (P1)k ([15–17]). Since q /∈ ν(Y), k ≥ 2. If k = 2, then ν(Y) is
a smooth quadric surface and S(q) is the complement of a smooth conic in a projective
plane. Assume k ≥ 3. In this case, there is a unique degree 2 connected zero-dimensional
scheme v ⊂ Y such that q ∈ 〈ν(v)〉. Set {o}: = vred with o = (o1, . . . , ok). Let C be the set
of all smooth and connected curve of bidegree (1, . . . , 1). Fix C, D ∈ C. Then C ∼= P1 and
there is f ∈ (Aut(P1)k such that f (C) = D. We have dim C = 3k− 3, the set of all C ∈ C
containing o has dimension 2k− 2 and the set V of all C containing v has dimension k− 1.
Fix C ∈ V . The curve ν(C) is a degree k rational normal curve in its linear span. Since v ⊂ C,
q ∈ 〈ν(C)〉. A theorem of Sylvester says that q has ν(C)-rank k. Hence, E ∈ S(q) for any
E ⊂ C such that E evinces the ν(C)-rank of q. The set of all such sets E ⊂ C has dimension
k − 1. To prove that, varying C ∈ V , we get a family of dimension 2k − 2 contained in
S(q) it would be sufficient to prove that for all C, D ∈ V , C 6= D, #((C \ v) ∩ (D \ v)) < k.
We claim that #(C ∩ D) ≤ 2 for all C, D ∈ C such that C 6= D. Fix C, D ∈ C such that
C 6= D and assume the existence of 3 distinct points u, v, w ∈ C ∩ D. Fix 3 distinct points,
0, 1 and ∞, of P1. There are unique isomorphisms f : P1 → C and g : P1 → D such that
f (0) = g(0) = u, f (1) = g(1) = v and f (∞) = g(∞) = w. The embedding f and g of P1

into Y as a curve of multidegree (1, . . . , 1) are uniquely determined by their components
πi ◦ f : P1 → P1 and πi ◦ g : P1 → P1. These isomorphisms πi ◦ f and πi ◦ g are uniquely
determined by the images of 0, 1 and ∞, i.e., the points πi(u), πi(v), πi(w). Thus, f = g
and hence C = f (P1) = g(P1) = D, a contradiction.

Example 1. Take Y = (P1)4 and a concise q in the tangential variety τ(ν(Y)) of ν(Y). Then q has
rank 4 and S(q) is positive-dimensional ([15,17]). A general q ∈ τ(ν(Y)) is concise. Proposition 7
gives dimS(q) ≥ 6. We do not know any case with rank 4 and at least 3 factors with larger
dimS(q).
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In the next 2 examples we use that the algebraically closed base field has either
characteristic 0 or characteristic≥ 7 for the quotation of a theorem of Sylvester ([18] (p. 22)).
See Remark 6 for the general case.

Example 2. Fix integers n1 ≥ · · · ≥ nk > 0 such that k ≥ 3 and n1 + · · · + nk = 6. Take
Y = Pn1 × · · · × Pnk . Let C ⊂ Y be an integral, smooth and rational curve of multidegree
(n1, . . . , nk) such that πi|C is an isomorphism if ni = 1 and an embedding if ni ≥ 2. If ni ≥ 2, then
πi(C) is a rational normal curve. Thus, ν(C) is a rational normal curve of degree 6 in its linear
span. Take A ⊂ C such that #A = 4 and take q ∈ 〈ν(A)〉 such that q /∈ 〈ν(A′)〉 for any A′ ( A.
By a theorem of Sylvester there are ∞1 sets B ⊂ C such that #B = 4 and q ∈ 〈ν(B)〉. Assume
for the moment that q has tensor rank 4. Note that πi|A is injective for all i and hence q is neither
of Type I nor of Type II. Now, assume that q has tensor rank e ≤ 3 and take E ∈ S(q). Fix any
integers i, j such that 1 ≤ i < j ≤ k and call πi,j : Y → Pni × Pnj the projection onto these factors
of Y. Since πi,j(C) is a smooth curve of bidegree (1, 1), there is M ∈ |OY(εi + ε j)| containing A.
By [14] (Lemma 5.1) we have h1(IE\E∩M(ε̂i − ε j)) > 0. Since e ≤ 3 we get that E depends on
at most 3 coordinates, 2 of them being i and j. Thus there is h ∈ {1, . . . , k} and H ∈ |IE(εh)|.
Note that #(H ∩ C) = 1. By [14] (Lemma 5.1) we get h1(IA\A∩H(ε̂h)) > 0. This is false, because
deg(OC(ε̂h)) = 5 and C is a rational normal curve in its linear span.

