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Abstract: The development in the qualitative theory of fractional differential equations is accom-
panied by discrete analog which has been studied intensively in recent past. Suitable fixed point
theorem is to be selected to study the boundary value discrete fractional equations due to the proper-
ties exhibited by fractional difference operators. This article aims at investigating the stability results
in the sense of Hyers and Ulam with application of Mittag–Leffler function hybrid fractional order
difference equation of second type. The symmetric structure of the operators defined in this article
is vital in establishing the existence results by using Krasnoselkii’s fixed point theorem. Banach
contraction mapping principle and Krasnoselkii’s fixed point theorem are employed to establish the
uniqueness and existence results for solution of fractional order discrete equation. A problem on heat
transfer with fins is provided as an application to considered hybrid type fractional order difference
equation and the stability results are demonstrated with simulations.

Keywords: fractional order; discrete; Mittag–Leffler function; boundary value problems; Hyers Ulam
stability

MSC: 26A33; 34B15; 39A30

1. Introduction

In 1940, Ulam was the first to stimulate the concept of stability for the functional
equations [1] and had posed several unsolved problems. In 1941, a problem posed by Ulam
on stability of homomorphisms was solved by Hyers [2]. The stability concept named
after the two mathematicians has inspired a large number of mathematicians and was
recently employed for the analysis of stability of differential and difference equations.
Hyers–Ulam stability results for differential equations was initiated by Obloza in [3,4] and
the advancement on the results was carried out by Alsina and Ger [5] in 1998. Qarawani
in [6] considered the Emden–Fowler and generalized differential equations of order 2 and
performed the stability analysis in the sense of Hyers–Ulam. The work by Alqifiary and
Jung in [7,8] investigated the Hyers–Ulam stability of 2nd order differential equations and
discussed the generalized Hyers–Ulam stability for nth order differential equation using
the Laplace transform method. The analysis of the qualitative properties of the dynamical
systems are vital in understanding the physical behaviour of the real world phenomenon.

The arbitrary order calculus was known to the research community since 1695. The lack
of interpretation of the arbitrary order equations in modelling real world problems had
caused stagnation in growth of its theory. Development of digital computers during 20th
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century has led to considerable contribution to the theory of fractional calculus. Main reason
for adapting the fractional order calculus in constructing models is due to its capability
to bring memory factors into effect and also increases the accuracy of the models of real
world. The fractional order of the system in addition to the hysteresis is also very crucial in
bringing out the physical significance of the phenomena under consideration. The choice
of the fractional order greatly depends on the behavioural aspect of the system under
consideration. Fractional calculus has recently attracted many researchers in modelling
real life applications [9–15]. Closed form solutions of the fractional order equations was
studied in [16]. Shakeel et al. in [17] presented the results on exact solutions for Burger
equation of fractional order using novel expansion method. Recently, Hyers–Ulam stability
analysis was extended to differential equations of fractional order. In [18–20], Wang and
Zhou investigated the Ulam stability of the fractional order equations. Ulam–Hyers Mittag–
Leffler stability of fractional equations using fixed point approach was carried out by N.
Egbhali [21] in 2016. Most recently the Ulam–Hyers Mittag–Leffler stability of non-linear
fractional equation was studied in [22].

The theory of discrete fractional calculus was developed in recent decades. The dis-
crete counterpart has not gained expected theoretical support as the continuous case.
However, recent literature has proved that discrete time fractional calculus has gained
equal importance from the mathematicians and engineers. Discrete fractional calculus
is considered to have their origin in the works of [23,24]. Atici and Eloe in [25,26] and
Holm in [27] have contributed some significant results on the discrete fractional sum and
differences. The basic theory on discrete nabla fractional calculus was illustrated in [28,29].
Tumour-immune system was constructed using discrete fractional order difference equa-
tions and its chaotic behaviour are presented in [30]. Josephson junction discrete fractional
model and its stability properties was discussed in [31]. Application of discrete fractional
equation to pantograph equations can be found in [32]. Some discrete time fractional order
problems with boundary conditions were investigated by authors in [33–37].

