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Abstract: Extensions to a ΛDM model have been explored in order to face current tensions that occur
within its framework, which encompasses broadening the nature of the dark matter (DM) component
to include warmness and a non-perfect fluid description. In this paper, we investigated the late-time
cosmological evolution of an exact solution recently found in the literature, which describes a viscous
warm ΛDM model (ΛWDM) with a DM component that obeys a polytropic equation of state (EoS),
which experiences dissipative effects with a bulk viscosity proportional to its energy density, with
proportionality constant ξ0. This solution has the particularity of having a very similar behavior
to the ΛCDM model for small values of ξ0, evolving also to a de Sitter type expansion in the very
far future. We explore firstly the thermodynamic consistences of this solution in the framework of
Eckart’s theory of non-perfect fluids, focusing on the fulfillment of the two following conditions:
(i) the near-equilibrium condition and (ii) the positiveness of the entropy production. We explore
the range of parameters of the model that allow to fulfill these two conditions at the same time,
finding that a viscous WDM component is compatible with both ones, being in this sense, a viable
model from the thermodynamic point of view. Furthermore, we constrained the free parameters of
the model with the observational data coming from supernovae Ia (SNe Ia) and the observational
Hubble parameter data (OHD), using these thermodynamics analyses to define the best priors for the
cosmological parameters related to the warmness and the dissipation of the DM, showing that this
viscous ΛWDM model can describe the combined SNe Ia+OHD data in the same way as the ΛCDM
model. The cosmological constraint at 3σ CL gives us an upper limit on the bulk viscous constant of
order ξ0 ∼ 106 Pa·s, which is in agreement with some previous investigations. Our results support
that the inclusion of a dissipative WDM, as an extension of the standard cosmological model, leads to
a both thermodynamically consistent and properly fitted cosmological evolution.

Keywords: viscosity; dark matter; cosmological constant; cosmological model

1. Introduction

In the current cosmology, the observational evidence suggests that almost the total
energy density of the universe is compound by the dark sector, roughly classified into
30% of dark matter (DM) and 70% of dark energy (DE) [1–4]. The DM component is
responsible for the structure formation in the universe, while DE is responsible for the
recent accelerating expansion of the universe [5]. The most simple model that includes
these components, which fits very well the cosmological data, is the ΛCDM model [1,2],
where DE is modeled by a positive cosmological constant (CC) Λ, and DM is described as a
pressureless fluid known as cold DM (CDM). However, this model is not absent of problems
from the theoretical and observational point of view. For example, the CC problem,
where the value of the CC differs from theoretical field estimations in 60–120 orders of

Symmetry 2022, 14, 1866. https://doi.org/10.3390/sym14091866 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-0737-3497
https://orcid.org/0000-0001-6769-5722
https://orcid.org/0000-0002-0512-5158
https://doi.org/10.3390/sym14091866
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091866?type=check_update&version=1


Symmetry 2022, 14, 1866 2 of 23

magnitude than the observed value [6–8]. Furthermore, measurements of the Hubble
parameter at the current time, H0, present a discrepancy of 4.4σ between the measurements
obtained from Planck CMB and the local measurements obtained by A. G. Riess et al. [9].
Other tensions are the measurements of σ8 −Ωm (where σ8 is the r.m.s. fluctuations of
perturbations at 8 h−1Mpc scale) coming from large-scale structure (LSS) observations and
the extrapolated from Planck CMB (dependent on the ΛCDM model) [10,11], and the
results from the experiment to detect the global EoR Signature (EDGES), which detect an
excess of radiation in the reionization epoch that is not predicted by the ΛCDM model,
specifically at z ≈ 17 [12].

In order to try to overcome some of these problems, dissipative effects can be consid-
ered as a more realistic way of treating cosmic fluids. By the symmetry of a homogeneous
and isotropic universe, the dissipative process is usually characterized by a bulk viscos-
ity. In this sense, some authors have considered the non-inclusion of the CC in order to
alleviate the CC problem, explaining the late-time acceleration behavior of the universe
through a dissipative viscous fluid [13–24], as a natural choice since the effect of the bulk
viscosity is to produce a negative pressure that leads to an acceleration in the universe
expansion [25–27]. Furthermore, in [28,29], the authors discuss the H0 tension problem in
the context of dissipative fluids as a good chance to construct new cosmological models
with non-ideal fluids. Even more, the σ8 −Ωm tension can be alleviated if one assumes
a small amount of viscosity in the DM component [10], as well as the explanation of the
excess of radiation predicted by the EDGES experiment [30].

On the other hand, bulk viscosity seems to be significant in cosmic evolution. For
example, many observational properties of disk galaxies can be represented by a dissi-
pative DM component [31,32]. For neutralino CDM, the bulk viscous pressure is present
in the CDM fluid through the energy transferred from the CDM fluid to the radiation
fluid [33]. Some authors propose that bulk viscosity can produce different cooling rates of
the components of the cosmic fluid [34–36], or may be the result of non-conserving particle
interactions [37]. Even more, from Landau and Lifshitz [38], the bulk viscosity can be inter-
preted from the macroscopic point of view as the existence of slow processes to restore the
equilibrium state. At the perturbative level, viscous fluid dynamics provide also a simple
and accurate framework with the purpose of extending the description into the nonlinear
regime [39]. In addition, the viscous effect could be the result of the interaction between
DM and DE fluids [40]. In this sense, diffusion in cosmology plays an important role, since
a diffusive exchange of energy between dark energy and dark matter could occur [41,42].
Following this line, the bulk viscosity ξ depends, particularly, on the temperature and
pressure of the dissipative fluid [43]. Therefore, a natural election for the bulk viscosity of
the dissipative fluid is to consider a dependency proportional to the power of their energy
density ξ = ξ0ρm, where ξ0 > 0 is a bulk viscous constant; this is an election that has been
widely investigated in the literature [44–49]. Since the nature of DM is unknown up to date,
and a dissipative effect can not be discarded [50], it is of physical interest to explore how a
bulk viscous DM behaves in the ΛCDM model.

Another important possible extension of the standard cosmological model has also been
investigated in recent decades. It is well known that a CDM is capable to explain the observed
structure very well above ∼1 Mpc, while it has issues explaining small-scale structure obser-
vations [51,52], such as the missing satellite problem [53,54]—this refers to the discrepancy of
approximately 10 times more dwarf galaxies between the values obtained by the numerical
simulations based on the ΛCDM model and the observed ones in the cluster of galaxies. In
this sense, a warm DM (WDM) can potentially be a good candidate to explain small-scale
structure observations that currently represent a challenge for a CDM. Many studies of the
number of satellites in the Milky Way or small halos with dwarf galaxies appear to be in
better agreement with the observations for a WDM than they are for a CDM [52,55,56,56].
One of the well-motivated WDM hypotheses implies an extension of the standard model of
particle physics by three sterile (right-handed, gauge singlet) neutrinos [57–59], produced via
mixing with active neutrinos in the early universe [57,60–64]. On the other hand, from the
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perturbation point of view, the no-linear effects make the power spectrum of the WDM look
very much similar to a CDM, and LSS such as filaments, sheets, and a large void suggest that
a WDM reproduces the observed ones well[65]; the WDM is an interesting alternative from
the point of view of cosmology and particle physics.

