
Citation: Levina, A.;

Mukhamedjanov, D.; Bogaevskiy, D.;

Lyakhov, P.; Valueva, M.; Kaplun, D.

High Performance Parallel

Pseudorandom Number Generator

on Cellular Automata. Symmetry

2022, 14, 1869. https://doi.org/

10.3390/sym14091869

Academic Editor: Sergei D.

Odintsov

Received: 29 July 2022

Accepted: 2 September 2022

Published: 7 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

High Performance Parallel Pseudorandom Number Generator
on Cellular Automata
Alla Levina 1,* , Daniyar Mukhamedjanov 1, Danil Bogaevskiy 1 , Pavel Lyakhov 1,2 , Maria Valueva 3

and Dmitrii Kaplun 1

1 Faculty of Computer Science and Technology, Saint Petersburg Electrotechnical University “LETI”,
197022 St. Petersburg, Russia; dmukhamedjanov@etu.ru (D.M.); dvbogaevskiy@etu.ru (D.B.);
pliakhov@ncfu.ru (P.L.); dikaplun@etu.ru (D.K.)

2 Department of Applied Mathematics and Mathematical Modeling, North-Caucasus Federal University,
355000 Stavropol, Russia

3 Department of Number Theoretic Systems, North-Caucasus Federal University, 355000 Stavropol, Russia;
mvalueva@ncfu.ru

* Correspondence: ablevina@etu.ru

Abstract: Nowadays, the practice of developing algorithms to maintain the confidentiality of data
shows that there is a lack of some features, such as velocity, predictability, etc. Generating pseudoran-
dom numbers is one such problem that lies in the basement of many algorithms, even in hardware
microprograms. An unreliable generator can cause cyberattacks on it, despite the security in the
upper layers. At the same time, the algorithm should be fast enough to provide uninterrupted circuit
work for the entire system. The paper presents a new algorithm generating pseudorandom numbers
on cellular automata, which is not only fast and easy-repeating, but unpredictable enough and can be
used in cryptographic systems. One of the main tasks of pseudorandom number generators (PRNG)
is to present a high level of nonlinearity, or as it can also be named, asymmetry. Using the National
Institute of Standards and Technology (NIST) statistical test suite for random number generators
and pseudorandom number generators, it is shown that the presented algorithm is more than three
times superior to the state-of-the-art methods and algorithms in terms of p-value. A high level of
the presented algorithm’s parallelization allows for implementation effectively on calculators with
parallel structure. Central Processing Unit (CPU)-based architecture, Field-Programmable Gate Array
(FPGA)-based architecture, Compute Unified Device Architecture (CUDA)-based architecture of
PRNG and different PRNG implementations are presented to confirm the high performance of the
proposed solution.

Keywords: cellular automata; pseudorandom number generation; parallel computing; hardware-
based parallel implementation

1. Introduction

There is a large interest in the world research society in the security and ways of its
realization in both hardware and software engineering. Nowadays, all areas of IT need
to be protected from cyberattacks; some attacks are presented in [1–6]. Building secure
software on many levels, such as network, application, etc., gave protection from variable
attacks and increased level of confidence. To protect all layers of systems can be used
ciphers [7–9] and/or error-detecting/error-correcting codes, some of them are based on
random numbers. For an example, random numbers used in PIN and password generation
(PIN Protection Principles, ANSI X9.8:1, Password Generation, FIPS 181-1993), and prime
generation (DSA, ANSI X9.30, RSA, ANSI X9.31, Prime Number Generation, ANSI X9.80)
random challenges for authentication (Entity Authentication using PKC, FIPS 196) and
key confirmation (NIST Key Schemes Recommendation). Such algorithms need to use

Symmetry 2022, 14, 1869. https://doi.org/10.3390/sym14091869 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091869
https://doi.org/10.3390/sym14091869
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4421-2411
https://orcid.org/0000-0001-6607-3294
https://orcid.org/0000-0003-0487-4779
https://orcid.org/0000-0002-4732-3216
https://orcid.org/0000-0003-2765-4509
https://doi.org/10.3390/sym14091869
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091869?type=check_update&version=1

Symmetry 2022, 14, 1869 2 of 19

absolutely random numbers, which are generated by physical processes and then are
handled with hardware and software to obtain the correct formal number [10,11].

Random numbers are needed in various applications, but finding good random
number generators is a difficult task [11]. All practical methods for generating random
numbers are based on deterministic algorithms, so such numbers are more correctly called
pseudo-random numbers, since they differ from true random numbers obtained as a result
of some natural physical process.

Many systems must have the ability to process the same numbers again under the same
conditions and with data of the same origin. For these needs, a pseudorandom generator
can be used that can repeat the same numbers as much as it will be needed. There are many
examples of using various algorithms, such as linear shift or Yarrow (or Fortuna) [12], which
are very good for their options, and some of them are even cryptographically secure [13].

Cryptographic applications use deterministic algorithms to generate random numbers,
therefore generating a sequence of numbers that theoretically cannot be statistically random.
At the same time, if you choose a good algorithm, the resulting numerical sequence—
pseudorandom numbers—will pass most tests for randomness. One of the characteristics
of such a sequence is a long repetition period [14].

Examples of well-known cryptographically strong PRNGs are RC4, ISAAC [15], SEAL [16],
SNOW [17], the very slow theoretical Bloom–Blum–Shuba algorithm [18], as well as coun-
ters with cryptographic hash functions or cryptographically secure block ciphers instead of
the output function.

In addition, cryptographically strong ciphers include generators with multiple shift
registers, generators with nonlinear transformations, and majority encryption generators
such as A5/x.

Many researchers are focusing now on the creation of PRNG based on physical pro-
cesses, some latest results in this area can be found in [19–21], the authors present PRNG
based on a discrete hyper-chaotic system with an embedded cross-coupled topological
structure, Hopfield Neural Network, and memristive Hopfield neural network (MHNN).

In 2022, the first PRNG algorithm based on the absolute value function Itamaracá [22]
was presented; it is also a simple and fast model that generates aperiodic sequences of
random numbers.

In this paper, we present a new algorithm for generating pseudorandom numbers,
based on cellular automata, and illustrate its implementation on FPGA and CUDA. Nowa-
days, there are a number of PRNG algorithms based on CA using one or more rules on
the same grid with standard neighborhood patterns, using LFSR, gaps, delays, and, less
commonly, nonlinear functions. In this work, the application of several neighborhood
templates, several independent cellular automata, and implementation of transitions of
various cellular automata according to various sets of rules and expansion of rule sets
based on the complementarity of the number of ones and zeros for a statistically normal
distribution will be used.

The paper describes in detail the principle of operation of the presented algorithm, its
strictly formalized mathematical model, the properties used in the development and the
mathematical models and concepts underlying the generator. The paper also contains a
description of the tests performed from the ready-made statistical software package, the
grounds for these tests, a description of each of them, and the results and performance of
the algorithm on the selected tests.

Compared to the existing algorithm, the presented algorithm is different from the
previous and similar ones in several respects:

1. better results in some NIST test;
2. work speed;
3. parallelization in hardware implementation;
4. flexibility;
5. simplicity of architecture.

