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Abstract: Assembly robots have become the core equipment of high-precision flexible automatic
assembly systems with a small working range. Among different fields of robot technology, path
planning is one of the most important branches. In the present study, an elite smoothing ant
colony algorithm (ESACO) is proposed for spatial obstacle avoidance path planning of the grasping
manipulator. In this regard, the state transition probability and pheromone update strategies are
improved to enhance the search capability of path planning symmetry and the convergence of
the algorithm. Then a segmented B-spline curve is presented to eliminate path folding points
and generate a smooth path. Finally, a manipulator control system based on the Arduino Uno
microcontroller is designed to drive the manipulator according to the planned trajectory. The
experimental results show that the performance of the ESACO algorithm in different scenarios has
symmetry advantages, and the manipulator can efficiently complete the simulation trajectory with
high accuracy. The proposed algorithm provides a feasible scheme for the efficient planning of
manipulators in equipment manufacturing workshops.

Keywords: elite smoothing ant colony algorithm; grasping manipulator; autonomous obstacle
avoidance; global path planning

1. Introduction

With the rapid development of emerging industries and the increasing demands of
society, combining the mobile manipulator with conventional machining and assembly is
highly demanded to improve the automation level of operations [1,2]. Path planning is the
basis for manipulators to complete path control safely and reliably [3,4]. The main objective
of obstacle avoidance is to find an optimal and collision-free path from the starting point
to the target point in a given environment [5,6]. It is worth noting that the smoothness
of the path affects the energy consumption, operating efficiency, and trajectory tracking
time of the mechanical arm, and a non-smooth path restricts robot movement and may
cause unplanned slowdowns [7,8]. Therefore, the ideal obstacle avoidance path planning
for space manipulators is of significant importance.

Currently, intelligent algorithms such as genetic algorithm (GA) [9,10], particle swarm
algorithm (PSO) [11], ant colony optimization (ACO) [12,13], neural network [14], and
rapidly exploring random trees (RRT) [15,16] have been widely applied in different applica-
tions in the manipulator path planning. Among these algorithms, the ant colony algorithm
has superior characteristics such as strong robustness, good positive feedback mechanism,
and inherent parallel mechanism [4,17]. Accordingly, this algorithm has been widely ap-
plied in path planning. Despite several significant features, the conventional ACO has
disadvantages such as slow convergence speed, long path planning time, and low utiliza-
tion of cyclic information [18,19]. In order to resolve these shortcomings, various methods
have been proposed to improve the pheromone update and path search strategy and solve
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the obstacle avoidance path problem. In this regard, Miao et al. [20] proposed an improved
adaptive ant colony algorithm (IAACO) with the obstacle exclusion factor and adaptive
adjustment factor to realize a comprehensive global optimization of the robot path planning.
Sangeetha et al. [21] proposed a fuzzy gain-based dynamic ant colony optimization (FG-
DACO) for dynamic path planning to effectively plan collision-free and smooth paths. Jiao
et al. [22] proposed an intelligent wheelchair path planning method using an adaptive state
transfer strategy and an adaptive information update strategy to improve the traditional
ant colony algorithm. Furthermore, Michalis Mavrovouniotis et al. [23] proposed a modal
ant colony algorithm to improve the addressing efficiency. Jin et al. [24] proposed a fusion
algorithm based on the improved ant colony algorithm-rolling window method that can
reach the specified target area quickly and safely in complex dynamic environments.

A review of the literature indicates that numerous investigations have been carried out
in terms of path smoothening. In this regard, Xiong et al. [25] combined a Voronoi-based
scheme with ant colony optimization (ACO) and found collision-free optimal trajectories
for multiple autonomous marine vehicles (AMVs). Then they measured oceanic parameters
using a modified heuristic function. Liu et al. [12] proposed an optimization method
combining pheromone diffusion and geometric local optimization to solve the convergence
speed problem in the ant colony algorithm, and effectively shortened the search space
of ants. Yang et al. [26] proposed an efficient double-layer ant colony algorithm (DL-
ACO) to navigate the robot autonomously and designed a segmented B-sample curve with
smoothing the paths only at the corners. Accordingly, a complete robot navigation path
planning scheme was formed. Zhang et al. [27] constructed a nearly shortest path, applied
the 2D path smoothing method to solve the 3D path smoothing problem, and provided a
new velocity planning method to find the time-optimal path.

The performed literature survey indicates that although many algorithms have been
proposed for finding collision-free smooth paths, further investigations are required espe-
cially in the field of intelligent algorithms with logical reasoning. To address these issues,
the following contributions are made in this paper. Generally, these contributions can be
categorized as efficient planning of a safe and smooth path in the presence of obstacles.

• An elite ant colony (EACO) algorithm is proposed, in which the decisive factor is
introduced into the state transition equation to offset the error caused by the positive
feedback system, and the attenuation factor is added to the pheromone update strategy
to prevent the algorithm from falling into local optimum.

• Combining the B-spline curve with the improved EACO, the elite smoothing ant
colony (ESACO) algorithm is proposed, where the smoothing strategy is applied to
reduce unnecessary traversals in the search process and generate efficient paths.