All the discrepancies mentioned above imply extensions of the ΛCDM model, such as
dissipative effects in a WDM component, which leads to taking into account a relativistic
thermodynamic theory of non-perfect fluids out of the equilibrium. Eckart was the first
to develop such a theory [66], with a similar model proposed by Landau and Lifshitz [38].
However, it was later shown that Eckart’s theory was a non-causal theory [67,68]. A causal
theory was proposed by Israel and Stewart (IS) [69,70], which was reduced to Eckart’s
theory when the relaxation time for the bulk viscous effects were negligible [71]. Since the
IS theory presents a much greater mathematical difficulty than Eckart’s theory, this last one
is considered as a first approximation in order to study viscous cosmologies [44,46,72–75].
Following this line, the authors in [27] study a universe filled with two fluids in the frame-
work of Eckart’s theory: (i) a perfect fluid as DE mimicking the dynamics of the CC, and
(ii) a bulk viscous DM; thus, finding a good agreement at 3σ CL with the observational
background data coming from the observational Hubble parameter (OHD), type Ia super-
novae (SNe Ia), and strong lensing systems (SLS). It is important to mention that, in these
theories, the bulk viscous pressure Π has to be lower than the equilibrium pressure p of the
dissipative fluid, i.e.,

l =
∣∣∣∣Πp
∣∣∣∣� 1, (1)

which it is known as the near-equilibrium condition, and represents the assumption that the
fluid is close to thermodynamic equilibrium.

According to Maartens, in the context of dissipate inflation [71], the condition to
have an accelerated expansion due only to the negativeness of the viscous pressure Π in
Eckart’s and IS theories enters into direct contradiction with the near-equilibrium condition
given by Equation (1). In this sense, as it has been proposed in [27,47], if a positive CC is
considered in these theories, then the near-equilibrium condition could be preserved in
some regimes. In addition, it was shown by J. Hua and H. Hu [74] that a dissipative DM
in Eckart’s theory with CC has a significantly better fit with the cosmological data than
the ΛCDM model, which indicates that this model is competitive to fit the combined SNe
Ia + CMB + BAO + OHD data. Nevertheless, the inclusion of the CC implies abandoning
the idea of unified DM models with dissipation, whose advantage is to avoid the CC
problem, but that leads to reinforcing the proposal of extending the standard model, keep-
ing a DE component modeled by a CC. Another important point of the near-equilibrium
condition given by Equation (1) is that we need a non-zero equilibrium pressure for the
dissipative fluid, discarding the possibility of a CDM component. In this sense, a relativistic
approach of dissipative fluids is consistent with a WDM component [51,56,57,65,76–78] in
order to satisfy the near-equilibrium condition.

It is important to mention that, for cosmologies with perfect fluids, there is no entropy
production because these fluids are in equilibrium and their thermodynamics are reversible.
However, for cosmologies with non-perfect fluids, where irreversible process exists, there is
a positive entropy production during the cosmic evolution [22,79–82]. The near-equilibrium
condition and entropy production has been previously discussed in the literature. The near-
equilibrium condition was studied, for example, in [80] for the IS theory with gravitational
constant G and Λ that vary over time; while in [83], it was studied in Eckart’s and IS theories
for the case of a dissipative Boltzmann gas and without the inclusion of a CC. The entropy
production was studied in [79] in Eckart’s and IS theories for a dissipative DE; while in [22],
the authors studied the entropy production in the full IS theory with a matter content
represented by one dissipative fluid component, and the kinematics and thermodynamics
properties of the solutions are discussed (the entropy production in cosmological viscous
fluids has been more widely studied, and more references can be found in [84–89]).
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The aim of this paper is to explore the thermodynamic consistency in the description
of a dissipative WDM component, as there is not enough investigated up to date, and
if the constraints from the present cosmological data on the model that we propose are
compatible with the consistency criteria found. Our model is described by an analytical
solution obtained in [90] for a flat Friedman–Lemaître–Robertson–Walker (FLRW) max-
imally symmetric universe, dominated by a dissipative DM modeled by the barotropic
EoS p = (γ− 1)ρ, where ρ is the energy density of the dissipative DM and γ is known
as a barotropic index, and DE is modeled by the CC, in the framework of the Eckart’s
theory. This solution was obtained using the expression ξ = ξ0ρm for the bulk viscosity
with the particular choice of m = 1, and it was studied in the context of the late and
early-times singularities. Although this solution was found for a very particular election
of m, it has the important characteristics that, for a positive CC, behaves very similarly to
the ΛCDM model for all the cosmic time when ξ0 → 0, without singularity towards the
past in asymptotic behavior known as “soft-Big Bang” [91,92], and with an asymptotic de
Sitter expansion towards the future. This last behavior is of interest because the solution
tends to the de Sitter expansion regardless of the value of ξ0 and γ, as long as ξ0 < γ/3H0,
which is a feature not found for other elections of m. Therefore, we focus our study on the
late-time behavior of this solution, assuming that γ 6= 1 but close to 1, which represents
a dissipative ΛWDM model with the same asymptotic late-time behavior as the ΛCDM
model. In particular, we study the near-equilibrium condition and the positiveness of
entropy production of this solution to find the constraints that these criteria impose on the
model’s free parameters. We focus on the possibility to have a range of them satisfying all
of these conditions, and we compare with the best fit values obtained from the cosmological
constraint with the SNe Ia+OHD data. This study leads to some important clues about the
physical behavior of the analytical solution, which represents a particular extension of the
standard cosmological model. In this model, we have two more free parameters than the
ΛCDM model, namely, γ and ξ0, but the gain lies in a more complete description of the
nature of the DM component, suggested by a previous investigation made in the context to
alleviate tensions in the standard cosmological model. Despite the fact that, in this work,
we are not facing none of the mentioned tensions, our primary intention is to explore if
the two extensions made to the standard model present also a consistent relativistic fluid
description and not only a well-suitable fit with the cosmological data.

The outline of this paper is as follows: In Section 2, we summarize a solution that was
found in [90], which represents the model of our study. In Section 3, we present general
results about the near-equilibrium condition and the entropy production of the viscous
fluid. In Section 4, we study the solution at late times, where in Section 4.1, we study the
fulfillment of the near-equilibrium condition, while in Section 4.2, we study the entropy
production of the dissipative fluid present in the model. In Section 5, we constraint the free
parameters of our model with the SNe Ia and OHD data. In Section 6, we discuss these
results, comparing them with the ΛCDM model, and we study the completeness of both,
the near-equilibrium condition, and entropy production for the actual data. In addition, we
find a upper limit for the present value of the bulk viscous constant. Finally, in Section 7,
we present some conclusions and final discussions. The 8πG = c = 1 units will be used in
this work.

2. Exact Analytical Solution in Eckart’s Theory with CC

In this section, we briefly resume a de Sitter-like solution and an analytical solution
found in [90] for a flat FLRW universe composed of a dissipative DM ruled by the barotropic
EoS p = (γ− 1)ρ, with a bulk viscosity of the form ξ = ξ0ρm, and a DE given by the CC;
the field equations, in the framework of Eckart’s theory, are given by [66,90]

H2 =
( ȧ

a

)2
=

ρ

3
+

Λ
3

, (2)
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ä
a
= Ḣ + H2 = −1

6

(
ρ + 3Pe f f

)
+

Λ
3

, (3)

ρ̇ + 3H(ρ + Pe f f ) = 0, (4)

where
Pe f f = p + Π, (5)

Π = −3Hξ. (6)

From these equations, it is possible to obtain a single evolution equation for the Hubble
parameter H = ȧ/a, where a is the scale factor and “dot” accounts for the derivative with
respect to the cosmic time t, which is given by

2Ḣ + 3γH2 − 3ξ0H(3H2 −Λ)m −Λγ = 0. (7)