Symmetry 2022, 14, 1869 3 of 19

The paper is organized as follows: Section 1 presents an overview of ideas used in
random number generators, the mathematical structure of homogeneous structures (HS)
and cellular automata, Section 2 illustrates the created algorithm, giving a mathematical
explanation of the presented algorithm, Section 3 demonstrates test results, Section 4
illustrates the implementation of the created algorithm on FPGA, and Section 5 gives
CPU and CUDA implementation of the algorithm. In conclusion, a short overview of the
presented work is given.

2. Random Number Generators Overview

Random numbers are needed in a variety of applications, yet finding good random
number generators (RNG) is a difficult task. In recent years, some new results of build-
ing pseudorandom number generators (PRNGs) based on chaos and chaotic map were
presented [23–27] and in work [28].

Actually, ’true’ random generation is mostly based on some kind of natural physical
processes, or in another way, the ’noise’ source features of some machine hardware may be
used. Simplifying, there are many ways to determine some noises as “1” or “0”, giving a
sequence of bits, and as a result a number. This number is exactly what we need.

However, the difference between these and pseudorandom generators is in unique-
ness, which means that there is no chance of obtaining the same number more than once.
The great part of computations where a random number should be used is related to cryp-
tography. For simplicity, there is a need to control the calculation of the speed, effectiveness,
and repetition generated numbers (PRNG). Some examples to understand the general idea
of such generators will be presented in the following:

There exist many ways to generate pseudorandom numbers on a computer; the most
popular one is the Linear Congruential Generator (LCG). In 1951, Lehmer generator [29]
was published, and LCG was published in 1958 [30,31]. Today, LCG can be called the
method most commonly used for generating pseudorandom numbers. An advantage of
LCGs is that the period is known and long with the appropriate parameters. Although
not the only criterion, a short period is a fatal flaw in a PRNG [32]. LCGs based on the
following recurrent formula:

Xn+1 = (aXn + c) mod m, n ≥ 0, m > 0, 0 < a < m

The value m is the module, a is the multiplier, and c is an additive constant. The
sequence has a maximum possible period m, after which it starts to repeat itself [32]. LCGs
are very popular among researchers, and most mathematical software packages include
them. So-called lagged Fibonacci generators are also widely used. They are of the form:

Xn = (Xnr ◦ Xn p) mod m

The numbers r and p are called “lags”, and there are methods to choose them appro-
priately. The operator ◦ can be one of the following binary operators: addition, subtraction,
multiplication, or exclusive or. However, it should be noted that, from the point of view
of hardware implementation, both congruential and lagged Fibonacci RNGs are not very
suitable: they are inefficient in terms of silicon area and time when applied to fine-grained
massively parallel machines, for built-in self-test or for other on-board applications [33].

There is a sufficiently large roadmap to achieve the PRNG objective, which has features
such as simplicity, velocity, and unpredictability.

3. Homogeneous Structures (HS) and Cellular Automata (CA)

Homogeneous structures (HS) [34] may be formally described as σ = (Zk, En, V, φ),
where Zk—set of k-dimensional vectors, En = 0, 1, . . . , n− 1—set of states of one cell in
φ, V = (α1, . . . α(h−1))—neighborhood template (ordered set of distinct k-dimensional
vectors from Zk), φ = φ(x0, x1, . . . , x(h−1)), φ : (En)h → En—local transition function
(φ(0, 0, . . . , 0) = 0).

Symmetry 2022, 14, 1869 4 of 19

From the definition of HS, it can be seen that HS can be compared to the set of
ordinary Moore automata [35] if their states depended on the states of neighboring countries.
Actually, the neighborhood scheme can differ from each other (Neuman’s scheme is more
like a symbol plus with the changeable central cell, Moore’s scheme is more like the square
3 × 3). There are a great number of combinations that can be used.

In this paper, only one class of HS will be used. It can be represented like S = (k, n, m),
where k and n are described above, and m is the set of mi > 0, i = 1, . . . , k. Another
value needs to be determined—P = Vm(α). However, with some restrictions for values
k, n, (k = n = 2), it is obvious that |S| = 2(2

(h−1)).
Actually, as a result of some HS, without loss of generality for this research, this object

can be replaced by CA. Cellular automata (CA) [34] are dynamical systems in which space
and time are discrete. A cellular automata consists of an array of cells, each of which can
be in one of a finite number of possible states, updated synchronously in discrete time
steps, according to a local, identical interaction rule. Here, we will only consider Boolean
automata for which the cellular state s ∈ 0, 1. The state of a cell at the next time step is
determined by the current states of the surrounding neighborhood of cells. Cellular array
(grid) is d-dimensional, where d = 1, 2, 3 is used in practice; as an example for simplicity of
understanding, we shall concentrate on d = 1, i.e., one-dimensional grids.

Each rule in every single cell can be represented as a simple finite automata (or finite-
state machine) with its input states, transition function, and output state, which is the
result of using the rule function with input state as an entry [36,37]. However, in terms
of cellular automata, there is an entry as a set of states, called neighborhood, when the
next state is in formal dependence of states of the particular target cell and its surrounding
cells’ states [38,39]. For one-dimensional CA (Figure 1), the target cell is surrounded by r
neighbors (cells) at a discrete moment on the appropriate side (by template) where r cells
are called radius (each cell has 2r + 1 cells, which impact its next state).

Figure 1. Neighborhood (one-dimensional). left: [r = 1]; right: [r = 2].

Besides one-dimensional CAs, there are two main templates for two-dimensional
CAs (Figure 2): the first is the so-called von Neumann neighborhood [40] (when the
target cell is surrounded by four nondiagonal cells) and the second is called the Moore
neighborhood [41] (when the target cell is surrounded by eight cells).

Figure 2. Neighborhood (two-dimensional). left: Neumann neighborhood; right: Moore neighbor-
hood.

There are also two types of automata, which differ from each other by some kind of
complexity in terms of rules. The fact is that one type, called uniform CA, determines
one rule for all cells in the grid, but the second type, non-uniform [42] or inhomogenous
may have different rules for cells. At the same time, they both have the same features of
simplicity, locality, and parallelism with the difference in realization (inhomogenous ones
require more memory sources for describing rules). Additionally, when we think of finite
grid of CAs, it should be highlighted that one-dimensional CAs grids are represented by
the circular structure, when two-dimensional ones have a grid in toroidal form.

According to Wolfram’s notation [43], firstly, it should be determined that the con-
figuration is the set of ones and zeros (two-state CA, where the sequence is considered
as a random number) at a particular discrete moment of time. Wolfram also suggested
additional rule numbers. Let us describe the most popular Wolfram’s Rule 30 as an example:

Symmetry 2022, 14, 1869 5 of 19

In Boolean form, Rule 30 can be written as

f0(t + 1) = f(−1)(t)⊕ (f0(t) ∨ f1(t))

where the radius is r = 1 and f (t) is the state of cell i at time t. As we can see from this
formula, f0(t + 1) is the next state of the cell i at t + 1 step, which is a simple Boolean
function of neighbor cells states and target cell state at the step t. That is how a random
sequence of bits is obtained, counting every cell as a target cell in the same moment for all
the cells. There are several ways to make the sequence more complex and unpredictable,
e.g., time spacing and site spacing.