Non-linear differential equations with quadratic perturbations also known as hybrid
type differential equations are of great interest to the mathematicians and engineers due
to their ability to describe different dynamic models as special cases. The two types of
fractional order perturbation equations are discussed in [38] and some recent contributions
on hybrid type fractional order equations include [39–49]. The first work on Hyers–Ulam
stability of fractional difference equation with boundary condition was carried out by
Fulai Chen and Yong Zhou in 2013 [50]. Influenced by the above works with boundary
conditions, we consider the non-linear discrete fractional equation of the form

∆ζ
∗[υ(v)−Θ(v, υ(v))] =M(v + ζ − 1, υ(ζ + v− 1)), v ∈ [0,℘]N0

, 1 < ζ < 2

υ(ζ − 1) = g(υ), ∆[υ(ζ + ℘)−Θ(ζ + ℘, υ(ζ + ℘))]− ψ(υ) = A.
(1)

where ∆ζ
∗ is the fractional Caputo difference operator, A ∈ R, Nj = {j, j + 1, j + 2, . . .},

Θ,M : C
(
[ζ − 1, ζ + ℘]Nζ−1 ,R

)
→ R is continuous in υ, g, ψ : C

(
[ζ − 1, ζ + ℘]Nζ−1

)
→ R

is Lipschitz continuous in υ with positive constant K, λ ∈ (0, 1). This article employs
Caputo type fractional difference operator due to its practical interpretation of the real
world problems.

Boundary values problems with conditions defined at the extremes has attracted
engineers and scientists due to their ability to give analytical understanding and prediction
of the phenomena over a period of time. The applications include finding the electrical
potential of any given region, disciplines of physics such as elongated rods, thermostat in
sensors, heat transfer through surfaces, and so on. The generation of heat in most real life
scenarios are due to infrared, nuclear, chemical, or electrical activities. Temperature and
flow of heat are the two most important factors in heat conduction problems which can
be understood with greater level of accuracy by construction of models with boundary
value problems. The boundary conditions that define the problems on heat conduction



Symmetry 2022, 14, 1877 3 of 16

may be linear or non-linear. The non-linearity in the boundary conditions are widely due
to the influence of power of temperature entering the boundary condition. Increasing
interest towards study of discrete fractional boundary value problems and exploring real
life applications this article provides an application to (1) in the form of heat transfer
equation with fins. The main objective of the article is:

• Investigation of Hyers–Ulam–Mittag–Leffler stability for hybrid fractional order dif-
ference equation of second type;

• Application to heat transfer with fins.

The paper is structured as follows. Section 2 presents some necessary mathematical
identities that are required throughout the paper. Existence and uniqueness of the solution
of (1) are established in Section 3. Hyers–Ulam–Mittag–Leffler stability of the non-linear
discrete fractional equation is introduced in Sections 4 and 5 demonstrates the application
to heat transfer with fins and Section 6 concludes the paper.

2. Mathematical Background

This section provides necessary mathematical concepts that are used throughout
this work.

Definition 1 ([51]). Let ζ > 0. The ζ − th fractional sum of υ is defined by

∆−ζ υ(v) =
1

Γ(ζ)

v−ζ

∑
s=a

(v− s− 1)(ζ−1)υ(s), (2)

where v(ζ) denotes the falling factorial.

Definition 2 ([51]). Let β > 0 and κ − 1 < β < κ, where κ = dβe ∈ N. Set ζ = κ − β.
The β− th fractional difference is given by

∆β
∗υ(v) = ∆−ζ(∆κυ(v))

=
1

Γ(ζ)

v−ζ

∑
s=j

(v− s− 1)(ζ−1)(∆κυ)(s),
(3)

where ∆κ is the forward difference operator of order k.

Definition 3 ([52]). Let v ∈ N0, ω ∈ (−1, 1) and ζ ∈ R+. The discrete one parameter Mittag–
Leffler function is

Fζ(ω, v) =
∞

∑
κ=0

(ω)κ (v + κ(ζ − 1))(ζκ)

Γ(ζκ + 1)
. (4)

Lemma 1 ([53,54]). Assume that β > 0 andM is defined on Nj then

∆−β
∗ ∆β

∗M(v) =M(v)−
n−1

∑
κ=0

(v− j)κ

κ!
∆κ [M(j)]

=M(v) + c0 + c1t + . . . + cn−1t(n−1),

(5)

where n1 ≥ β and ci ∈ R, i = [1, n1 − 1] ∩N1.

Theorem 1 ([55]). (Banach Contraction Mapping Principle) A contraction mapping on a complete
metric space has exactly one fixed point.

Theorem 2 ([56]). Let the subset H of the Banach space B be non-empty, convex, bounded and
closed. Let P1 : B→ B and P2 : H → B be two operators, such that
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(i) The operator P1 is a contraction;
(ii) The operator P2 is completely continuous;
(iii) x = P1x + P2y for all x ∈ H ⇒ x ∈ H.

Then, there exists a solution for the equation P1x + P2x = x.

3. Existence and Uniqueness Results

Let the set υ = {υ(v)}℘+ζ
v=ζ−1 be denoted by B with norm

‖υ‖ =
{

max|υ(v)|, v ∈ [ζ − 1,℘+ ζ]Nζ−1

}
.