• The performance of the three algorithms before and after the improvement is com-
pared, and the results show that the ESACO algorithm generates shorter and smoother
routes with higher convergence and reliability.

• Physical experiments are conducted using RobotStudio software, and the results
are verified.

This paper is organized as follows: Section 2 presents the definition of the problem
and describes the environment. Section 3 is focused on the algorithm design, improvement
of the algorithm, and the B-sample smoothing method. Section 4 compares and analyzes
the performance of different algorithms. Section 5 presents the results of the numerical
simulations. Finally, the results and main achievements are summarized in Section 6.

2. Problem Statement and Environment Description
2.1. Problem Definition and Formulation

Generally, robots assemble components in a complex environment with assembling
parameters such as time windows, size of equipment parts, and assembly accuracy [28].
Moreover, different production plans may affect the equipment assembly efficiency [29]. In
the equipment manufacturing workshop, each manipulator is an independent assembly
unit, and the end-effector and connecting rod of the manipulator also avoid obstacles during
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movement. To better describe the path planning for mechanical arm obstacle avoidance,
the actual problem can be simplified using the following hypotheses:

• Assume that there are three static obstacles in the working environment;
• The starting and ending positions of the mechanical arm movement are known;
• The dimensions of the parts are within the clamping range of the mechanical arm;
• The equipment parts have been arranged in order in advance.

In this section, the path length, the maximum grasping range, the consumed energy to
complete the task, and the maximum working radius of the manipulator are considered
the modeling objectives. The affecting variables in the modeling are described in Table 1.

Table 1. Parameters description.

Parameters Description

L(x) The total length of the path
i, j The points visited by ants, where i = {1, 2, . . . , I} and j = {1, 2, . . . , J}
o The number of obstacles where o = {0, 1, . . . , O}

dij The distance between points i and j
dio The distance between point i and the nearest obstacle o
a The number of equipment parts where a = {0, 1, . . . , A}
φa The size of equipment parts

Φmin, Φmax Minimum and maximum range of end grippers
υa

ij Energy consumption of the mechanical arm a to move from point i to j
Emax Maximum energy consumption of the mechanical arm

qa The weight of equipped parts
Wmax The maximum load of the mechanical arm
Rmax The maximum radius of operation of the mechanical arm

F The position of mechanical arm
xiF, xjF The variable of points i and j on the path to the mechanical arm
diF, djF The distance between points i and j on the path to the mechanical arm

Based on these parameters, the objective function can be expressed in the form below:

min L(x) = ∑I
i=1 ∑J

j=1 xijdij (1)

This function is subjected to the following constraints:

max
{
∑I

i=1 ∑J
j=1 ∑O

o=1 xijdio

}
(2)

∑A
a=1φa ≥ Φmin (3)

∑A
a=1φa ≤ Φmax (4)

∑I
i=1 ∑J

j=1 ∑A
a=1 υ

a
ij ≤ Emax (5)

∑A
a=1 qa ≤Wmax (6)

∑I
i=1 xiFdiF ≤ Rmax (7)

∑J
j=1 xjFdjF ≤ Rmax (8)

xij =

{
1, for a path from i to j

0, others
(9)

where Equation (1) indicates the minimization of the distance to the target. Equation (2)
indicates the maximization of the distance between the mechanical arm and the obstacles.
Equations (3) and (4) denote the size of the parts within the maximum and minimum range
of the end gripper, respectively. Equation (5) indicates the maximum energy consumption
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to complete the assembly process. Equation (6) indicates that the weight of the part cannot
exceed the maximum load of the manipulator. Equations (7) and (8) denote that the planned
path is within the maximum operating radius of the mechanical arm. Equation (9) refers to
the path that can be included or dropped depending on its existence.

2.2. Manipulator and Environment Description

In the present study, a 6-DOF robot is used to investigate path planning during
equipment assembly [30]. Figure 1a illustrates the configuration of the manipulator, which
can be simplified as a six-link mechanism, which is connected by joint pairs and moves the
end-effector through the rotation of six joints. Figure 1b shows the base coordinate system
of the mechanical arm. Furthermore, Tables 2 and 3 show the technical parameters of the
mechanical arm and the D-H parameters of the system, respectively.
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Figure 1. Configuration of the manipulator and DOF of its joints.

Table 2. Technical parameters of the mechanical arm.

Numbers Indicators Parameters

1 Maximum loads 3 kg
2 Repeat positioning accuracy ±0.01 mm
3 Maximum working radius 580 mm
4 Weight of the machine 25 kg
5 Arm loads 0.3 kg
6 Maximum speed of grabbing 1 kg items 6.2 m/s
7 Maximum acceleration for grabbing 1 kg items 28 m/s2

Table 3. D-H parameters of the system.