Time spacing is a method of generating configurations, when not every configuration
is a part of the resulting sequence; this means that some configurations are generated to
produce new ones only, but it will not be in the resulting sequence.

Site spacing is a method of generating sequences when only particular cells’ states in
the whole configuration (or a row) are bits of the resulting sequence. These methods are
obviously empowered by unpredictability feature for whole sequences, but, of course, time
or memory sources with these methods remain the same.

Another example in order to show how Wolfram’s rules can be encoded. For an example:
f (111) = 1, f (110) = 0, f (101) = 1, f (100) = 1, f (011) = 1, f (010) = 0, f (001) = 0,
f (000) = 0, is denoted Rule 184.

As an example of non-uniform CA, two rules can be taken: Rule 90 and Rule 150, which
are rules for particular cells in the grid. In Boolean form, the Rule 90 can be written as

f0(t + 1) = f(−1)(t)⊕ f1(t)

and Rule 150:
f0(t + 1) = f(−1)(t)⊕ f0(t)⊕ f1(t)

These rules perform a sufficiently effective random number generator, in spite of the
fact that they can be simply described as linear Boolean functions.

4. Algorithm of Generating Pseudorandom Numbers on Cellular Automata

The main idea of the presented algorithm is to combine the best practices for generating
pseudorandom numbers by cellular automata and a number of improvements to enforce
the general features of cellular automata, saving the best. Figure 3 presents the flowchart of
the proposed algorithm.

Figure 3. The flowchart of the proposed algorithm.

There are several subsections, which describe step-by-step all levels of algorithm
evolution. In addition, there are some ideas for improving the presented algorithm with
the help of genetic algorithms to expand the set of rules to be used to generate a pseudo-
random number.

4.1. Grid

The main result of the presented algorithm is that it can generate pseudo-random
sequences of numbers. Despite the fact that CA had already been used in such a way, we
improved some characteristics by adding new conditions and ideas. There is a grid, where
each cell only has two states: 0 and 1, and states are changed by some function. The result
of steps in algorithm will be a binary performed number, which can be formed from the
grid (or part of it). Thus, we have a grid with its sizes: p and q, which are both prime
numbers (to improve periodic features). Changes start right from this stage: dividing all

Symmetry 2022, 14, 1869 6 of 19

the grid into m ≥ 2 blocks, which are formed as rectangles bi with sizes lbi
and wbi

, and
each block consists of lbi

× wbi
cells (Figure 4). Thus, we obtain the equation:

p× q = ∑
2≤i≤m

(lbi
× wbi

)

Figure 4. Whole grid view.

This is quite a simple method, where each block needs to be placed in the grid, called
the compass (NESW—North, East, South, West) (Figure 5). The matter is that there will be
a rule by which blocks will be placed from the lower left corner and move to the North (up)
till the reaching of edge of the grid or to the next block, then to the East (right), South (down)
and West (left), according to their size values. This rule may vary for more flexibility, i.e.,
“snake” method of filling the grid (filling rows from the bottom to the top with switching to
the next row from opposite sides).

Figure 5. bi block grid view with the NESW scheme of filling.

Here is an example of using the NESW method of rule. Let us take rule 15 (00001111
in binary representation) and fill the grid with sizes 4× 5 (Figure 6).

Symmetry 2022, 14, 1869 7 of 19

Figure 6. NESW method using an example.

4.2. Rules and Neighborhood

We will work with only two-dimensional space; this means that we take d = 2, n = 2,
(Z2, E2). Firstly, start configuration will be formed by the rule NESW, the same as blocks. It
means that number lbi

× wbi
in binary form will fulfill the blockgrid along the narrowing

edges, etc. What about the rules? The solution of this question may be very flexible
because the algorithm is provided by two kinds of rules: numbered rules (like the rule 30
at the beginning of this article) and simple operations (their combination). Each block can
have its own rule, which makes the whole generating more non-uniform, which leads
to unpredictability and better periodic features. Here comes an idea which involves the
set of rules in the table, where each rule (both kinds) is encrypted in some combinations,
depending on the number of using rules.

Thus, the rule for each block may be chosen by the simple mod operation from the
lbi
× wbi

in case of using every possible rule in the block. However, for the best results,
there should be chosen several rules with an equal number of ones and zeros (it may be
used for the whole grid—if we have two blocks and three ones in the first block rule, so
the second block should have num-3 ones, where num is a length of rule-vector if both
vectors are equal). Additionally, to avoid bad generations, we should determine certain
rules for the grid. In addition, we could fill the “space” between the actual size of the grid
and formal. In order to avoid collisions of values, we should make our grid less than its
actual size for one cell (or two, depending on the neighborhood template) on each side.

The last question in generating our pseudorandom numbers is a neighborhood. The
fact is that, as far as we have blocks, we can choose several samples for some blocks and its
number and variety depending on the number of blocks. We can not use a number of rules
more than the number of blocks, but we can use similar ones for several blocks.

4.3. “Repeat Please”

Pseudorandom number generator must have the option of repeating the algorithm in
order to obtain a similar number after the same operations with the same conditions and
configurations. Actually, not to pass the result number, we can only send the key K—the
sequence of our data in order to repeat operations on the other end, if needed. We use
symbol | to mark concatenation:

K = p|q|lb1 |wb1 | . . . |lbm |wbm |V1| . . . |Vm|T

where Vi is sent like the sequence of 9 bits where each bit, if it is 1, then cell is in the sample,
and, when it is 0, it is out of sample.

Symmetry 2022, 14, 1869 8 of 19

(−1, 1) (0, 1) (1, 1)
(−1, 0) (0, 0) (1, 0)
(−1, −1) (−1, 0) (1, −1)

Therefore, this neighborhood mapping table becomes such a string

−1,−1; 0,−1; 1,−1;−1, 0; 0, 0; 1, 0;−1, 1; 0, 1; 1, 1

Here are the numbers of coordinates, instead of which, it should be placed 1 or 0. T is
a table, where each using rule may be encrypted, for example, a basic binary number. Thus,
in spite of the fact that we must send such a long-sized key, we can put some data in the
boundary cells, placed around our main grid in order to save correct transition of state. We
can save |V1|. . . |Vm|T part of the key in these cells, depending on its complexity and size.

4.4. Additional Function

To be sure that our algorithm will generate high-quality random number sequences,
we decided to use some nonlinear functions at this level of the development algorithm. The
reason is in the CA rules. The fact is that only part of the rules has good random features
(the ability to generate complex structures). However, if we take only this part of the rules,
we obtain too small a set of needed ones, and there are two ways to improve it. The first
one is to add a nonlinear function for XOR with the subset of the grid for making it more
complex. The second is that we can choose “good” (having randomness features) packs of
rules with the help of genetic algorithms or some kind of tutor algorithm. Therefore, the
evolution of CAs will show us only those rules which can be used in practice.

5. Test Results

Our algorithm was tested with the help of the NIST Test Suite, which was developed
to test RNG and PRNG [44]. The process of the test involved: generation sequences of
bits by our algorithm (around 1,000,000 bits), testing.txt file with a sequence with an NIST
test suite. The 10,000 variations of the rules pack and ways of filling the grid were tested,
as sizes of grids. As a result, the number of the most “productive” packs of rules-grid
size-neighborhood were highlighted.