Then, B is a Banach Space. Before establishing the results on existence of unique solution
for the consider boundary value problem (1), we shall make the following assumptions. Let

(J1) There exist non-zero real constants K, λ, such that

|g(υ(v))− g(υ1(v))| ≤ K|υ(v)− υ1(v)|,
|ψ(υ(v))− ψ(υ1(v))| ≤ λ|υ(v)− υ1(v)|.

(6)

(J2) There exist non zero real constants L,L1, such that

|M(v, υ(v))−M(v, υ1(v))| ≤ L|υ(v)− υ1(v)|,
|Θ(v, υ(v))−Θ(v, υ1(v))| ≤ L1|υ(v)− υ1(v)|.

(7)

for all υ, υ1 ∈ B.

Lemma 2. A function υ(v) : v ∈ [ζ − 1,℘+ ζ]Nζ−1 → R is a solution of the boundary value
problem (1) iff υ(v) is a solution of

υ(v) =Θ(v, υ(v))−Θ(ζ − 1, g(υ)) +
1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ) + g(υ)

+
(ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ) + (ζ − 1−v)(A + ψ(υ)),

(8)

where v ∈ [ζ − 1,℘+ ζ]Nζ−1 .

Proof. Suppose that υ(v) is a solution of (1). Using Lemma (1) with constants c0, c1 ∈ R,
we have

υ(v) = ∆−ζM(v− 1 + ζ)− c0 − c1v

υ(v) =
1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ)− c0 − c1v, (9)

for v ∈ [ζ − 1,℘+ ζ]Nζ−1 . Additionally, we have,

∆[υ(v)−Θ(v, υ(v))] = 1
Γ(ζ−1)

v−ζ+1
∑

s=0
(v− s− 1)(ζ−2)M(s− 1 + ζ)− c1,

v ∈ [ζ − 1,℘+ ζ]Nζ−1 .

Using the boundary conditions, the constants are evaluated

c0 = Θ(ζ − 1, g(υ))−
[

g(υ) + ζ−1−v
Γ(ζ−1)

℘+1
∑

s=0
(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ) + A + ψ(υ)

]
,

c1 = 1
Γ(ζ−1)

℘+1
∑

s=0
(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ)− A− ψ(υ).

On the substitution of c0 and c1 in (9), we obtain (8).
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Conversely, if υ(v) is the solution of (8), it is clear that solution obtained from (8)
satisfies (1). The proof is complete.

Define the operator P : B→ B by

Pυ(v) =Θ(v, υ(v))−Θ(ζ − 1, g(υ)) +
1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

+ g(υ) +
(ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

+ (ζ − 1−v)(A + ψ(υ)),

(10)

for v ∈ [ζ − 1,℘+ ζ]Nζ−1 . It is obvious that υ(v) is a solution of (1) if it is a fixed point
of (10).

Theorem 3. If

ρ =L1(1 + K) + K + (℘+ 1)λ +L
[

1
Γ(ζ)

℘

∑
s=0

(℘+ ζ − s− 1)(ζ−1)

+
(℘+ 1)
Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)
]
< 1,

(11)

then the boundary value problem (1) has an unique solution in B.

Proof. For each v ∈ [ζ − 1,℘+ ζ]Nζ−1 and υ, υ1 ∈ B,

|Pυ(v)− Pυ1(v)| ≤ L1|υ− υ1|+ KL1|υ− υ1|+L 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)[|υ− υ1|]

+L|(ζ − 1−v)| 1
Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)[|υ− υ1|]

+ K|υ− υ1|+ |(ζ − 1−v)|λ|υ− υ1|

≤
[
L1 + KL1 +L 1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1) + K + |(ζ − 1−v)|λ

+L|(ζ − 1−v)| 1
Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)
]
‖υ− υ1‖

≤
[
L1 + KL1 +L 1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1) + K

+L(℘+ 1)
1

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2) + (℘+ 1)λ
]
‖υ− υ1‖

‖Pυ(v)− Pυ1(v)‖ ≤ ρ‖υ− υ1‖.

Thus, P is a contraction mapping on B with ρ < 1. From Theorem 1, it is clear that P has a
unique fixed point. The proof is complete.

Theorem 4. Assume that J1, J2 hold and there exists non-zero real constants ξ1, ξ2, ξ3, such that

|M(v, υ(v))| < ξ1, |g(υ(v))| < ξ2, |ψ(υ(v))| < ξ3. (12)

If
L1(1 + K) + K + (℘+ 1)M < 1, (13)
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then a solution for the problem (1) with boundary condition exists in B.

Proof. LetH = {υ ∈ B : ‖υ‖ ≤ S}, where S ∈ R+, such that

S ≥ 2Θ0 + ξ2 + ξ3 + A +W
1−L1(1 + K)

, (14)

where Θ0 = max
v∈[ζ−1,℘+ζ]Nζ−1

|Θ(v, 0)| and

W =
ξ1

Γ(ζ)

℘

∑
s=0

(ζ + ℘− s− 1)(ζ−1) + (℘+ 1)

[
ξ1

Γ(ζ − 1)

℘+1
∑

s=0
(ζ + ℘− s− 1)(ζ−2)

]
.