We address the reader to see all the technical details in [90], where, from Equation (7),
de Sitter-like and exact solutions for the cases of m = 0 and m = 1, with positive and
negative CC, have been studied in the context of late- and early-time singularities. The
results were compared with the ΛCDM model and, for this purpose, the differential
Equation (7) is solved for ξ0 = 0 with the initial conditions H(t = 0) = H0 and a(t = 0) = 1,
which leads to

H(t) =
H0
√

ΩΛ0

((√
ΩΛ0 + 1

)
e3γH0t

√
ΩΛ0 −

√
ΩΛ0 + 1

)
(√

ΩΛ0 + 1
)
e3γH0t

√
ΩΛ0 +

√
ΩΛ0 − 1

, (8)

a(t) =

cosh

(
3γ
√

ΩΛ0 H0t
2

)
+

sinh
(

3γ
√

ΩΛ0 H0t
2

)
√

ΩΛ0


2

3γ

, (9)

where ΩΛ0 = Λ/(3H2
0). Note that Equation (8) tends asymptotically at very late times

(t→ ∞) to the de Sitter solution HdS = H0
√

ΩΛ0 .
We are particularly interested in the case of m = 1 of Equation (7) with a positive CC,

where the following de Sitter-like solution (Ḣ = 0) is found

EdS =
√

ΩΛ0 , (10)

with E = H(t)/H0. It is important to note that Equation (10) is the usual de Sitter solution,
written in its dimensionless form, and naturally appears in this dissipative scenario. On
the other hand, the exact analytical solution (Ḣ 6= 0) found takes the following expression
in terms of the dimensionless parameters:

τ =
Ωξ0

√
ΩΛ0 log

(
(1−ΩΛ0

)(γ−EΩξ0
)2(

E2−ΩΛ0

)
(γ−Ωξ0

)2

)
3
√

ΩΛ0

(
γ2−Ω2

ξ0
ΩΛ0

)

+

γ log


(√

ΩΛ0
−1
)(√

ΩΛ0
+E
)

(√
ΩΛ0

+1
)(√

ΩΛ0
−E
)


3
√

ΩΛ0

(
γ2−Ω2

ξ0
ΩΛ0

) , (11)

obtained with the border condition H(t = 0) = H0, and where Ωξ0 = 3ξ0H0 and τ = tH0
are the dimensionless bulk viscous constant and cosmic time, respectively. The above
solution is an implicit relation of E(τ). According to [90], Equation (11) presents a future
singularity in a finite time known as Big-Rip [46,93–95] when Ωξ0 > γ. In this singularity,
we have an infinite a, ρ and p, and therefore, the Ricci scalar diverges. Furthermore, it is



Symmetry 2022, 14, 1866 6 of 23

discussed that one interesting behavior of this solution can be obtained if we considered
the opposite condition, i.e.,

Ωξ0 < γ, (12)

which leads to a universe with a behavior very similar to the ΛCDM model, which coincides
as Ωξ0 → 0, as can be seen in Figure 1, where we have numerically found the behavior of E
as a function of τ from Equation (11), taking into account the condition (12) with γ = 1.002,
Ωξ0 = 0.001, and ΩΛ0 = 0.69. For a further comparison, we also plotted the ΛCDM model.

Note that the solution (11) tends asymptotically for τ → ∞ to the usual de Sitter
solution (10), which can be seen in Figure 1. Therefore, for the condition given by Equa-
tion (12) and for γ 6= 1 but close to 1, solution (11) represents a viscous ΛWDM model with
a late-time behavior very similar to the ΛCDM model and with the same asymptotic de
Sitter expansion.

Figure 1. Numerical behavior of E(τ) obtained from Equation (11) at late times, for ΩΛ0 = 0.69,
Ωξ0 = 0.001 and γ = 1.002. For comparison, we also plotted the ΛCDM model obtained from
Equation (8).

3. Near-Equilibrium Condition and Entropy Production

In the following section, we found the main expressions in terms of γ, and the dimen-
sionless quantities E, Ωξ0 and ΩΛ0 that arise from the near-equilibrium condition and the
entropy production.

3.1. Near-Equilibrium Condition

As it was previously discussed, in Eckart’s theory, it is necessary to fulfill the near-
equilibrium condition (1). Following Maartens [71], and according to Equations (3) and (5),
we can write

ä
a
= −1

6
[ρ + 3(p + Π)] +

Λ
3

. (13)

From the above expression, the condition to have an accelerated expansion driven only
by the negativeness of the bulk viscous pressure Π, imposing ä > 0 and taking Λ = 0, is

−Π > p +
ρ

3
. (14)

This last result implies that the viscous stress is greater than the equilibrium pressure
p of the fluid, i.e., the near-equilibrium condition is not fulfilled because in order to obtain
an accelerated expansion, the fluid has to be far from equilibrium. This situation could
be changed if a positive CC is included [27,47]. In this case, the condition ä > 0 on
Equation (13) leads to

−Π >
−2Λ

3
+ p +

ρ

3
, (15)
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i.e., the near-equilibrium condition could be fulfilled in some regime, because from Equa-
tion (15), the viscous stress is not necessarily greater than the equilibrium pressure p. The
near-equilibrium condition given by Equation (1) can be rewritten in terms of the dimen-
sionless parameters, using Equation (6), and the EoS of the DM component, obtaining

l =
∣∣∣∣E(τ)Ωξ0

γ− 1

∣∣∣∣� 1. (16)

From the above equation, it is clear to see that a CDM component with γ = 1 is not
compatible with the near-equilibrium condition, and only for some kind of WDM with
γ > 1, this condition can be fulfilled. On the other hand, note that in the above expression,
the solution given by E(τ) drives the behavior of l as a function of the cosmic time τ. In
this sense, and since E(τ) is a decreasing function of time, the constraints on Ωξ0 are more
restrictive as we look forward.

3.2. Entropy Production

The first law of thermodynamics is given by

TdS = dU + pdV, (17)

where T, S, U and V are the temperature, entropy, the total thermal energy and the three-
dimensional volume of the cosmic fluid, respectively. The total thermal energy of the
fluid and the physical three-dimensional volume of the universe are given, respectively, by
U = ρV and V = V0a3 (where V0 is the volume at the present time). For a DM, the energy
density is given by ρ = n

(
mc2 + 3kBT

)
, and for the particular case of CDM, the energy

density is associated with the rest mass of DM given by ρ = nmc2, in full units. With these,
we get from Equation (17), the Gibbs Equation [82]

dS = −
(

ρ + p
Tn2

)
dn +

dρ

Tn
, (18)

where n = N/V is the number of particle density. The following integrability condition
must hold on the thermodynamical variables ρ and n[

∂

∂ρ

(
∂S
∂n

)
ρ

]
n

=

[
∂

∂n

(
∂S
∂ρ

)
n

]
ρ

, (19)

then, we considered the thermodynamic assumption in which the temperature is a function
of the number of particles density and the energy density, i.e., T(n, ρ). With this, the above
integrability condition becomes in [79,82],

n
∂T
∂n

+ (ρ + p)
∂T
∂ρ

= T
∂p
∂ρ

. (20)

We study the case of a perfect fluid and a viscous fluid separately in order to compare
our result with the model without viscosity.