Thus, we used the grid with sizes 307× 53, divided by six blocks of approximately
equal lengths, while the width of each block was 53. Each block was filled with bits,
generated by results of multiplication of blocks’ sizes, with the NESW method. The
neighborhood template was simple and even classical enough; it was a 3B rule (center cell
change state in dependence of its previous state and left and right neighbors’ ones). The
package of rules was: {45, 75, 89, 101, 135, 86}.

Rule 45:

000 001 010 011 100 101 110 111
1 0 1 1 0 1 0 0

Rule 75:

000 001 010 011 100 101 110 111
1 1 0 1 0 0 1 0

Rule 89:

000 001 010 011 100 101 110 111
1 0 0 1 1 0 1 0

Rule 101:

000 001 010 011 100 101 110 111
1 0 1 0 0 1 1 0

Symmetry 2022, 14, 1869 9 of 19

Rule 135:

000 001 010 011 100 101 110 111
1 1 1 0 0 0 0 1

Rule 86:

000 001 010 011 100 101 110 111
0 1 1 0 1 0 1 0

5.1. Short Description of Criteria with Results

The test statistic is used to calculate a p-value that summarizes the strength of the
evidence against the null hypothesis. For these tests, each p-value is the probability that
a perfect random number generator would have produced a sequence less random than
the sequence that was tested, given the kind of non-randomness assessed by the test. If
a p-value for a test is determined to be equal to 1, then the sequence appears to have
perfect randomness. A p-value of zero indicates that the sequence appears to be completely
non-random. A significance level (α) can be chosen for the tests. If p-value ≥ α, then
the null hypothesis is accepted; i.e., the sequence appears to be random. If p-value < α,
then the null hypothesis is rejected; i.e., the sequence appears to be non-random. The
parameter α denotes the probability of the TypeI error (if the data are, in truth, random,
then a conclusion to reject the null hypothesis (i.e., conclude that the data are non-random)
will occur a small percentage of the time) [44], α is equal to 0.01 [44].

5.1.1. Frequency (Monobit) Test

The focus of the test is the proportion of zeros and ones for the entire sequence. The
purpose of this test is to determine whether the number of ones and zeros in a sequence
is approximately the same as would be expected for a truly random sequence. The test
assesses the closeness of the fraction of ones to 0.5, that is, the number of ones and zeros in
a sequence should be about the same. All subsequent tests depend on the passing of this
test [44].

p-Value Proportion Statistical Test
0.744146 99.6% Frequency

5.1.2. Frequency Test within a Block

The focus of the test is the proportion of the ones within M-bit blocks. The purpose of
this test is to determine whether the frequency of ones in an M-bit block is approximately
M/2, as would be expected under an assumption of randomness. For block size M = 1,
this test degenerates to the Frequency (monobit) test [44].

p-Value Proportion Statistical Test
0.380537 99.4% BlockFrequency

5.1.3. Runs Test

The focus of this test is the total number of runs in the sequence, where a run is an
uninterrupted sequence of identical bits. A run of lengths k consists of exactly k identical
bits and is bounded before and after with a bit of opposite value. The purpose of the run
test is to determine whether the number of runs of ones and zeros of various lengths is as
expected for a random sequence [44].

p-Value Proportion Statistical Test
0.428244 98.5% Runs

Symmetry 2022, 14, 1869 10 of 19

5.1.4. Longest Run of Ones in a Block

The focus of the test is the longest run of ones within M-bit blocks. The purpose of
this test is to determine whether the length of the longest run of ones within the tested
sequence is consistent with the length of the longest run of ones that would be expected in
a random sequence. Note that an irregularity in the expected length of the longest run of
ones implies that there is also an irregularity in the expected length of the longest run of
zeroes. Therefore, only a test for ones is necessary [44].

p-Value Proportion Statistical Test
0.383827 99.1% LongestRun

5.1.5. Rank Test

The focus of the test is the rank of disjoint sub-matrices of the entire sequence. The
purpose of the test is to check for linear dependence among fixed length substrings of the
original sequence [44].

p-Value Proportion Statistical Test
0.702458 99.0% Rank

5.1.6. Discrete Fourier Transform (Spectral) Test

The focus of this test is the peak heights in the Discrete Fourier transform of the
sequence. The purpose of this test is to detect periodic features (i.e., repetitive patterns
that are close to each other) in the sequence tested that would indicate a deviation from
the assumption of randomness. The intention is to detect whether the number of peaks
exceeding the 95% threshold is significantly different than 5% [44].

p-Value Proportion Statistical Test
0.650637 99.5% FFT

5.1.7. Non-Overlapping Template Matching Test

The focus of this test is the number of occurrences of prespecified target strings. The
purpose of this test is to detect generators that produce too many occurrences of a given
non-periodic (aperiodic) pattern. For this test and for the Overlapping Template Matching
test, an m-bit window is used to search for a specific m-bit pattern. If the pattern is not
found, the window slides into a bit position. If the pattern is found, the window is reset to
the bit after the found pattern and the search is resumed [44].

p-Value Proportion Statistical Test
0.433358 98.7% NonOverlappingTemplate

5.1.8. Overlapping Template Matching Test

The focus of the Overlapping Template Matching test is the number of occurrences of
prespecified target strings. Both this test and the Non-overlapping Template Matching test
use an m-bit window to search for a specific m-bit pattern. As in the previous test, if the
pattern is not found, the window slides one bit in the position. The difference between this
test and the previous test is that; when the pattern is found, the window slides only one bit
before resuming the search [44].

p-Value Proportion Statistical Test
0.632191 100% OverlappingTemplate

5.1.9. Maurer’s “Universal Statistical Test”

The focus of this test is the number of bits between the matching patterns (a measure
that is related to the length of a compressed sequence). The purpose of the test is to
detect whether the sequence can be significantly compressed without loss of information.
A significantly compressible sequence is considered to be non-random [44].

Symmetry 2022, 14, 1869 11 of 19

p-Value Proportion Statistical Test
0.414862 98.3% Universal

5.1.10. Linear Complexity Test

The focus of this test is the length of a linear feedback shift register (LFSR). The purpose
of this test is to determine whether the sequence is complex enough to be considered
random. Random sequences are characterized by longer LFSRs. An LFSR that is too short
implies non-randomness [44].

p-Value Proportion Statistical Test
0.730485 100% LinearComplexity

5.1.11. Serial Test

The focus of this test is the frequency of all possible overlapping m-bit patterns
throughout the sequence. The purpose of this test is to determine whether the number of
occurrences of the 2mm-bit overlapping patterns is approximately the same as would be
expected for a random sequence. Random sequences have uniformity; that is, every m-bit
pattern has the same chance of appearing as every other m-bit pattern [44].

p-Value Proportion Statistical Test
0.651956 99.3% Serial

5.1.12. Approximate Entropy Test

The focus of this test is the frequency of all possible overlapping m-bit patterns across
the entire sequence. The purpose of the test is to compare the frequency of overlapping
blocks of two consecutive/adjacent lengths (m and m + 1) against the expected result for a
random sequence [44]:

p-Value Proportion Statistical Test
0.778903 99.1% Approximate Entropy

5.1.13. Cumulative Sums (Cusums) Test

The focus of this test is the maximal excursion (from zero) of the random walk defined
by the cumulative sum of adjusted (−1, +1) digits in the sequence. The purpose of the test
is to determine whether the cumulative sum of the partial sequences occurring in the tested
sequence is too large or too small relative to the expected behavior of that cumulative sum
for random sequences. This cumulative sum may be considered as a random walk. For a
random sequence, the excursions of the random walk should be near zero. For certain types
of non-random sequences, the excursions of this random walk from zero will be large [44].