It is clear that the subset H ∈ B is convex, bounded and closed. Define the operators
P1 : B→ B and P2 : H → B as

P1υ =Θ(v, υ(v))−Θ(ζ − 1, g(υ)) + g(υ) + (ζ − 1−v)(A + ψ(υ))

P2υ =
1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

+
(ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

We shall proceed to show that the operators satisfy the conditions of Theorem 2.

Step 1: The operator P1 is a contraction. From the assumptions J1 and J2, we have

|P1υ− P1υ1| ≤|Θ(v, υ(v))−Θ(v, υ1(v))|+ |Θ(ζ − 1, g(υ))−Θ(ζ − 1, g(υ1))|
+ |g(υ)− g(υ1)|+ |ζ − 1 + v||ψ(υ)− ψ(υ1)|

‖P1υ− P1υ1‖ ≤(L1(1 + K) + K + (℘+ 1)λ)‖υ− υ1‖

It is evident from the condition (13) that the operator P1 is a contraction.
Step 2: We aim at proving P2 is completely continuous onH.

Since the continuity of P2 is straightforward implication of continuity ofM, we
proceed to prove the uniform boundedness of P2.

|P2υ| =
∣∣∣∣ 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

+
(ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣
≤ 1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)|M(s− 1 + ζ, υ(s− 1 + ζ))|

+
|(ζ − 1−v)|

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)|M(s− 1 + ζ, υ(s− 1 + ζ))|

≤ ξ1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1) +
ξ1(℘+ 1)
Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)

≤W

Thus, the uniform boundedness onH of P2 is confirmed.
We now prove the equicontinuity of P2.
Let for any ε > 0, there exist v1, v2 ∈ [ζ − 1,℘+ ζ]Nζ−1 with v1 < v2, such that
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∣∣∣∣ ξ1

Γ(ζ)

[
v2−ζ

∑
s=0

(v2 − s− 1)(ζ−1) −
v1−ζ

∑
s=0

(v1 − s− 1)(ζ−1)

]∣∣∣∣
+ |(ζ − 1−v2)− (ζ − 1−v1)|

[
ξ1

Γ(ζ − 1)

℘+1

∑
s=0

(ζ + ℘− s− 1)(ζ−2)

]
< ε.

(15)

In this case,

|P2υ(v2)−P2υ(v1)| =
∣∣∣∣ 1
Γ(ζ)

v2−ζ

∑
s=0

(v2 − s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

+
(ζ − 1−v2)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

− 1
Γ(ζ)

v1−ζ

∑
s=0

(v1 − s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

− (ζ − 1−v1)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣
≤ 1

Γ(ζ)

∣∣∣∣
[

v2−ζ

∑
s=0

(v2 − s− 1)(ζ−1) −
v1−ζ

∑
s=0

(v1 − s− 1)(ζ−1)

]

M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣+ ∣∣∣∣[(ζ − 1−v2)− (ζ − 1−v1)]

1
Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣
≤
∣∣∣∣ ξ1

Γ(ζ)

[
v2−ζ

∑
s=0

(v2 − s− 1)(ζ−1) −
v1−ζ

∑
s=0

(v1 − s− 1)(ζ−1)

]∣∣∣∣
+ |(ζ − 1−v2)− (ζ − 1−v1)|

[
ξ1

Γ(ζ − 1)

℘+1

∑
s=0

(ζ + ℘− s− 1)(ζ−2)

]
|P2υ(v2)−P2υ(v1)| ≤ ε.

Therefore, the operator P2 is equi-continuous and Arzela–Ascoli’s theorem guaran-
tees the completely continuity of P2.

Step 3: We aim to prove that υ = P1υ + P2υ1, for all υ1 ∈ H ⇒ υ ∈ H.
Let υ ∈ B, υ1 ∈ H, such that υ = P1υ + P2υ1.

|υ(v)| ≤|P1υ|+ |P2υ1|
≤|Θ(v, υ(v))−Θ(ζ − 1, g(υ)) + g(υ) + A + ψ(υ)|+ P2υ1

≤|Θ(v, υ(v))−Θ(v, 0) + Θ(v, 0)|+ |g(υ)|+ |ψ(υ)|+ A

+ |Θ(ζ − 1, g(υ))−Θ(v, 0) + Θ(v, 0)|+W
≤[L1(1 + K)]|υ|+ 2Θ0 + A +W+ ξ2 + ξ3

‖υ(v)‖ ≤2Θ0 + A + W + ξ2 + ξ3

1− (L1(1 + K))
≤S .