For a perfect fluid, the particle 4-current is taken to be nα
;α = 0, where “;” accounts

for the covariant derivative, which together with the conservation equation, leads to the
following expressions for the particle density and the energy density, respectively:

ṅ + 3Hn =
Ṅ
N

= 0, (21)

ρ̇ + 3H(ρ + p) = 0. (22)
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Assuming that the energy density depends on the temperature and the volume, i.e.,
ρ(T, V) [79], we have the following relation:

dρ

da
=

∂ρ

∂T
dT
da

+
3V
a

∂ρ

∂V
. (23)

Using Equations (22) and (23), and the EoS, it can be shown (as in [79]) that the
barotropic temperature from (20) is given by

T
T0

=
ρ

ρ0
a3 =

(
ρ

ρ0

) γ−1
γ

. (24)

This last expression was previously found by Marteens in [82], using the method of
characteristics. Additional to this, from Equation (18), together with Equations (21) and (22),
and the EoS, we have dS = 0, or consequently, dS/dt = 0, which implies that there is no
entropy production in the cosmic expansion, i.e., the fluid is adiabatic.

For a viscous fluid, an average 4-velocity is chosen in a way that there is no parti-
cle flux [43,66]; thus, in this frame, the particle 4-current is taken again as nα

;α = 0 and
Equation (21) is still valid. On the other hand, from Eckart’s theory, we have the following
conservation equation, according to Equations (4) and (5):

ρ̇ + 3H(ρ + p + Π) = 0, (25)

which, together with Equation (21) and EoS (18), give us the following expression for the
entropy production [79,81]

dS
dτ

=
3E2Ωξ0 ρ

nT
, (26)

written in a dimensionless form. Therefore, the entropy production in the viscous expand-
ing universe is, in principle, always positive, and we recovered the behavior of a perfect
fluid when Ωξ0 = 0. As we will see later, this positiveness requires some constraints under
the free parameters of the solution, specifically in the expression for the temperature of the
dissipative fluid.

4. Study of the Exact Solution

In this section, we study, at the same time, the exact solution (11) under the condition (12)
in terms of fulfillment of the near-equilibrium condition and the positiveness of the entropy
production. To that end, we focus our analysis in two defined late-time epochs of validity
for the solution: (i) the actual time τ = 0 for which E = 1, and (ii) the very late times τ → ∞
for which E =

√
ΩΛ0 . We will extend the analysis for τ > 0 and for τ < 0. It is important

to mention that the asymptotic behavior of the solution (11), given by the de Sitter solution
(10) when the condition (12) holds, leads to a universe dominated only by the CC, in which
the dissipative WDM is diluted due to the universe expansion, as can be seen by evaluating
Equation (10) in the Friedmann Equation (2)

H2
dS =

ρ

3
+

Λ
3

, (27)

which leads to ρ = 0. Therefore, in this asymptotic behavior, we do not have a dissipative
fluid to study the near-equilibrium condition and the entropy production. Nevertheless,
we can study these two conditions as an asymptotic regime of the solution while ρ→ 0.
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4.1. Near-Equilibrium Condition of the Exact Solution

Note that the near-equilibrium condition (16), considering that 1 < γ ≤ 2, can be
rewritten as

E(τ)� γ− 1
Ωξ0

=
γ

Ωξ0

− 1
Ωξ0

, (28)

an expression that tells us that as long as E = H/H0 is much smaller than (γ− 1)/Ωξ0 , the
solution must be near to the thermodynamic equilibrium. This opens the possibility that
the solution is able to fulfill this condition, considering that E(t), given by Equation (11),
decreases asymptotically to the de Sitter solution (10) as τ → ∞ under the condition (12),
as shown in Figure 1. Furthermore, at the current time (τ = 0), the condition (28) leads to

Ωξ0 � γ− 1, (29)

and for the very late times (τ → ∞), leads to√
ΩΛ0 �

γ− 1
Ωξ0

=
γ

Ωξ0

− 1
Ωξ0

. (30)

The fulfillment of the condition (29) implies the fulfillment of the condition (30),
because 0 < ΩΛ0 ≤ 1, and from the condition (29), we get 1� (γ− 1)/Ωξ0 . Furthermore,
note that the fulfillment of the condition (29) implies the fulfillment of the condition (12). In
summary, the fulfillment of the condition (29) implies the fulfillment of the near-equilibrium
condition from 0 ≤ τ < ∞ and the condition (12), for which the solutions (11) behave as
the de Sitter solution at very late times. It is important to note that the fulfillment of the
near-equilibrium condition depends only on the values of γ and Ωξ0 and not on the values
of ΩΛ0 , with the characteristic that for a value of γ closer to 1 (CDM), a smaller value of
Ωξ0 must be considered. Even more, for 1 < γ ≤ 2, we can see that Ωξ0 < 1. On the other
hand, the condition (29) is independent of the behavior of the solution because the election
E(τ = 0) = 1 is arbitrary, but this does not imply that the condition (30) is always fulfilled,
because this condition depends on the behavior of the solution. In this sense, note that if
we do not satisfy the condition (12) in Equation (16), then E diverges and the solution will
be far from near equilibrium in a finite time in the Big-Rip scenario.

For τ < 0, it is still possible to fulfill the near-equilibrium condition (28), as we
mentioned above, while E is much smaller than (γ− 1)/Ωξ0 . In Figure 2, we depict the
near-equilibrium condition (16) as a function of Ωξ0 and E for the fixed values of ΩΛ0 = 0.69
and γ = 1.002. The red zone represents the values for which we are far from the near
equilibrium and the green line represents the near-equilibrium condition when Ωξ0 = 0.001.
Note that for these last values, we are far from the equilibrium when Ωξ0 ≥ 0.002 (l ≥ 1)
for all E, and for Ωξ0 = 0.001, we are far from the near equilibrium when E ≥ 2, i.e., we
are far from the near-equilibrium condition for a time given by τ = −0.6001, which is
roughly equivalent to 8.63389 Gyrs backward in time (0.630211 times the life of the ΛCDM
universe), according to Equation (11).

From Figure 2, we can see that when E grows, we can make Ωξ0 more closer to
zero in order to fulfill the near-equilibrium condition. For the solution (11), under the
condition (12), this means that for τ < ∞, for which E grows, we can stay in the near
equilibrium while Ωξ0 be small enough to satisfy the condition (28). This behavior is due
to the election of the dissipation of the form ξ = ξ0ρ, because the dissipative pressure
Π = −3Hξ behaves as ρ3/2 and the equilibrium pressure behaves as ρ, and therefore,
considering that in this case ρ grows to the past, then the dissipative pressure grows more
quickly than the equilibrium pressure and ξ0 acts as a modulator of this growth.
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Figure 2. Behavior of l, given by Equation (16), for 0 ≤ Ωξ0 ≤ 0.02 and
√

ΩΛ0 ≤ E ≤ 4. We also
consider the fixed values of ΩΛ0 = 0.69 and γ = 1.002. The green line represents the near-equilibrium
condition when Ωξ0 = 0.001 and the red zone represents the values for which we are far from the
near-equilibrium condition (l > 1).