p-Value Proportion Statistical Test
0.734146 99.9% CumulativeSums

5.1.14. Random Excursions Test

The focus of this test is the number of cycles that have exactly K visits in a cumulative
sum random walk. The cumulative sum random walk is derived from partial sums after
the (0, 1) sequence is transferred to the appropriate (−1, +1) sequence. A cycle of a random
walk consists of a sequence of steps of unit length taken at random that begin at and return
to the origin. The purpose of this test is to determine if the number of visits to a particular
state within a cycle deviates from what one would expect for a random sequence. This
test is actually a series of eight tests (and conclusions), one test (conclusion) for each of the
states −4, −3, −2, −1, +1, +2, +3, +4 [44].

Symmetry 2022, 14, 1869 12 of 19

p-Value Value
0.673779 −4
0.640660 −3
0.636757 −2
0.906842 −1
0.614216 +1
0.042225 +2
0.570447 +3
0.802887 +4

5.1.15. Random Excursions Variant Test

The focus of this test is the total number of times a particular state is visited (that is,
occurs) in a cumulative sum random walk. The purpose of this test is to detect deviations
from the expected number of visits to various states in the random walk. This test is actually
a series of 18 tests (and conclusions), one test (conclusion) for each of the states: −9. . .−1
and +1. . . +9 [44].

p-Value Value
0.148224 −9
0.293802 −8
0.799213 −7
0.810598 −6
0.589138 −5
0.525096 −4
0.584469 −3
0.659030 −2
0.878513 −1
0.878513 +1
0.469278 +2
0.502912 +3
0.711568 +4
0.910749 +5
0.860976 +6
0.702797 +7
0.532906 +8
0.543193 +9

The choice of rules is determined by good randomness and an equal number of ones
and zeros in each of these particular rules. Table 1 presents the results of the NIST test suite
package [44] with the input of the file, generated by the developed algorithm.

Table 1. Results for the uniformity of p-values and the proportion of passing sequences.

p-Value Proportion Statistical Test

0.744146 99.6% Frequency
0.380537 99.4% BlockFrequency
0.734146 99.9% CumulativeSums
0.428244 98.5% Runs
0.383827 99.1% LongestRun
0.702458 99.0% Rank
0.650637 99.5% FFT
0.433358 98.7% NonOverlappingTemplate
0.632191 100% OverlappingTemplate
0.414862 98.3% Universal
0.778903 99.1% ApproximateEntropy
0.651956 99.3% Serial
0.730485 100% LinearComplexity

Symmetry 2022, 14, 1869 13 of 19

All p-values in this table are averaged from 10–100 rounds of tests.
In addition, there is a comparison (Table 2) between the measurements of the NIST

test suite of the presented method and the Linear Congruential method, and it is observed
that the presented method obtains better results in some tests, and the p-value in some tests
is much higher.

Table 2. Comparison of the algorithm on CA and the linear congruential method.

CA Linear Congruential Statistical Test

p-Value Proportion p-Value Proportion

0.744146 99.6% 0.739918 99.8% Frequency
0.380537 99.4% 0.122325 99.0% BlockFrequency
0.734146 99.9% 0.689918 100% CumulativeSums
0.428244 98.5% 0.213309 98.7% Runs
0.383827 99.1% 0.122325 98.1% LongestRun
0.702458 99.0% 0.213309 99.0% Rank
0.650637 99.5% 0.639918 100% FFT
0.433358 98.7% 0.578346 98.4% NonOverlappingTemplate
0.632191 100% 0.350485 100% OverlappingTemplate
0.414862 98.3% 0.213309 98.3% Universal
0.778903 99.1% 0.791468 100% ApproximateEntropy
0.610977 98.8% 0.534146 99.2% RandomExcursions
0.633388 99.2% 0.468312 100% RandomExcursionsVariant
0.651956 99.3% 0.615983 100% Serial
0.730485 100% 0.213309 100% LinearComplexity

6. FPGA Implementation

The presented algorithm has two implementations, one on FPGA and one on CUDA.
Here, there is a chart (Figure 7) from the paper [45], which shows the velocity of a pseudo-
random numbers’ generator, based on a cellular automaton implemented on FPGA. There
are several algorithms, which were measured on the same FPGA platform from eSTREAM
(as pseudorandom generators, which were considered strictly and detailed enough for their
process velocity and statistical features) [46,47].

Figure 7. Different generating pseudorandom numbers’ algorithm performance.

Hardware modeling was performed on Artix 7 xc7a200tfbg676-3 in Vivado 2016.3.
The synthesis parameters are shown in Table 3. The modeling results are presented in
Table 4. There are not enough resources of the device for size 1024 on 1024 and 4096 on 4096.
Absolute performance of the proposed device is up to 1540 times greater than that of the
known devices shown in Figure 7, and performance at the 100 MHz rate of the proposed
device is up to 1074 times higher than that of the known ones.

Symmetry 2022, 14, 1869 14 of 19

Table 3. Synthesis parameters.

Parameters Results

Flatten hierarchy during LUT mapping rebuilt
Convert clock gating logic to flop enable off
Max number of global clock buffers used by synthesis 12
Fanout limit 400
Synthesis directive Default
Retiming Not checked
FSM Extraction Encoding One_hot
Keep equivalent registers Checked
Resource sharing off
Control set optimization threshold Auto
Disable LUT Combining Checked
Min length for chain of registers to be mapped onto SRL 5
Max number of block RAM allowed in design Max number allowed for the part in question
Max number of Ultra RAM blocks allowed in design Max number allowed for the part in question
Max number of block DSP allowed in design Max number allowed for the part in question
Max number of BRAM that can be cascaded by the tool Max number allowed for the part in question
Max number of URAM that can be cascaded by the tool Max number allowed for the part in question
Cascade DSP Auto
Enable VHDL assert statements to be evaluated Not checked

Table 4. Hardware modeling results.

Size 53 × 307 256 × 256 512 × 512
Blocks 4 16 16
Delay, ns 4.275 4.681 4.681
LUTs 35,334 142,848 580,608
Frequency, MHz 234 214 214
Absolute performance, Mbit/s 3,806,081 14,000,427 56,001,709
Performance on 100 MHz rate, Mbit/s 1,627,100 6,553,600 26,214,400

We can compare the results of the FPGA-based implementation with the results
presented in [48,49].

7. CUDA Implementation

Hardware used:

1. CPU: Intel Core i5-4670
2. GPU: GeForce GTX 750 Ti

As noted above, one of the main advantages of the method is the possibility of paral-
lelization of the calculations. Here, we will describe the implementation of the algorithm
on CUDA (GPU) with the main differences from the CPU variant.

There are two approaches:

1. Sequential calculation of blocks, parallel calculation of cells in blocks.
The cycle on the CPU is created in which each block will be calculated. To calculate
a block on the GPU for each cell, a stream is created and the final state of the cell is
calculated.