It is evident that υ(v) ∈ H and ensures the existence of at least one solution for the
problem (1).

This completes the proof of the theorem.
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4. Hyers–Ulam Stability

In this section, we introduce the concept of Hyers–Ulam–Mittag–Leffler stability in
the following definitions. Consider the Equation (1) and the following inequalities:∣∣∣∆ζ

∗[υ1(v)−Θ(v, υ1(v))]−M(v− 1 + ζ, υ1(v− 1 + ζ))
∣∣∣ ≤ ε, v ∈ [0,℘]N0

. (16)

∣∣∣∆ζ
∗[υ1(v)−Θ(v, υ1(v))]−M(v + ζ − 1, υ1(v + ζ − 1))

∣∣∣ ≤ εφ(ζ − 1 + v), v ∈ [0,℘]N0
. (17)

∣∣∣∆ζ
∗[υ1(v)−Θ(v, υ1(v))]−M(v + ζ − 1, υ1(v + ζ − 1))

∣∣∣ ≤ εFζ(λ, v), v ∈ [0,℘]N0
. (18)

Definition 4. Equation (1) is Hyers–Ulam stable, if a positive real number γ > 0 exists for every
ε > 0 and solution υ1 ∈ B of (16) then there is a solution υ ∈ B of (1) with

|υ1(v)− υ(v)| ≤ γε, v ∈ [ζ − 1,℘+ ζ]Nζ−1 .

Definition 5. Equation (1) is Hyers–Ulam–Rassias stable with respect to φ if a positive real num-
ber γ > 0 exists for every ε > 0 and solution υ1 ∈ B of (17) then there is a solution υ ∈ B of (1) with

|υ1(v)− υ(v)| ≤ γφ(v)ε, v ∈ [ζ − 1,℘+ ζ]Nζ−1 .

Definition 6. Equation (1) is Hyers–Ulam–Mittag–Leffler stable with Mittag–Leffler function
Fζ(λ, v) if a positive real number γ1 > 0 exists for every ε > 0 and solution υ1 ∈ B of (18) then
there is a solution υ ∈ B of (1) with

|υ1(v)− υ(v)| ≤ γεFζ(λ, v), v ∈ [ζ − 1,℘+ ζ]Nζ−1 .

Before proceeding to prove the stability results let us consider the following remarks
which are natural consequences of the above paragraphs. We now will define functions
h1, h2 and h3 for proving the inequalities that are required to ensure the stability in the
sense of Hyers and Ulam with Mittag–Leffler function.

Remark 1. A function υ1 ∈ B is a solution of (16) if, and only if, a function

h1 : [ζ − 1,℘+ ζ]Nζ−1 → R

exists such that:

(i) |h1(v− 1 + ζ)| ≤ ε, v ∈ [0,℘]N0
;

(ii) ∆ζ
∗[υ1(v)−Θ(v, υ1(v))] = h1(v− 1+ ζ)+M(v− 1+ ζ, υ1(v− 1+ ζ)), v ∈ [0,℘]N0

.

Remark 2. A function υ1 ∈ B is a solution of (17) if, and only if, a function

h2 : [ζ − 1,℘+ ζ]Nζ−1 → R

exists such that:

(i) |h2(v− 1 + ζ)| ≤ εφ(v− 1 + ζ), v ∈ [0,℘]N0
;

(ii) ∆ζ
∗[υ1(v)−Θ(v, υ1(v))] = h2(v− 1+ ζ)+M(v− 1+ ζ, υ1(v− 1+ ζ)), v ∈ [0,℘]N0

.

Remark 3. A function υ1 ∈ B is a solution of (18) if and only if a function

h3 : [ζ − 1,℘+ ζ]Nζ−1 → R

exists such that:

(i) |h3(v− 1 + ζ)| ≤ εFζ(µ, v), v ∈ [0,℘]N0
;
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(ii) ∆ζ
∗[υ1(v)−Θ(v, υ1(v))] = h3(v− 1+ ζ)+M(v− 1+ ζ, υ1(v− 1+ ζ)), v ∈ [0,℘]N0

.

Theorem 5. Assume that J1 and J2 hold. Let υ1 ∈ B be a solution of (18) and υ ∈ B be a solution
of boundary value problem (1). Then, (1) is Hyers–Ulam stable provided

[L1(1 + K) + K + (℘+ 1)λ]Γ(ζ + 1)Γ(℘+ 1) +LΓ(ζ + ℘+ 1)(ζ + 1) < Γ(ζ + 1)Γ(℘+ 1). (19)

Proof. Inequality (16) and Remark (1) implies∣∣∣∣υ1(v)−Θ(v, υ1(v)) + Θ(ζ − 1, g(υ1))− g(υ1)− (ζ − 1−v)[A + ψ(υ1)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ1(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ1(s− 1 + ζ))

∣∣∣∣
≤ ε

Γ(℘+ ζ + 1)
ζΓ(ζ)Γ(℘+ 1)

.