4.2. Entropy Production of the Exact Solution

In order to obtain the entropy production of the dissipative fluid from Equation (26), we
need to find their temperature from Equation (20). Rewriting the conservation Equation (25)
in the form

dρ

da
= −3ρ

a
(γ− 3Hξ0), (31)

we can rewrite Equation (23) as

ρ(γ− 3Hξ0) = −
a
3

∂ρ

∂T
dT
da
−V

∂ρ

∂V
. (32)

Then, from Equation (20), and using Equation (5), we have

n
∂T
∂n

+ ρ(γ− 3Hξ0)
∂T
∂ρ

= T
[
(γ− 1)− 3Hξ0 − 3ξ0ρ

∂H
∂ρ

]
, (33)

an expression that, with together Equation (32), leads to

dT
T

= −3
da
a

[
(γ− 3Hξ0)− 1− 3ξ0ρ

∂H
∂ρ

]
. (34)

Thus, using Equations (2) and (31), we get, from Equation (34), the following expression:

dT
T

=
dρ

ρ

1−

(
2
3

√
3(ρ + Λ) + ξ0ρ

)
2
3

√
3(ρ + Λ)

(
γ−

√
3(ρ + Λ)ξ0

)
, (35)

which has the following solution in our dimensionless notation:

ln
(

T
T0

)
= ln

(
ρ
ρ0

)

+
2Ωξ0

√
ΩΛ

[
arctanh

(√
ΩΛ0
E

)
−arctanh

(√
ΩΛ0

)]
(

γ2−ΩΛ0 Ω2
ξ0

)
−γ ln

(
ρ

ρ0

)
+
[
γ(2+γ)−ΩΛ0 Ω2

ξ0

]
ln
(

γ−EΩξ0
γ−Ωξ0

)
(

γ2−ΩΛ0 Ω2
ξ0

) . (36)
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On the other hand, by integrating Equation (31) with the help of Equation (2), we
obtain in our dimensionless notation the expression

ln a3 =

2Ωξ0

√
ΩΛ

[
arctanh

(√
ΩΛ0
E

)
− arctanh

(√
ΩΛ0

)]
(

γ2 −ΩΛ0 Ω2
ξ0

)
+
−γ ln

(
ρ
ρ0

)
+ 2γ ln

(
γ−EΩξ0
γ−Ωξ0

)
(

γ2 −ΩΛ0 Ω2
ξ0

) , (37)

from which we can express Equation (36) in terms of the scale factor as follows:

ln
(

T
T0

)
= ln

(
ρ

ρ0

)
+ ln

(
γ− EΩξ0

γ−Ωξ0

)
+ ln a3. (38)

Hence, the temperature of the dissipative fluid as a function of the scale factor is
given by

T = T0

(
ρ

ρ0

)(
γ− EΩξ0

γ−Ωξ0

)
a3, (39)

which reduced to the expression for the temperature of a perfect fluid, given by Equation (24),
when Ωξ0 = 0.

Note that it is possible to obtain an expression for the temperature of the dissipative
fluid that does not depend explicitly on ρ, by combining Equations (37) and (39), which
leads to

T = T0a
3
γ

(
γ−γ2+Ω2

ξ0
ΩΛ0

)(
γ− EΩξ0

γ−Ωξ0

)3

×

[(
E +

√
ΩΛ0

E−
√

ΩΛ0

)(
1−

√
ΩΛ0

1 +
√

ΩΛ0

)](Ωξ0

√
ΩΛ0

γ

)
,

(40)

and from which we can see that the temperature is always positive in two cases: (i) when
γ− EΩξ0 > 0 and γ−Ωξ0 > 0, or (ii) when γ− EΩξ0 < 0 and γ−Ωξ0 < 0. Therefore, if
we fulfill the near-equilibrium condition (28), then we obtain a positive expression for the
temperature, since the case (i), and from the same condition given by Equation (28), we
can also fulfill the condition (12) from which the solution (11) tends asymptotically to the
future at the usual de Sitter solution. Note that case (ii) implies that the fluid is far from
the near equilibrium and the solution (11) has a Big-Rip singularity. On the other hand,
considering that the solution (11) is a decreasing function with time when the condition (12)
holds, then the cubic term in Equation (40) is also a decreasing function; thus, considering
that E(τ → ∞)→

√
ΩΛ0 , a decreasing temperature with time requires that

a
3
γ

(
γ−γ2+Ω2

ξ0
ΩΛ0

)

(
E−
√

ΩΛ
)(Ωξ0

√
ΩΛ0

γ

) → 0, (41)

which is only possible, considering that a(τ → ∞)→ ∞, when the exponent of the power
law for the scale factor is negative, i.e., if

ΩΛ0 <
γ

Ωξ0

(γ− 1)
Ωξ0

, (42)
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which is always true because 0 < ΩΛ0 ≤ 1 and the fulfilment of the condition (12) implies
that 1 < γ/Ωξ0 , as well as the fulfillment of the condition (29) implies that 1� (γ− 1)/Ωξ0 .
It is important to note that for a CDM (γ = 1), the exponent of the power law for the scale
factor is always positive, and the temperature is an increasing function with time, which
represents a contradictory behavior for an expanding universe.

In Figure 3, we present the numerical behavior of the temperature T of the dissipa-
tive fluid, given by Equation (39), as a function of the scale factor a. We rewrite E as a
function of the energy density ρ from Equation (2), and we use the expression for ρ given
by Equation (37). For the free parameters, we use the values of T0 = 1, Ωξ0 = 0.001,
ΩΛ0 = 0.69 and γ = 1.002. We also present the behavior of the temperature when γ = 1.
It is important to mention that the difference between the initial value of the temperature
for the WDM case and their final value is 0.0102895 for a scale factor that is 3.6 times
more bigger than the actual size of the universe, this is a consequence of being close to the
near-equilibrium condition, which makes that temperature decrease very slowly to zero.

Figure 3. Numerical behavior of T, given by Equation (39), for 0.5 ≤ a ≤ 3.5. We also consider the
fixed values of T0 = 1, Ωξ0 = 0.001, and ΩΛ0 = 0.69.

With the temperature of the dissipative fluid given by Equation (39), we can calculate
the entropy from Equations (21) and (26), which in our dimensionless notation, takes the
following form:

dS
dτ

=
3E2Ωξ0 ρ

nT
=

3E2ρ0Ωξ0

(
γ−Ωξ0

)
n0T0

(
γ− EΩξ0

) . (43)

The positiveness of the entropy production depends on the same both cases obtained
before the positiveness of the temperature of the dissipative fluid. Therefore, the fulfillment
of the near-equilibrium condition implies the positiveness of the entropy production. Note
that for the asymptotic de Sitter solution, the entropy production goes to a constant but, in
this case, ρ→ 0 (which implies a null Ωξ0), and then we have a null entropy production.
On the other hand, the entropy production goes to infinity, similar to the temperature
of the dissipative fluid, when we do not satisfy the condition (12) in a finite time in the
Big-Rip singularity.

In Figure 4, we show the numerical behavior of the entropy production, given by
Equation (43), as a function of time τ for Ωξ0 = 0.001, ΩΛ0 = 0.69 and γ = 1.002. We
also show the behavior of the entropy production when Ωξ0 = 2.4. For this last one, the
near-equilibrium condition is not satisfied, since this value enters into contradiction with
Equation (12), and the entropy production diverges in a finite time given by [90]

τs =

2Ωξ0 log

[(
1−
√

ΩΛ0
1+
√

ΩΛ0

) γ

2Ωξ0

√
ΩΛ0
(
1−ΩΛ0

) 1
2
( −Ωξ0

γ−Ωξ0

)]
3
(

γ2 −Ω2
ξ0

ΩΛ0

) , (44)
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which, according to the values given to the free parameters, this is equal to τs = 0.346571,
which is roughly equivalent to 4.98626 Gyrs from the present time.

Figure 4. Numerical behavior of dS/dτ, given by Equation (43), for −0.4 ≤ τ ≤ 0.4. We also consider
the fixed values of ΩΛ0 = 0.69 and γ = 1.002. The red dashed line represents the time τs, given by
Equation (44), in which the Big-Rip singularity occurs.

In summary, the condition given by Equation (29) together with the condition
Ωξ0 < 1, for the present time, describe a viscous WDM model which is compatible with
the near-equilibrium condition and presents a proper physical behavior of the tempera-
ture (a decreasing function with the scale factor), and entropy production (without future
Big-Rip singularity). Therefore, all of the previous thermodynamics analysis will help us
to define the best prior definition for our cosmological parameters γ and Ωξ0 , in order to
constraint with the cosmological data. Accordingly, our model has two more free parame-
ters than the standard ΛCDM model, which appears from the possibility of a more general
model of the DM component, that takes into account a warm nature with a non-perfect
fluid description.