Example 3. Fix integers n1 ≥ · · · ≥ nk > 0 such that k ≥ 3 and n1 + · · · + nk = 5. Take
Y = Pn1 × · · · × Pnk . Let C ⊂ Y be an integral, smooth and rational curve of multidegree
(n1, . . . , nk) such that πi|C is an isomorphism if ni = 1 and an embedding if ni ≥ 2. Thus, ν(C) is
a rational normal curve of degree 5 in its linear span. Take a connected zero-dimensional scheme
Z ⊂ C with deg(Z) = 3 and take q ∈ 〈ν(Z)〉 such that q /∈ 〈ν(Z′)〉 for any Z′ ⊂ Z. By a
theorem of Sylvester there are ∞1 sets A ⊂ C such that #A = 4 and A evinces the ν(C)-rank of
q. Assume for the moment that q has tensor rank 4. Note that πi|A and πi|B are injective for all i
and hence (q, A, B) is neither of Type I nor of Type II. Now, assume that q has tensor rank e ≤ 3
and take E ∈ S(q). Fix any integers i, j such that 1 ≤ i < j ≤ k and call πi,j : Y → Pni × Pnj

the projection onto these factors of Y. Since πi,j(C) is a smooth curve of bidegree (1, 1), there
is M ∈ |OY(εi + ε j)| containing A. By [14] (Lemma 5.1) we have h1(IE\E∩M(ε̂i,−ε j)) > 0.
Since e ≤ 3 we get that E depends on at most 3 coordinates, 2 of them being i and j. Thus there
are h ∈ {1, . . . , k} and H ∈ |IE(εk)|. Note that #(H ∩ C) = 1. By [14] (Lemma 5.1) we get
h1(IA\A∩H(ε̂h)) > 0. This is false, because deg(OC(ε̂h)) = 4 and C is a rational normal curve
in its linear span.

6. End of the Proofs

Proof of Theorem 1. Use Example 3.

Proof of Theorem 2. Use Example 2.

Proof of Theorem 3. Each case is obtained from a sequence of linear projections from the
case Y = P3 × P3 × P1, which is true by Theorem 4 and Proposition 6. We need to check
that at each step the tensor µ(q) in the definition of a linear projection from a point with
respect to one of the factors is not only concise, but it also has rank 4 and not lower rank.
Concision was proved in Section 2.1. In our case, with n1 = 3, every concise tensor has
rank ≥ 4.