2. Parallel computation of blocks, parallel computation of cells in blocks.
Each cell downstream will be run; in each stream, the block to which the cell belongs
is determined, and then the final state of the cell is calculated.

The most difficult part in this step is to calculate the index of the cell in the block
when it is circled clockwise (NESW). Since the program is executed in parallel, there is no
sequential round-trip in a clockwise direction, and the index is calculated using a formula
that uses the perimeter of the rectangle.

The difference between the three hardware-based methods of the described PRNG
implementation can be seen in Figures 8 and 9 and Table 5 presents the comparison between
the results of the tests of these three methods. The difference chart is presented in Figure 10.

Symmetry 2022, 14, 1869 15 of 19

Figure 8. Calculations queue for CPU and GPU. Left: sequential calculations for both cells and blocks
(CPU); center: parallel calculations for cells in each block (GPU1); right: parallel calculations for
whole field (GPU2).

One stream for whole field (CPU)

The stream for each block (GPU1)

The stream for each cell (GPU2)

Figure 9. Using streams for calculations on CPU and GPU.

Figure 10. Number of cells (X) to execution time (Y) chart.

Table 5. Comparison between tests results of three hardware-based methods.

Size Blocks CPU (µs) GPU1 (µs) GPU2 (µs)

53 × 307 4 1639 1948 4584
256 × 256 16 3816 5813 5786
512 × 512 16 17,264 6792 7485
1024 × 1024 16 57,986 8182 14,583
2048 × 2048 16 257,453 16,887 43,932
4096 × 4096 16 1,128,957 64,226 171,278

Symmetry 2022, 14, 1869 16 of 19

After CUDA research, there were several tests with variable block size (Table 6).

Table 6. Block size variety output.

Field Blocksize Blocks CPU (µs) GPU1 (µs) GPU2 (µs)

256 × 256 16 × 16 256 43,910 121,671 19,135
256 × 256 32 × 32 64 13,683 30,743 9567
256 × 256 64 × 64 16 6778 8157 7859
256 × 256 128 × 128 4 4873 2570 7001

512 × 512 32 × 32 256 53,994 125,554 52,134
512 × 512 64 × 64 64 25,109 36,101 18,919
512 × 512 128 × 128 16 17,327 8826 10,303
512 × 512 256 × 256 4 15,189 2958 8167

1024 × 1024 64 × 64 256 95,915 127,036 175,194
1024 × 1024 128 × 128 64 65,996 38,352 46,781
1024 × 1024 256 × 256 16 58,411 11,874 20,757
1024 × 1024 512 × 512 4 55,890 5414 12,556

It is obvious that all the advantages and disadvantages of CPU- and GPU-based
implementations are concluded. However, it is not in such a way for GPU1 and GPU2
implementations difference.

The main differences between GPU1 and GPU2 implementations are that, in the GPU2
implementation, the calculation of blocks and cells occurs in parallel, and in GPU1—the
cells in the block are calculated in parallel, and the blocks are sequential. In the second case,
additional calculations are needed, such as the calculation of the cell belonging to the unit.
The second implementation will give an increase in performance with a large number of
blocks and a large volume of cells.

It can be seen from the tables, on small data, that two implementations on the GPU
lose their pros to the CPU. This is because the amount of computation is so small that
copying the device into memory and additional computations in each GPU stream take a
lot of time for this amount of data.

However, on large amounts of data, implementation on GPU wins due to parallel
computing. The use of additional calculations is due to the fact that they are performed in
parallel and allow each cell and block to be calculated in parallel.

8. Discussion

It should be noted that, from the point of view of hardware implementation, both
linear congruent and retarded Fibonacci generators are not very suitable [50–52]: they
are not efficient in terms of microprocessors and time, when it is necessary to apply
PRNG for distributed machines and parallel computing, for embedded testers, or for other
applications at this level.

A third widely used type of generator is the so-called linear feedback generator (LFSR).
Linear feedback shift registers are common among physicists and computer engineers.
There are forms of LFSR that are suitable for hardware implementation.

However, it turns out that, compared to equivalent CA-based generators, they are less
efficient; in addition, they are less applicable in terms of the possibility of implementation
and debugging, although the area required for the CA cell is slightly larger than for the
LFSR [38]. In [53], comparing LFSR and CA, was also illustrated, the benefits of using CA
in PRNG were shown.

Moreover, different sequences generated by the same CA are much less correlated
than similar sequences generated by LFSR. This means that CA-generated bit sequences
can be used in parallel, which implies clear advantages in using them in applications.

PRNG based on CA outperforms similar algorithms in terms of performance charac-
teristics, flexibility in development, scalability and parallelization properties.

Symmetry 2022, 14, 1869 17 of 19

9. Conclusions

This paper presents a pseudorandom generating algorithm on CA in a detailed form
with new ideas to improve some features of an algorithm, which existed before. Testing re-
sults show that the described generator has good perspectives because of its effectiveness,
simplicity, velocity, and improved unpredictability.

The proposed PRNG algorithm combines the advantages of the speed of cellular
automata on a two-dimensional basis and ease of implementation, as a step-by-step series
of Moore automata with initiated initial states. Compared to the classical algorithms
generating pseudo-random numbers, the cellular automaton presented algorithm has
such changes:

• application of several neighborhood templates;
• the use of several independent cellular automata;
• implementation of transitions of various cellular automata according to various sets

of rules;
• expansion of rule sets based on the complementarity of the number of ones and zeros

for a statistically normal distribution.

The changes mentioned helped our algorithm to obtain better results in some NIST
tests compared to existing algorithms. The developed algorithm can be successfully used
and implemented in many cryptographic primitives, given the ease of implementation,
speed, and compliance with modern development models (parallelization of processes).

Future research will be focusing on an implementation presented generator in different
cryptographic applications such as lightweight cryptography or coding theory.

Author Contributions: Conceptualization, A.L, D.M., P.L., D.B. and D.K.; methodology, A.L., D.M.,
P.L. and D.K.; software, D.B. and M.V.; validation, M.V., D.B. and A.L.; formal analysis, D.K. and
A.L.; investigation, D.M., D.B. and M.V.; resources, P.L. and D.K.; data curation, D.B., D.K. and P.L.;
writing—original draft preparation, D.M., D.K. and P.L.; writing—review and editing, D.K., A.L and
P.L.; visualization, M.V. and D.M.; supervision, A.L.; project administration, D.K.; funding acquisition,
A.L. and D.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CA Cellular Automata
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
FPGA Field-Programmable Gate Array
HS Homogeneous Structures
LCG Linear Congruential Generator
LFSR Linear Feedback Shift Register
NESW North, East, South, West
NIST National Institute of Standards and Technology
PRNG Pseudorandom Number Generator
RNG Random Number Generator

Symmetry 2022, 14, 1869 18 of 19

References
1. Genkin, D.; Shamir, A.; Tromer, E. RSA Key Extraction via Low-Bandwidth Acoustic Cryptanalysis. IACR Cryptol. Eprint Arch.

2013, 857, 2013.
2. Genkin, D.; Pipman, I.; Tromer, E. Get Your Hands Off My Laptop: Physical Side-Channel Key-Extraction Attacks on PCs. J.