(20)

From (8) and (20), we obtain

|υ1(v)− υ(v)| ≤
∣∣∣∣υ1(v)−Θ(v, υ(v)) + Θ(ζ − 1, g(υ))− g(υ)− (ζ − 1−v)[A + ψ(υ)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣
≤
∣∣∣∣υ1(v)−Θ(v, υ(v)) + Θ(ζ − 1, g(υ))− g(υ)− (ζ − 1−v)[A + ψ(υ)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

−Θ(v, υ1(v)) + Θ(ζ − 1, g(υ1))− g(υ1)− (ζ − 1−v)[A + ψ(υ1)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ1(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ1(s− 1 + ζ))

+ Θ(v, υ1(v))−Θ(ζ − 1, g(υ1)) + g(υ1) + (ζ − 1−v)[A + ψ(υ1)]

+
1

Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ1(s− 1 + ζ))

+
(ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ1(s− 1 + ζ))

∣∣∣∣



Symmetry 2022, 14, 1877 10 of 16

≤
[

L
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1) +
L|(ζ − 1−v)|

Γ(ζ − 1)
℘

∑
s=0

(℘+ ζ − s− 2)(ζ−2)
]
|υ1 − υ|+ ε

Γ(℘+ ζ + 1)
Γ(ζ + 1)Γ(℘+ 1)

≤
[
L1(1 + K) + K + (1 + ℘)λ +

LΓ(ζ + ℘+ 1)
Γ(ζ + 1)Γ(℘+ 1)

(1 + ζ)

]
|υ1 − υ|

+ ε
Γ(℘+ ζ + 1)

ζΓ(ζ)Γ(℘+ 1)

‖υ1 − υ‖ ≤γε.

Therefore, if (19) holds, then (1) is stable in the sense of Hyers–Ulam with constant
γ = Γ(℘+ζ+1)

Γ(ζ+1)Γ(℘+1)−[(L1(1+K)+K+(℘+1)λ)Γ(ζ+1)Γ(℘+1)+LΓ(ζ+℘+1)(ζ+1)] .

Theorem 6. Assume that J1 and J2 and the following condition holds. Consider an increasing
function φ : [ζ − 1,℘+ ζ]Nζ−1 → R+ and a constant δ > 0 such that:

1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)φ(s− 1 + ζ) ≤ δεφ(s− 1 + ζ), v ∈ [0,℘]N0
. (21)

Let υ1 ∈ B be a solution of (17) and υ ∈ B be a solution of (1). Then, (1) is Ulam–Hyers–Rassias
stable provided (19) holds.

Proof. Theorem (6) follows from the proof of Theorem (5).

Theorem 7. Assume that J1 and J2 holds. Let υ1 ∈ B be a solution of (18) and υ ∈ B be a solution
of (1) Then, (1) is Hyers–Ulam–Mittag–Leffler stable provided (19) holds.

Proof. Inequality (18) and Remark (3) implies:∣∣∣∣υ1(v)−Θ(v, υ1(v)) + Θ(ζ − 1, g(υ1))− g(υ1)− (ζ − 1−v)[A + ψ(υ1)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ1(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ1(s− 1 + ζ))

∣∣∣∣
≤ ε

µ
Fζ(µ, v).

(22)

From (8) and (22), we obtain:

|υ1(v)− υ(v)| ≤
∣∣∣∣υ1(v)−Θ(v, υ(v)) + Θ(ζ − 1, g(υ))− g(υ)− (ζ − 1−v)[A + ψ(υ)]

− 1
Γ(ζ)

v−ζ

∑
s=0

(v− s− 1)(ζ−1)M(s− 1 + ζ, υ(s− 1 + ζ))

− (ζ − 1−v)

Γ(ζ − 1)

℘+1

∑
s=0

(℘+ ζ − s− 1)(ζ−2)M(s− 1 + ζ, υ(s− 1 + ζ))

∣∣∣∣
≤|υ1(v)− Pυ1(v)|+ |Pυ1(v)− Pυ(v)|

‖υ1 − υ‖ ≤γ1εFζ(µ, v).
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Therefore, if (19) holds then (1) is Hyers–Ulam–Mittag–Leffler stable with constant
γ1 = Γ(ζ+1)Γ(℘+1)

µ[Γ(ζ+1)Γ(℘+1)−[(L1(1+K)+K+(℘+1)λ)Γ(ζ+1)Γ(℘+1)+LΓ(ζ+℘+1)(ζ+1)]] .