Proof of Proposition 1. Fix a plane M ⊆ Pn1 , lines L ⊆ Pn2 , R ⊆ Pn3 and points oi ∈
Pni , 4 ≤ i ≤ k. Set Y′: = M × L × R × {o4} × · · · × {ok} ⊂ Y. Take q′ ∈ 〈ν(Y′)〉 of
rank 3 as in [12] (Example 3.6). Hence, q′ is concise for Y′ and dimS(q′) = 4 with 2
irreducible components of dimension 4. Moreover, there are A′′, B′′ ∈ S(q′) such that
#(A′′ ∩ B′′) = 1, say A′′ ∩ B′′ = {u}. Set A′: = A′′ \ {u} and A′: = A′′ \ {u}. Since
(q′, A′′, B′′) has Type I1, there is q′′ ∈ 〈ν(A′)〉 ∩ 〈ν(B′)〉 such that q′ ∈ 〈{q′′, ν(u)}〉. Let
Y′′ be the minimal multiprojective space containing A′. We have Y′′ ∼= P1 × P1 and q′′ is
concise for Y′′ ([17], [12] (Proposition 3.2)). Since Y′ is the minimal multiprojective space
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containing Y′′ ∪ {u}, the first positive dimensional factor of Y′′ is a line L1 ⊂ M. The
second positive dimensional factor of Y′′ is either L or R and both cases occur for certain
(A′′, B′′). We take (A′′, B′′) such that Y = L1 × L2 × {o3} × · · · × {ok}. Fix a general p ∈ Y
and set A: = A′′ ∪ {p} and B: = B′′ ∪ {p} and take a general q ∈ 〈{q′, ν(p)}〉. Since p
is general Y is the minimal multiprojective space containing A. If q has rank 4, then q
is concise for Y, (q, A, B) has Type I2 and dimS(q) ≥ 4. Assume that Y has rank e ≤ 3
and take E ∈ S(q). Set S: = E ∪ A. Since n1 = 3, there is H ∈ |IE(ε1)|. Since Y is
the minimalmultiprojective space containing A, A * H. By [14] (Lemma 5.1) we have
h1(IA\A∩H(ε̂1)) > 0. Thus, h1(IA(ε̂1)) > 0. We have h1(IA′(ε2)) = 0. For a general u ∈ Y′

we have h1(IA′∪{u}(0, 1, 1, 0 . . . , 0)) > 0. For a general p ∈ Y \Y′ we have h1(IA(ε̂1)) = 0,
a contradiction.

Remark 6. Everything works over an arbitrary algebraically closed field K, except at 3 places. In
Examples 2 and 3 (used to prove Theorems 1 and 2) we quoted a theorem of Sylvester ([18] (p. 22)).
Let ν(C) be a rational normal curve of degree 5 (as in Example 3. Fix any zero-dimensional scheme
W ⊂ C such that deg(W) = 3 and any set A ⊂ C such that #A = 5 and A ∩W = ∅. Since
C ∼= P1 and ν(C) is a rational normal curve, we get 〈ν(A ∪W)〉 = 〈ν(C)〉. We used Sylvester’s
theorem in the proof of Proposition 7 with respect to a rational normal curve ν(C) of degree k. The
proof in [15] that q has tensor rank k is characteristic free. We need to check that q has rank k with
respect to ν(C). Obviously the ν(C)-rank of q is at least k. Since dim〈ν(C)〉 and ν(C) is smooth,
q has at most rank k by [19].

Now take an infinite field K and let K be its algebraic closure. If q ∈ Pr(K) has (q, A, B) of
Type II (or I) over K and with A ⊂ Y(K), B ⊂ Y(K), then it has Type II (or I) over K, because all
points of A and B are defined over K. The examples may be constructed only using K. The examples
may be constructed over any field with enough elements.

7. Effectiveness and Further Questions

Remark 7. Fix a multiprojective space Y = Pn1 × · · · × Pnk and a, b ∈ Y such that a 6= b.
Write a = (a1, . . . , ak) and b = (b1, . . . , bk). The minimal multiprojective space containing {a, b}
is isomorphic to P1 × P1 if and only if there are 1 ≤ i1 < i2 ≤ k such that aj = bj for all
j ∈ {1, . . . , k} \ {i1, i2}, ai1 6= bi1 and ai2 6= bi2 .