5. Cosmological Constraints

In this section, we shall constraint the free parameters of the viscous ΛWDM model
with the SNe Ia data coming from the Pantheon sample [96], which consists of 1048 data
points in the redshift range 0.01 ≤ z ≤ 2.3; and the OHD compiled by Magaña et al. [97],
which consists of 51 data points in the redshift range 0.07 ≤ z ≤ 2.36. To do so, we compute
the best-fit parameters and their respective confidence regions with the affine-invariant
Markov Chain Monte Carlo (MCMC) method [98], implemented in the pure-Python code
emcee [99], by setting 30 chains or “walkers”. As a convergence test, we compute the
autocorrelation time of the chains τcorr every 50 steps, provided by the emcee module. If
the current step is larger than 50τcorr, and if the values of τcorr changed by less than 1%,
then we will consider that the chains are converged and the code is stopped. The first 5τcorr
steps are discarded as “burn-in” steps. This convergence test is complemented with the
mean acceptance fraction, which should be between 0.2 and 0.5 [99], and can be modified
by the stretch move provided by the emcee module.

Since we are implementing a Bayesian statistical analysis, we need to construct the
Gaussian likelihood

L = N exp

(
−

χ2
I

2

)
. (45)

Here, N is a normalization constant, which does not influence in the MCMC analysis,
and χ2

I is the merit function, where I stands for each dataset considered, namely, SNe Ia,
OHD and their joint analysis in which χ2

joint = χ2
SNe + χ2

OHD.
The merit function for the OHD data is constructed as

χ2
OHD =

51

∑
i=1

[
Hi − Hth(zi, θ)

σH,i

]2

, (46)
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where Hi is the observational Hubble parameter at redshift zi with an associated error σH,i,
all of them were provided by the OHD sample, Hth is the theoretical Hubble parameter
at the same redshift, and θ encompasses the free parameters of the model under study. It
is important to mention that in our MCMC analysis, we consider the value of the Hubble
parameter at the current time, H0, as a free parameter, which is written as H0 = 100 km/s

Mpc h,
with h dimensionless and for which we consider the Gaussian prior G(0.7403, 0.0142),
according to the value of H0 obtained by A. G. Riess et al. [9].

On the other hand, the merit function for the SNe Ia data is constructed as

χ2
SNe =

1048

∑
i=1

[
µi − µth(zi, θ)

σµ,i

]2

, (47)

where µi is the observational distance modulus of each SNe Ia at redshift zi with an
associated error σµ,i, µth is the theoretical distance modulus for each SNe Ia at the same
redshift, and θ encompasses the free parameters of the model under study. Following this
line, the theoretical distance modulus can be obtained, for a flat FLRW space-time, from
the expression

µth(zi, θ) = 5 log10

[
dL(zi, θ)

Mpc

]
+ µ̄, (48)

where µ̄ = 5
[
log10 (c) + 5

]
, c is the speed of light given in units of km/s and dL is the

luminosity distance given by

dL(zi, θ) = (1 + zi)
∫ zi

0

dz′

H(z′, θ)
. (49)

In the Pantheon sample, the distance estimator is obtained using a modified version
of Tripp’s formula [100], with two nuisance parameters calibrated to zero with the BEAMS
whit Bias Correction (BBC) method [101]. Hence, the observational distance modulus for
each SNe Ia is given by

µi = mB,i −M, (50)

where mB,i is the corrected apparent B-band magnitude of a fiducial SNe Ia at redshift
zi, all of them provided by the pantheon sample (Currently available online in GitHub
repository https://github.com/dscolnic/Pantheon (accessed on 30 August 2022)). The
corrected apparent B-band magnitude mB,i for each SNe Ia with their respective redshifts zi
and errors σmB ,i are available in the document lcparam_full_long.txt), andM is a nuisance
parameter which must be jointly estimated with the free parameters θ of the model under
study. Therefore, we can rewrite the merit function (47) in matrix notation (denoted by
bold symbols) as

χ2
SNe = M(z, θ,M)†C−1M(z, θ,M), (51)

where [M(z, θ,M)]i = mB,i − µth(zi, θ) −M, and C = Dstat + Csys are the total uncer-
tainties covariance matrix, with Dstat = diag(σ2

mB ,i) being the statistical uncertainties of
mB and Csys being the systematic uncertainties in the BBC approach (Currently available
online in GitHub repository https://github.com/dscolnic/Pantheon in the document
sys_full_long.txt (accessed on 30 August 2022)).

Finally, to marginalize over the nuisance parameters µ̄ andM, we define M̄ = µ̄+M,
and the merit function (51) is expanded as [102]

χ2
SNe = A(z, θ)− 2B(z, θ)M̄+ CM̄2, (52)

where
A(z, θ) = M(z, θ,M̄ = 0)†C−1M(z, θ,M̄ = 0), (53)

B(z, θ) = M(z, θ,M̄ = 0)†C−11, (54)

https://github.com/dscolnic/Pantheon
https://github.com/dscolnic/Pantheon
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C = 1C−11. (55)

Therefore, by minimizing the expanded merit function (52) with respect to M̄, it is
obtained M̄ = B(z, θ)/C, and the expanded merit function is reduced to

χ2
SNe = A(z, θ)− B(z, θ)2

C
, (56)

which depends only on the free parameters of the model under study.
It is important to mention that the expanded and minimized merit function (56)

provides the same information as the merit function (51) since the best-fit parameters
minimize the merit function, and their corresponding value can be used as an indicator
of the goodness-of-fit independently of the dataset used: the smaller the value of χ2

min is,
the better is the fit. In this sense, in principle the value of χ2

min obtained for the best-fit
parameters can be reduced by adding free parameters to the model under study, result-
ing in overfitting. Hence, we compute the Bayesian criterion information (BIC) [103] to
compare the goodness-of-fit statistically. This criterion adds a penalization in the value of
χ2

min that depends on the total number of free parameters of the model, θN , according to
the expression

BIC = θN ln (n) + χ2
min, (57)

where n is the total number of data points in the corresponding data sample. Thus, when
two different models are compared, the one most favored by the observations statistically
corresponds to the one with the smallest value of BIC. In general, a difference of 2–6 in BIC
is evidence against the model with higher BIC, a difference of 6–10 is strong evidence, and
a difference of >10 is very strong evidence.

Since in the merit function of the two datasets, the respective model is considered as
the Hubble parameter as a function of the redshift (see Equations (46) and (49)), then we
numerically integrate Equation (7) with m = 1, which can be rewritten, considering that
ż = −(1 + z)H, as

dH
dz

=
1

2(1 + z)

[
3γH − 3ξ0

(
3H2 −Λ

)
− Λγ

H

]
, (58)

using as the initial condition H(z = 0) = H0 = 100 km/s
Mpc h, and taking into account that

ξ0 = Ωξ0 /(3H0) and Λ = 3H2
0(1−Ωm0); this last one derived from Equation (2), which

leads to Ωm0 + ΩΛ0 = 1. Furthermore, for a further comparison, we also constraint the free
parameters of the ΛCDM model, whose respective Hubble parameter as a function of the
redshift is given by

H(z) = 100
km/s
Mpc

h
√

Ωm0(1 + z)3 + 1−Ωm0. (59)

Therefore, the free parameters of the viscous ΛWDM model are θ = {h, Ωm0, Ωξ0 , γ},
and the free parameters of the ΛCDM model are θ = {h, Ωm0}. For the free parameters
Ωm0, Ωξ0 and γ, we consider the following priors: Ωm0 ∈ F(0, 1), γ ∈ G(1.00, 0.02) and
0 < Ωξ0 < γ− 1; where F stands for flat prior, and the prior for Ωξ0 is derived from the
constraint given by Equation (29).