Cryptogr. Eng. 2014, 5, 242–260.
3. Genkin, D.; Pachmanov, L.; Pipman, I.; Tromer, E. Stealing Keys from PCs by Radio: Cheap Electromagnetic Attacks on Windowed

Exponentiation. IACR Cryptol. Eprint Arch. 2015, 170, 2015.
4. Levina, A.; Borisenko, P.; Mostovoy, R.; Orsino, A.; Ometov, A.; Andreev, S. Mobile Social Networking under Side-Channel Attacks:

Practical Security Challenges. IEEE Access 2017, 5, 2591–2601.
5. Levina, A.; Sleptsova, D.; Zaitsev, O. Side-channel attacks and machine learning approach. In Proceedings of the Conference of

Open Innovation Association, FRUCT, St. Petersburg, Russia, 5–7 April 2016; pp. 181–186.
6. Levina, A.; Mostovoi, R.; Sleptsova, D.; Tsvetkov, L. Physical model of sensitive data leakage from PC-based cryptographic systems.

J. Cryptogr. Eng. 2019, 9, 393–400. [CrossRef]
7. Sasaki, T.; Togo, H.; Tanidaa, J.; Ichiokab, Y. Stream cipher based on pseudo-random number generation using optical affine

transformation. Appl. Opt. 2000, 39, 2340–2346. [CrossRef] [PubMed]
8. Biryukov, A.; Shamir, A. Cryptanalytic time/memory/data trade-offs for stream ciphers. In Proceedings of the International

Conference on the Theory and Application of Cryptology and Information Security, Singapore, 6–10 December 2000; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 1–13.

9. Cunsheng, D. The Stability Theory of Stream Ciphers; Lecture Notes in Computer Science; Springer: Berlin, Germany, 2011;
Volume 561.

10. Haahr, M. True Random Number Service. 1998. Available online: www.random.org (accessed on 19 November 2021).
11. Brent, R. Uniform Random Number Generators for Supercomputers. 1992. Available online: https://www.semanticscholar.org/

paper/Uniform-random-number-generators-for-supercomputers-Brent/e67e46d2b5581c9d6300138155de3dc8197fd9bb (accessed
on 23 January 2021).

12. Niels, F.; Bruce, S.; Tadayoshi, K. Chapter 9: Generating Randomness. In Cryptography Engineering: Design Principles and Practical
Applications; Wiley Publishing, Inc.: Hoboken, NJ, USA, 2010; ISBN 978-0-470-47424-2.

13. Kelsey, J.; Schneier, B.; Wagner, D.; Hall, C. Cryptanalytic Attacks on Pseudorandom Number Generators; Fast Software Encryption;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1372.

14. L’Ecuyer, P. Chapter 4: Random Number Generation. In Springer Handbooks of Computational Statistics; Springer: Berlin/Heidelberg,
Germany, 2007.

15. Jenkins, R.J. ISAAC. In Fast Software Encryption; Gollmann, D., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 1996; Volume 1039.

16. Chen, H.; Laine, K.; Player, R. Simple Encrypted Arithmetic Library—SEAL v2.1. In Proceedings of the International Conference
on Financial Cryptography and Data Security, Sliema, Malta, 3–7 April 2017.

17. Kircanski, A.; Youssef, A.M. On the Sliding Property of SNOW 3G and SNOW 2.0; Information Security; IET: London, UK, 2010;
Volume 5, pp. 199–206.

18. Blum, L.; Blum, M.; Shub, M. A Simple Unpredictable Pseudo-Random Number Generator. SIAM J. Comput. 1986, 15, 364–383.
[CrossRef]

19. Li, S.; Liu, Y.; Ren, F.; Yang, Z. Design of a high throughput pseudo-random number generator based on discrete hyper-chaotic
system. IEEE Trans. Circuits Syst. II Express Briefs 2022. [CrossRef]

20. Yu, F.; Zhang, Z.; Shen, H.; Huang, Y.; Cai, S.; Du, S. FPGA implementation and image encryption application of a new PRNG
based on a memristive Hopfield neural network with a special activation gradient. Chin. Phys. Soc. IOP Publ. Chin. Phys. B 2022,
31, 020505. [CrossRef]

21. Yu, F.; Zhang, Z.; Shen, H.; Huang, Y.; Cai, S.; Jin, J.; Du, S. Design and FPGA Implementation of a Pseudo-random Number
Generator Based on a Hopfield Neural Network Under Electromagnetic Radiation. Front. Phys. 2021, 9, 690651. [CrossRef]

22. Pereira, D.H. Itamaracá: A Novel Simple Way to Generate Pseudo-Random Numbers; Cambridge University: Cambridge, UK, 2022.
[CrossRef]

23. Moysis, L.; Rajagopal, K.; Tutueva, A.V.; Volos, C.; Teka, B.; Butusov, D.N. Chaotic Path Planning for 3D Area Coverage Using a
Pseudo-Random Bit Generator from a 1D Chaotic Map. Mathematics 2021, 9, 1821. [CrossRef]

24. Tutueva, A.V.; Karimov, T.I.; Moysis, L.; Nepomuceno, E.G.; Volos, C.; Butusov, D.N. Improving chaos-based pseudo-random
generators in finite-precision arithmetic. Nonlinear Dyn. 2021, 104, 727–737. [CrossRef]

25. Palacios-Luengas, L.; Pichardo-Méndez, J.L.; Díaz-Méndez, J.A.; Rodríguez-Santos, F.; Vázquez-Medina, R. PRNG based on skew
tent map. Arab. J. Sci. Eng. 2019, 44, 3817–3830. [CrossRef]

26. Podstrigaev, A.S.; Smolyakov, A.V.; Maslov, I.V. Probability of Pulse Overlap as a Quantitative Indicator of Signal Environment
Complexity. J. Russ. Univ. Radioelectron. 2020, 23, 37–45. [CrossRef]

27. Datcu, O.; Macovei, C.; Hobincu, R. Chaos based cryptographic pseudo-random number generator template with dynamic state
change. Appl. Sci. 2020, 10, 451. [CrossRef]

http://doi.org/10.1007/s13389-019-00215-5
http://dx.doi.org/10.1364/AO.39.002340
http://www.ncbi.nlm.nih.gov/pubmed/18345143
www.random.org
https://www.semanticscholar.org/paper/Uniform-random-number-generators-for-supercomputers-Brent/e67e46d2b5581c9d6300138155de3dc8197fd9bb
https://www.semanticscholar.org/paper/Uniform-random-number-generators-for-supercomputers-Brent/e67e46d2b5581c9d6300138155de3dc8197fd9bb
http://dx.doi.org/10.1137/0215025
http://dx.doi.org/10.1109/TCSII.2022.3178103
http://dx.doi.org/10.1088/1674-1056/ac3cb2
http://dx.doi.org/10.3389/fphy.2021.690651
http://dx.doi.org/10.1109/10.33774/coe-2022-zsw6t
http://dx.doi.org/10.3390/math9151821
http://dx.doi.org/10.1007/s11071-021-06246-0
http://dx.doi.org/10.1007/s13369-018-3688-y
http://dx.doi.org/10.32603/1993-8985-2020-23-5-37-45
http://dx.doi.org/10.3390/app10020451

Symmetry 2022, 14, 1869 19 of 19

28. L’Ecuyer, P.; Nadeau-Chamard, O.; Chen, Y.-F.; Lebar, J. Multiple Streams with Recurrence-Based, Counter-Based, and Splittable
Random Number Generators. In Proceedings of the 2021 Winter Simulation Conference, Phoenix, AZ, USA, 12–15 December
2021.