5. Applications

The rate of heat flow can be increased by enhancing one of the following three factors:
surface area, difference in temperature, and convective heat transfer coefficient. The direc-
tion of transfer of heat from the region of the high temperature to the region of the lower
temperature. Temperature difference between the object and its surroundings does have an
impact on the heat transfer. Since there are certain limitations in varying the temperature
(depends on the process) and heat transfer coefficient (cannot be increased beyond certain
values), the only possible and most economical way of enhancing heat transfer is by intro-
ducing fins to the system. These metallic surfaces of different shapes with its length greater
than its diameter or thickness have adiabatic or cooled tip [57]. The contact at the base of
the surface may be perfect or imperfect. The general differential equation representing fins
with constant thermal conductivity (λ) is

d2υ(x)
dx2 +

1
A(x)

dA(x)
dx

du(x)
dx

− h̄P(x)
λA(x)

= 0, 0 ≤ x ≤ L, (23)

where L is the length of the fin, heat transfer coefficient is denoted by h̄, P(x), and A(x)
are the perimeter of the fin and area of cross section. The boundary conditions for the heat
transfer through a fin can be defined in three different ways. The first two ways depend
on the nature of contact (complete or incomplete) that the fin has with the surface and the
third on being tip of fin that are insulated. For a fin with an insulated tip, the boundary

condition at x = L is
du
dx

= 0. The real life applications of these fins varies from radiators
in cars, natural cooling of bike engines, heat sinks in CPUs, power plants, and hydrogen
fuel cells. The fins type application in nature includes ears of Fennec foxes and Jack rabbits
used for release of heat that is generated by the blood flow in their body.

Example 1. Here in this example, we consider an adiabatic type fin used for heat transfer with
constant perimeter and cross-sectional area. Then, the discrete fractional order form of (23) is

∆
3
2 υ(v)− (h̄P)

ϑAc
υ(v + 0.5) = 0, v ∈ [0, 10]N0 , (24)

with boundary conditions υ(0.5) = 0.01 and ∆υ(11.5) = 0.
Let the heat transfer coefficient h̄ = 1W/m2K, thermal conductivity ϑ = 1.750kW/mK, perimeter
of fin P = 2.2m and area of cross section of fin Ac = 0.3850m2. Then,M(v, υ) = (h̄P)

ϑAc
υ(v + 0.5)

for every v ∈ [0.5, 11.5].
Hence, J1 and J2 are satisfied with L = 0.0033, K = 0.01, and ζ = 3

2 . Then, from Theorem (3), we
observe ρ = 0.2545 < 1

Thus, (24) has a unique solution. In order to prove Hyers–Ulam stability of (24), we shall
check the inequality (16). Let υ(v) = v(2)

15 and ε = 0.5.∣∣∣∣∆ 3
2 υ(v)− (h̄P)

ϑAc
υ(v + 0.5)

∣∣∣∣ =
∣∣∣∣∣∆−0.5∆2 v(2)

15
− (h̄P)

ϑAc

(v + 0.5)(2)

15

∣∣∣∣∣
= |0.5158− 0.0287|
= 0.4907 < ε.
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Thus, the inequality (16) is satisfied. Similarly, from the inequality (18), we obtain∣∣∣∣∆ 3
2 υ(v)− (h̄P)

ϑAc
υ(v + 0.5)

∣∣∣∣ = 0.4907

< εF1.5(0.1, 1)

= 0.55.

Therefore, Theorems (5) and (7) imply Hyers–Ulam stablility and Hyers–Ulam–Mittag–Leffler
Stability of (24).

The effect that thermal conductivity of the surface has on the stability of the system is analyzed
with different values of ϑ. The values that are obtained at different order of the system are tabulated
in Table 1. The values are plotted in Figure 1 and the stability conditions for the considered parameter
values are less than 1. Hence, it coincides with our theory. A 3-dimensional plot for continuously
varying thermal conductivity ϑ, fractional order ζ and corresponding values of ρ is presented in
Figure 2. It can be observed from Figures 1 and 2 that the increase in thermal conductivity results
in stability of the system. The values tabulated in Table 1 also reflects the corresponding impact of
fractional order and thermal conductivity on the stability of the system. From the 3-dimensional plot
it is visible that for thermal conductivity of 1.5 kW/mK and fractional order υ = 1.99 the stability
condition attains greater value near to 1, proving that at υ = 1.99 and for lesser values of ϑ the
system becomes unstable.

1.2 1.4 1.6 1.8 2

0.3

0.4

0.5

0.6

0.7

Fractional Order

ρ

 

 
ϑ  = 1.5 kW/mK

ϑ  = 2.0 kW/mK

ϑ  = 2.5 kW/mK

ϑ  = 3.0 kW/mK

Figure 1. Results illustrating impact of fractional order (ζ) on stability Condition (ρ).