In Table 1, we present the total steps, the mean acceptance fraction (MAF) and the
autocorrelation time τcorr of each free parameter, obtained when the convergence test is
fulfilled during our MCMC analysis for both the viscous ΛWDM and ΛCDM, models. The
values of the MAF are obtained for a value of the stretch move of a = 7 for the ΛCDM
model, and a value of a = 3 for the viscous ΛWDM model.
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Table 1. Final values of the total number of steps, mean acceptance fraction (MAF) and autocorrelation
time τcorr for each model-freeparameters, obtained when the convergence test described in Section 5
is fulfilled for a MCMC analysis with 30 chains or “walkers”. The values of the MAF are obtained
for a value of the stretch move of a = 7 for the ΛCDM model, and a value of a = 3 for the viscous
ΛWDM model.

Data Total Steps MAF
τcorr

h Ωm0 Ωξ0 γ

ΛCDM Model
SNe Ia 1050 0.370 16.5 17.5 · · · · · ·
OHD 1000 0.367 14.9 17.1 · · · · · ·

SNe Ia+OHD 800 0.364 15.8 15.4 · · · · · ·

Viscous ΛWDM Model
SNe Ia 2700 0.385 45.8 44.3 49.6 51.9
OHD 2450 0.377 39.6 45.5 48.2 48.9

SNe Ia+OHD 2700 0.379 43.0 45.9 50.5 53.3

6. Results and Discussion

The best-fit values for the ΛCDM and viscous ΛWDM models, obtained for the SNe
Ia data, OHD, and in their joint analysis, as well as their corresponding goodness-of-fit
criteria, are presented in Table 2. The uncertainties presented correspond to 1σ(68.3%),
2σ(95.5%) and 3σ(99.7%) of confidence level (CL). In Figures 5 and 6, we depict the
joint and marginalized credible regions of the free parameter space of the ΛCDM and
viscous ΛWDM model, respectively. The admissible regions presented in the joint regions
correspond to 1σ, 2σ and 3σ CL.

Table 2. Best-fit values and goodness-of-fit criteria for the viscous ΛWDM model with free parameters
h, Ωm0, Ωξ0 and γ; in addition, for the ΛCDM model with free parameters h and Ωm0, obtained in
the MCMC analysis described in Section 5 for the SNe Ia data, OHD, and in their joint analysis. The
uncertainties correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) of confidence level (CL), respectively.
The best-fit values for the ΛCDM model are used for the sake of comparison with the viscous
ΛWDM model.

Data
Best-Fit Values Goodness of Fit

h Ωm0 Ωξ0(×10−2) γ χ2
min BIC

ΛCDM Model
SNe Ia 0.740+0.014 +0.028 +0.043

−0.013 −0.028 −0.040 0.299+0.022 +0.045 +0.064
−0.022 −0.042 −0.058 · · · · · · 1026.9 1040.8

OHD 0.720+0.009 +0.018 +0.026
−0.009 −0.017 −0.025 0.241+0.014 +0.027 +0.038

−0.014 −0.027 −0.037 · · · · · · 28.6 36.5
SNe Ia+OHD 0.710+0.008 +0.016 +0.023

−0.008 −0.016 −0.022 0.259+0.012 +0.024 +0.034
−0.012 −0.022 −0.036 · · · · · · 1058.3 1072.3

Viscous ΛWDM Model
SNe Ia 0.741+0.014 +0.029 +0.044

−0.014 −0.028 −0.044 0.293+0.023 +0.048 +0.066
−0.022 −0.043 −0.064 0.980+1.232 +2.954 +4.318

−0.716 −0.943 −0.979 1.023+0.015 +0.031 +0.045
−0.011 −0.019 −0.021 1026.9 1054.7

OHD 0.721+0.009 +0.018 +0.026
−0.010 −0.020 −0.029 0.237+0.017 +0.037 +0.053

−0.017 −0.033 −0.045 1.026+1.250 +2.641 +3.763
−0.738 −0.988 −1.019 1.023+0.014 +0.030 +0.048

−0.012 −0.019 −0.022 28.5 44.2
SNe Ia+OHD 0.709+0.009 +0.017 +0.026

−0.009 −0.017 −0.027 0.261+0.015 +0.030 +0.047
−0.015 −0.030 −0.041 1.633+1.381 +2.871 +4.186

−1.059 −1.544 −1.627 1.026+0.015 +0.031 +0.045
−0.013 −0.021 −0.024 1056.9 1084.9

From the best-fit parameters presented in Table 2, it is possible to see that there are no
remarkable differences between the best-fit values for h and Ωm0 obtained for the ΛCDM
model and the viscous ΛWDM model. This is an expected behavior due to the similarity
between the two models at late times, as well as in the past, considering the best-fit values
obtained for Ωξ0 . From the point of view of the goodness-of-fit criteria, we can conclude
that the two models are able to describe the SNe Ia, OHD and SNe Ia+OHD data, with
very similar values of χ2

min, again due to the similarity of the behavior of the two models,
especially at late times.
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Figure 5. Joint and marginalized regions of the free parameters h and Ωm0 for the ΛCDM model,
obtained in the MCMC analysis described in Section 5. The admissible regions presented in the joint
regions correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) of confidence level (CL), respectively.
The best-fit values for each model-free parameter are shown in Table 2.

Figure 6. Joint and marginalized regions of the free parameters h, Ωm0, Ωξ0 and γ for the viscous
ΛWDM model, obtained in the MCMC analysis described in Section 5. The admissible regions
presented in the joint regions correspond to 1σ(68.3%), 2σ(95.5%) and 3σ(99.7%) of confidence
level (CL), respectively. The best-fit values for each model-free parameter are shown in Table 2.

A remarkable result is that the viscous ΛWDM model exhibits a slightly lower value
of χ2

min for the SNe Ia+OHD data than the ΛCDM model, despite the fact that the ΛWDM
model has a greater value of BIC than the ΛCDM model. This translates into a better fit for
the ΛWDM model because the two extra free parameters of the viscous ΛWDM model are a
consequence of a more general description of the DM component, which takes into account
a warm nature and a non-perfect fluid description, as suggested by previous investigations
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that use these alternatives to face tensions of the standard model, and they are not added
by hand in order to force a better fit. Furthermore, the ΛCDM model assumes beforehand
a CDM (one less free parameter) and all their matter components are described as perfect
fluids (another less free parameter) which leads to a good fit of the combined SNe Ia+OHD
data with less free parameters, but the price to pay are the problems mentioned above
that the ΛCDM model experiences today. Therefore, we have an alternative model which
goes beyond the standard ΛCDM model by considering a dissipative WDM, which has
the capability to describe the SNe Ia and OHD data in the same way as the ΛCDM model,
together with a more general description of DM nature.

On the other hand, the best fit values contrasted with the combined SNe Ia+OHD
data, for γ and Ωξ0 are given by 1.02555+0.04453

−0.02424 and 0.01633+0.04185
−0.01627, respectively, at 3σ CL.