29. Lehmer, D.H. Mathematical methods in large-scale computing units. In Proceedings of the Second Symposium on Large-
Scale Digital Calculating Machinery, Oak Ridge, TN, USA, April 1949; Harvard University Press: Cambridge, MA, USA, 1951;
pp. 141–146.

30. Thomson, W.E. A Modified Congruence Method of Generating Pseudo-random Numbers. Comput. J. 1958, 1, 83. [CrossRef]
31. Rotenberg, A. A New Pseudo-Random Number Generator. J. ACM 1960, 7, 75–77. [CrossRef]
32. L’Ecuyer, P. History of uniform random number generation. In Proceedings of the WSC 2017—Winter Simulation Conference, Las

Vegas, NV, USA, 3–6 December 2017.
33. Tomassini, M. Spatially Structured Evolutionary Algorithms: Artificial Evolution in Space and Time; Springer: Berlin/Heidelberg,

Germany, 2005.
34. Kudryavtsev, V.B.; Podkolzin, A.S. Cellular automata. Intellect. Syst. 2006, 4, 657–692.
35. Moore, E.F. Gedanken-experiments on Sequential Machines. Autom. Stud. 1956, 34, 129–153.
36. Wolfram, S. Random sequence generation by cellular automata. Adv. Appl. Math. 1986, 7, 123–169. [CrossRef]
37. Ilachinski, A. Cellular Automata: A Discrete Universe; World Scientific: Singapore, 2001.
38. Tomassini, M.; Sipper, M.; Perrenoud, M. On the generation of high-quality random numbers by two-dimensional cellular

automata. IEEE Trans. Comput. 2000, 49, 1146–1151.
39. Tomassini, M.; Perrenoud, M. Cryptography with cellular automata. Appl. Soft Comput. 2001, 1, 151–160. [CrossRef]
40. Weisstein, E.W. Von Neumann Neighborhood. MathWorld—A Wolfram Web Resource. Available online: http://mathworld.

wolfram.com/vonNeumannNeighborhood.html (accessed on 31 July 2019).
41. Weisstein, E.W. Moore Neighborhood. MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.

com/MooreNeighborhood.html (accessed on 8 August 2019).
42. Dennunzio, A.; Formenti, E.; Provillard, J. Non-uniform cellular automata: Classes, dynamics, and decidability. J. Inf. Comput.

2012, 215, 32–46. [CrossRef]
43. Wolfram, S. Cellular Automat. Los Alamos Sci. 1983, 9, 2–21.
44. Bassham, L.; Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Leigh, S.; Levenson, M.; Vangel, M.; Heckert, N.; Banks, D. A Statistical

Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications; Special Publication (NIST SP); National
Institute of Standards and Technology: Gaithersburg, MD, USA, 2010.

45. Zhukov, A.E. Cellular Automata in Cryptography. Part 2. Voprosy kiberbezopasnosti 2017, 4, 47–66. [CrossRef]
46. Rogawski, M. Hardware Evaluation of eSTREAM Candidates: Grain, Lex, Mickey128, Salsa20 and Trivium. The eSTREAM Project.

2007; 10p. Available online: https://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf (accessed on 6 March 2022).
47. Gurkaynak, F.; Luethi, P.; Bernold, N.; Blattmann, R.; Goode, V.; Marghitola, M.; Kaeslin, H.; Felber, N.; Fichtner, W. Hardware

Evaluation of eSTREAM Candidates: Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST, ZK-Crypt. The
eSTREAM Project. 2006; 12p. Available online: https://www.ecrypt.eu.org/stream/papersdir/2006/015.pdf (accessed on 2
February 2022).

48. Bakiri, M.; Guyeux, C.; Couchot, J.; Marangio, L.; Galatolo, S. A Hardware and Secure Pseudorandom Generator for Constrained
Devices. IEEE Trans. Ind. Inform. 2018, 14, 3754–3765. [CrossRef]

49. Bakiri, M.; Couchot, J.; Guyeux, C. CIPRNG: A VLSI Family of Chaotic Iterations Post-Processings for F2—Linear Pseudorandom
Number Generation Based on Zynq MPSoC. IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 1628–1641. [CrossRef]

50. Gutierrez, J. Attacking the linear congruential generator on ellipticcurves via lattice techniques. Cryptogr. Commun. 2021, 14,
505–525. [CrossRef]

51. Nannipieri, P.; Di Matteo, S.; Baldanzi, L.; Crocetti, L.; Belli, J.; Fanucci, L.; Saponara, S. True Random Number Generator Based on
Fibonacci-Galois Ring Oscillators for FPGA. Appl. Sci. 2021, 11, 3330. [CrossRef]

52. Badra, M.; Guillet, T.; Serhrouchni, A. Random values, nonce and challenges: Semantic meaning versus opaque and strings of data.
In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009; pp. 1–5.

53. Sachin, D. Comparison of LFSR and CA for BIST. Comput. Sci. 2005. Available online: https://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.146.4514 (accessed on 31 July 2019).

http://dx.doi.org/10.1093/comjnl/1.2.83
http://dx.doi.org/10.1145/321008.321019
http://dx.doi.org/10.1016/0196-8858(86)90028-X
http://dx.doi.org/10.1016/S1568-4946(01)00015-1
http://mathworld.wolfram.com/vonNeumannNeighborhood.html
http://mathworld.wolfram.com/vonNeumannNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://mathworld.wolfram.com/MooreNeighborhood.html
http://dx.doi.org/10.1016/j.ic.2012.02.008
http://dx.doi.org/10.21681/2311-3456-2017-4-47-66
https://www.ecrypt.eu.org/stream/papersdir/2007/025.pdf
https://www.ecrypt.eu.org/stream/papersdir/2006/015.pdf
http://dx.doi.org/10.1109/TII.2018.2815985
http://dx.doi.org/10.1109/TCSI.2017.2754650
http://dx.doi.org/10.1007/s12095-021-00535-6
http://dx.doi.org/10.3390/app11083330
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4514
https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.146.4514

	Introduction
	Random Number Generators Overview
	Homogeneous Structures (HS) and Cellular Automata (CA)
	Algorithm of Generating Pseudorandom Numbers on Cellular Automata
	Grid
	Rules and Neighborhood
	``Repeat Please''
	Additional Function

	Test Results
	Short Description of Criteria with Results
	Frequency (Monobit) Test
	Frequency Test within a Block
	Runs Test
	Longest Run of Ones in a Block
	Rank Test
	Discrete Fourier Transform (Spectral) Test
	Non-Overlapping Template Matching Test
	Overlapping Template Matching Test
	Maurer’s “Universal Statistical Test”
	Linear Complexity Test
	Serial Test
	Approximate Entropy Test
	Cumulative Sums (Cusums) Test
	Random Excursions Test
	Random Excursions Variant Test

	FPGA Implementation
	CUDA Implementation
	Discussion
	Conclusions
	References