Remark 8. Take a rank 4 tensor q ∈ Pr = 〈ν(Y)〉 and A ∈ S(q). It is very easy to check if there
is B ∈ S(q) such that (q, A, B) has Type II. Indeed, B exists if and only if there is a partition
A = A1 t A2 such that #A1 = #A2 = 2 and the minimal multiprojective spaces Y(i), i = 1, 2,
are isomorphic to P1 × P1. This is effective by Remark 7. Now, we take q with rank(q) = 5 and
A ∈ S(q). There is B ∈ S(q) such that (q, A, B) has Type II if and only if there is a partition
A = A1 t A2 such that #A1 = 2, #A2 = 3, the minimal multiprojective space Y′ containing A2 is
isomorphic to P1 × P1 (easy to test by Remark 7) and, calling Y′′ the minimal multiprojective space
containing A3, the pair (Y′′, A2) is in the list of [12] (Theorem 7.1).

Remark 9. Take a multiprojective space Y, a concise q ∈ 〈ν(Y)〉 and A ∈ S(q). If rank(q) ≤ 5
there is a differential test (h1(I2A(1, . . . , 1)) > 0 with 2A as defined in [20]) which is necessary to
be either of Type I or of Type II.

We discuss here the differential criterion hinted in Remark 9 (see the references in [20]
for proofs). Take a multiprojective space Y and a finite set A ⊂ Y, A 6= ∅. Set t: = #A. The
set ν(A) ⊂ 〈ν(Y)〉 is associated to an additive decomposition of many tensors q, all tensors
in the linear span of ν(A), but not in the linear span of a proper subset of ν(A). Fix any
such q and call S(Y, q, t) the set of all B ⊂ Y such that #B = t, q ∈ 〈ν(B)〉 and q is . We
have S(Y, q, t) = ∅ if t < rank(q) and S(Y, q, rank(q)) = S(q). The set S(Y, q, t) has an
algebraic structure and there is a differentiable map α such that at each A ∈ S(Y, q, t) the
integer h1(I2A(1, . . . , 1)) is the dimension of the kernel of the differential of α at A. Thus, if
h1(I2A(1, . . . , 1)) = 0, then A is an isolated point of S(Y, q, t), i.e., no Ã ⊂ Y “ near ” A, but
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Ã 6= A, is an element of S(Y, q, t). Moreover this criterion is stable for small modifications
of q and A. This powerful criterion shows that some additive decompositions are stable
under small modifications. This criterion is not an “ if and only if ” criterion (the function
f : R→ R defined by f (x) = x3 is injective but its differential vanishes at 0). In [20], the
authors classify the pairs (Y, A), where Y is a multiprojective space, A is a finite set with
#A ≤ 3, Y is the minimal multiprojective space containing A, h1(IA(1, . . . , 1)) > 0 and
h0(IA(1, . . . , 1)) > 0.

Open Problem 1. Extend [20] to the case #A = 4.

Definition 4. Take a multiprojective space Y and a concise tensor q for Y. Assume the existence
of A, B ∈ S(q) such that A ∩ B = ∅. We say that (q, A, B) has Type III if there are partitions
A = A0 t A1 t A2, B = B0 t B1 t B2 and tensors q1, q2 ∈ Pr such that q ∈ 〈{q1, q2},
A0 ∪ Ai ∈ S(qi) and B0 ∪ Bi ∈ S(qi) for i = 1, 2. We say that q has Type III if there are
A, B ∈ S(q) such that (q, A, B) has Type III.

In Definition 4 we do not assume that q1 and q2 are concise for Y. We do not have
examples of Type III tensors, but we expect that they exist.

Open Problem 2. Construct examples of Type III tensors.

8. Methods and Conclusions

We provide full proofs of the results we stated, but we leave open a conjecture in the
introduction (Conjecture 1) with an explanation (Remark 1) of our main technical difficulty.
Using linear projections to prove the conjecture it would be sufficient to prove for all
n1 ≥ · · · ≥ nk > 0 such that k ≥ 3, n1 ≤ 3 and n1 + · · ·+ nk = 7. We proved the case k = 3
with n1 = n2 = 3 and n3 = 1. In the last section, we discuss the effectiveness of our results
and and two open problems, one on tensors of rank 4 and one on tensor of higher rank.
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