Note that both deviations around the mean value satisfy the near-equilibrium condition
Equation (29), which means that these values are compatible with our previous theoretical
thermodynamics conclusion (Ωξ0 < 1 and γ 6= 1). For the small values of Ωξ0 and γ given
by the data, we are far from the near-equilibrium condition at H = 21.61855H0, according
to Equation (16), which means that we are far from the near equilibrium at a redshift of
z = 11.63228, according to Equation (58); by then, we can ensure the near-equilibrium
condition for the actual data measurement at z ∼ 2.3.

Furthermore, it is important to mention that with the data, we can obtain the actual
size of dissipation for our ΛWDM model. According to our dimensionless expression
Ωξ0 = 3ξ0H0, ξ0 has dimensions of time, and the bulk viscosity is given by ξ = ξ0ρ,
which writing in full dimensions (c 6= 1) is given by ξ = ξ0ε, being ε the energy density
of matter (that has the same dimension of pressure according to the EoS). Then, ξ has
the dimensions Pa× s which correspond to the dimensions of viscosity. Following the
cosmological constraint, we obtain Ωξ0 < 0.05818 (a generalization of our theoretical
constraint Ωξ0 < 1). By then, using the definition of Ωξ0 , we have the following constraint
on bulk viscosity

ξ < ε× 0.05818
3H0

. (60)

If we introduce the critical density, given by ε0 =
3c2 H2

0
8πG , and since our best fit values

for the Hubble parameter and matter density are H0 = 70.9238 km/s
Mpc =

(
4.3507× 1017s

)−1

and Ωm = 0.26073, respectively, then the restriction over the upper limit of bulk viscosity is
given by

ξ < 1.87082× 106 Pa · s. (61)

For this particular case of values, if we consider the upper error of the best fit values
at 3σ CL, the value of ξ remains of the order of ξ . 106 Pa·s. Note that from the previous
thermodynamic analysis (Ωξ0 < 1), and using the value of H0 and Ωm given by [1,9], we
will find that

ξ < 3.628× 107 Pa · s, (62)

which is a similar value with respect to the previous value found by B. D. Normann and I.
Brevik in [48], in the context of a model with a viscous DM component with bulk viscosity
of the form ξ = ξ0ρ

1
2 , and DE component given by the CC. They also suggest (see also [49])

that the value ξ ∼ 106 Pa · s for the present viscosity is reasonable. Furthermore, other
investigations suggest the same orders of magnitude [48,49,89,104], but since these models
are not identical, some discrepancies are expected with our results.

7. Conclusions

We have discussed throughout this work the near-equilibrium condition, entropy
production and cosmological constraint of a cosmological model filled with a dissipative
WDM, where the bulk viscosity is proportional to the energy density, and a positive CC,
which is described by an exact solution previously found in [90]. Assuming the condition
given by Equation (12), this solution behaves very similar to the standard cosmological
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model for small values of Ωξ0 , as we can see in Figure 1, avoiding the appearance of a
future singularity in a finite time (Big-Rip).

We have shown that the presence of the CC—together with a small viscosity from
the expression (16), and considering the condition given by Equation (12)—leads to a near
equilibrium regime for the WDM component.

The WDM component has a temperature that decreases very slowly with the cosmic
expansion as a result of being close to the near-equilibrium condition, contrary to the
non-physical behavior found for the dust case (γ = 1), where the temperature increased
with the scale factor. Furthermore, we have shown that the second law of thermodynamics
is fulfilled as long as the conditions (12) and (28) are satisfied. On the contrary, the entropy
production would diverge in a finite time if a Big-Rip singularity occurs.

To fulfill the two criteria discussed in this work, we need to have Ωξ0 < 1 and a WDM
component with an EoS satisfying the constraint given in Equation (29).

It is important to mention that, in our WDM model, we need to have Ωξ0 � γ− 1.
For small values of Ωξ0 (in particularly Ωξ0 = 0.001), the model enters into an agreement
with some previous results found, for example in [105], where cosmological bounds on
the EoS for the DM were found, and the inclusion of the CC is considered. The bounds
for a constant barotropic index are −1.50× 10−6 < ω < 1.13× 10−6 (ω = γ− 1), if there
is no entropy production, and −8.78× 10−3 < ω < 1.86× 10−3, if the adiabatic speed of
sound vanishes, both at 3σ of confidence level. Another example can be found in [106]
where, using WMAP+BAO+HO observations, the EoS at the present time is given by
ω = 0.00067+0.00011

−0.00067.
Highlighting again, we have to mention that the asymptotic behavior of the exact

solution at the infinite future, given by (10), corresponds to the usual de Sitter solution,
which indicates that this solution describes a dissipative WDM that could reproduce the
same asymptotic behavior of the standard model. As long as the exact solution tends to
this value, the near-equilibrium condition (28) can be satisfied. Of course, the de Sitter
solution has a constant temperature, according to Equation (20); since in this case we have
a null density and null pressure of the fluid, the entropy production is zero, according to
Equation (26).

We have shown in this work that, previously to any constraining from the cosmological
data, the study of thermodynamics consistences required by the Eckart’s approach, such
as the near-equilibrium condition and entropy production, leads to important constraints
on the cosmological parameters, such as the given one by Equation (1), which implies the
necessity of WDM, in agreement with some previous results found in [105–107]. On the
other hand, the constraint (12) tells us that Big-Rip singularities are avoided at late times
if the near-equilibrium condition is preserved, even though the exact solution explored
behaves very similarly to the standard model, and opens the possibility of a more realistic
fluid description of the DM containing dissipation processes within the Eckart’s framework,
giving us physically important clues about the EoS of this component (γ) and the size
of dissipation involved (Ωξ0). In this sense, this thermodynamic analysis had the aim
of finding a model that satisfies the near-equilibrium condition, together with a proper
behavior of the temperature and entropy production, helping us to find the best prior to
the cosmological constraints discussed in Section 5.

The results of the cosmological constraint are shown in Table 2, as well as their
corresponding goodness-of-fit criteria. A greater value of BIC for the ΛWDM model, in
comparison to the value obtained for the ΛCDM model, is a reflection of considering a
more general theory, with two more free parameters (γ and Ωξ0 ) than the standard ΛCDM
model (γ fixed to 1 and a perfect DM component), obtaining also a slightly better fit for
the combined SNe Ia+OHD data for the ΛWDM model, being in this sense a more realistic
model that describes in the same way (slightly better) the SNe Ia and OHD data similar to
the standard cosmological model does.

With the best fit values for Ωξ0 and γ at 3σ CL, obtained for the combined SNe Ia+OHD
data, we can conclude that the near-equilibrium condition is fully satisfied, even for a redshift
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of z = 11, according to Equation (58); then, a proper physical behavior of the temperature
(decreasing function with the scale factor), and entropy production (without future Big-Rip
singularity), is obtained. Furthermore, our data analysis suggests that the actual value of
bulk viscosity has an upper value of the order of 106 Pa·s, in agreement with some previous
investigations. It is also important to mention that the model, from the point of view of the
thermodynamic analysis (and even from the cosmological data), does not rule out values
smaller than this, since the space of values obtained from the theoretical ground at the present
time is given by 0 < Ωξ0 < 1, and allows, in principle, to get smaller values that can be more
acceptable from the viscous hydrodynamic point of view.

Finally, the main contribution of the present study is to show that the standard model
with the two extensions, i.e., a dissipative WDM component—in order to face the recent
cosmological tension found—fulfills the criteria of a consistent relativistic fluid description
under some constraints for the free parameters of the model, and also can describe the
combined SNe Ia+OHD data in the same way as the ΛCDM. Therefore, our exact solution
describes a physically viable model for a dissipative WDM component, which is supported
by many investigations that have extended the possibilities for the DM nature to face the
tensions of the standard model.
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