Figure 2. The 3-dimensional plot of results illustrating impact of fractional order (ζ) and thermal
conductivity (ϑ) on (ρ).
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Table 1. Impact of fractional order ζ on the stability condition ρ.

υ ϑ = 1.5 kW/mK ϑ = 2.0 kW/mK ϑ = 2.5 kW/mK ϑ = 3 kW/mK

ρ

1.09 0.5148 0.3886 0.3129 0.2624
1.19 0.5435 0.4107 0.3301 0.2768
1.29 0.5690 0.4293 0.3454 0.2895
1.39 0.5922 0.4466 0.3593 0.3011
1.49 0.6138 0.4629 0.3723 0.3119
1.59 0.6351 0.4788 0.3851 0.3225
1.69 0.6573 0.4955 0.3984 0.3336
1.79 0.6819 0.5139 0.4131 0.3460
1.89 0.7106 0.5355 0.4304 0.3603
1.99 0.7453 0.5615 0.4512 0.3777

Example 2. Consider the non-linear fractional difference equation

∆
9
5 υ(v)− (v + 0.8)−(0.95)

25
sin(υ(v + 0.8)) = 0, v ∈ [0, 12]N0 , (25)

with boundary conditions υ(0.8) = υ
10 and ∆υ(13.8) = 0.02.

TakeM(v, υ) = Γ(v+1.8)
25Γ(v+2.75) sin(υ(v + 0.8)) for every v ∈ [0.8, 13.8].

Hence, J1 and J2 are satisfied with L = Γ(v+1.8)
25Γ(v+2.75) , K = 0.1 and ζ = 9

5 . Then, from Theorem (3),

we obtain ρ = 0.7592 < 1. Thus, (25) has a unique solution. With υ(v) = v(2)

10 and ε = 0.4,
the inequality (16) implies∣∣∣∣∆ 9

5 υ(v)− (v + 0.8)−(0.95)

25
sin(υ(v + 0.8))

∣∣∣∣
=

∣∣∣∣∣∆−0.2∆2 v(2)

10
− (v + 0.8)−(0.95)

25
sin

(
(v + 0.8)(2)

10

)∣∣∣∣∣
= 0.3736 < ε.

The inequality (16) holds, similarly with the inequality (18), we obtain∣∣∣∣∣∆ 9
5 υ(v)− (v + 0.8)−(0.95)

25
sin(υ(v + 0.8))

∣∣∣∣∣ = 0.3736

< εF1.8(0.1, 1)

= 0.44.

From Theorems (5) and (7), we establish Hyers–Ulam stablility and Hyers–Ulam–Mittag–Leffler
stability of (25).

The impact of varying fractional order ζ on the stability of the problem (25) is represented in
Figure 3 by plotting ρ defined in (11). The start and end points along the x-axis are based on the
range of fractional order ζ ∈ (1, 2). The corresponding values obtained are tabulated in Table 2.
From Figure 3 it can be understood that the value of ρ for all the values ζ ∈ (1, 2) is less than
1 coinciding with the theory. Figure 3 illustrates that the considered system (25) remains stable
for ζ ∈ (1, 2), but the value of ρ increases with increasing fractional order ζ. Thus, for choice of
different parameter values the system (25) may be unstable when the order of the system is higher.
The regression equation for the values tabulated in Table 2 is given by Y = 0.2052 X + 0.5215.
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Table 2. Impact of fractional order ζ on ρ.

ζ 1.09000 1.1900 1.29000 1.3900 1.4900 1.5900 1.6900 1.7900 1.8900 1.9900

ρ 0.7416 0.7688 0.7913 0.8105 0.8275 0.8440 0.8616 0.8821 0.9077 0.9405

1.2 1.4 1.6 1.8 2
0.7

0.75

0.8

0.85

0.9

0.95

Fractional order

ρ

Figure 3. Impact of fractional order (ζ) on stability Condition (ρ).

6. Conclusions

The hybrid type boundary value problem with fractional order discrete time is con-
sidered and existence results along with the uniqueness of the solution are established.
The stability in the sense of Hyers and Ulam using Mittag–Leffler function is illustrated
for the boundary value problem. The application of heat transfer between surfaces using
fins is taken into consideration and theoretical results obtained for general case are applied
to check the suitability. The 2D and 3D simulations are provided to strengthen the results.
The thermal conductivity (ϑ) and fractional order υ are taken as a parameters of study and
is varied between 1.5 kW/mK and 3.0 kW/mK and (1, 2), respectively, to analyze their
impact. It can be observed that the boundary problem of heat transfer with fins remains
stable for all the values of ϑ ∈ (1.5, 3.0) and for fractional order ζ ∈ (1, 2). The work can be
further extended to explore the stability properties of hybrid type sum-difference equations
with variable order.
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