Linkage i θi/(◦) di/(mm) ai/(mm) αi/(◦) Joint Range/(◦)

1 q1 335 40 90 −170 to 170
2 q2 0 280 0 −70 to 120
3 q3 0 70 90 −110 to 70
4 q4 313 0 −90 −180 to 180
5 q5 0 0 90 −120 to 120
6 q6 81 0 0 −360 to 360

In Figure 1b, θi and di indicate the joint angle and the offset of linkages, respectively.
Moreover, ai and αi denote the length of linkages and the twist angle, respectively.
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The transformation matrix of the manipulator 0
6T represents the position correla-

tion between the end linkage posture (n, o, a, p) and the joint coordinate system, which
can be obtained by multiplying successively the transformation matrix of each linkage
i−1
i T(i = 1, 2, . . . , 6) in the form below:

0
6T = 0

1T(θ1)
1
2T(θ2) · · · 56T(θ6) =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (10)

where n =
[
nx, ny, nz

]T, o =
[
ox, oy, oz

]T, a =
[
ax, ay, az

]T denote the normal vector,
orientation vector and approach vector of the coordinate system at the end of the ma-

nipulator, respectively. p =
[
px, py, pz

]T
denotes the position vector of the end of the

manipulator [31].
To reduce the spatial complexity, the cylindrical envelope method and the axis-aligned

bounding box (AABB) method [32] are used to simplify the manipulator and the obstacle,
respectively. The main idea of these methods is to transform the collision between the
manipulator and the obstacle into an interference problem between the spatial cylinder and
the rectangular enclosing box, thereby reducing the computational expenses of interference
detection and improving the efficiency of path planning. Figure 2 shows the schematic of
the established model, where r1 and r2 are the radii of the two cylinders.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 19 
 

 

In Figure 1b, θi and di indicate the joint angle and the offset of linkages, respectively. 

Moreover, ai and αi denote the length of linkages and the twist angle, respectively. 

The transformation matrix of the manipulator T6
0  represents the position correlation 

between the end linkage posture (n, o, a, p) and the joint coordinate system, which can be 

obtained by multiplying successively the transformation matrix of each linkage 

Ti
i−1 (i = 1,2, … ,6) in the form below: 

T6
0 = T1

0 (θ1) T2
1 (θ2)⋯ T6

5 (θ6) = [

nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

] (10) 

where n = [nx, ny, nz]
T
, o = [ox, oy, oz]

T, a = [ax, ay, az]
T denote the normal vector, orien-

tation vector and approach vector of the coordinate system at the end of the manipulator, 

respectively. p = [px, py, pz]
T
 denotes the position vector of the end of the manipulator [31]. 

To reduce the spatial complexity, the cylindrical envelope method and the 

axis−aligned bounding box (AABB) method [32] are used to simplify the manipulator and 

the obstacle, respectively. The main idea of these methods is to transform the collision be-

tween the manipulator and the obstacle into an interference problem between the spatial 

cylinder and the rectangular enclosing box, thereby reducing the computational expenses 

of interference detection and improving the efficiency of path planning. Figure 2 shows the 

schematic of the established model, where r1 and r2 are the radii of the two cylinders. 

X

Y

Z

O

(x0,y0,z0)

The obstacle

r1

r2

Clamping target

 

Figure 2. Bounding model of manipulator and obstacle. 

When an arbitrary point (x0, y0, z0) on the cylinder satisfies the following conditions, 

then a collision occurs and vice versa: xmin ≤ x0 ≤ xmax, ymin ≤ y0 ≤ ymax,  zmin ≤ z0 ≤

zmax. Where the points (xmin, ymin, zmin) and (xmax, ymax, zmax) represent the minimum 

and maximum coordinates of the bounding box projected on the X−, Y−, and Z−axes, re-

spectively. 

3. Algorithm Design 

3.1. Ant Colony Algorithm 

The ant colony algorithm is an evolutionary algorithm proposed by M. Dorigo in the 

1990s [33]. This algorithm is based on the behavior of ants that always search for the short-

est path between the food source and the nest when foraging. The ant k(k = 1,2, …… ,m) 

selects new path and transition probability according to pheromone concentration [34]. 

The mathematical model of the ant colony algorithm can be established as follows: 

Suppose the number of ants is m, the distance between node i and node j is dij, and 

ηij(t) = 1/dij is the expected heuristic function. The concentration of the pheromone of 

the node (i, j) at time t is τij(t), and the initial pheromone concentration is τij(0) = τ(0). 

Figure 2. Bounding model of manipulator and obstacle.

When an arbitrary point
(
x0, y0, z0

)
on the cylinder satisfies the following conditions,

then a collision occurs and vice versa: xmin ≤ x0 ≤ xmax, ymin ≤ y0 ≤ ymax, zmin ≤ z0 ≤ zmax.
Where the points (xmin, ymin, zmin) and (xmax, ymax, zmax) represent the minimum and
maximum coordinates of the bounding box projected on the X-, Y-, and Z-axes, respectively.

3. Algorithm Design
3.1. Ant Colony Algorithm

The ant colony algorithm is an evolutionary algorithm proposed by M. Dorigo in the
1990s [33]. This algorithm is based on the behavior of ants that always search for the shortest
path between the food source and the nest when foraging. The ant k(k = 1, 2, . . . . . . , m)
selects new path and transition probability according to pheromone concentration [34].

The mathematical model of the ant colony algorithm can be established as follows:
Suppose the number of ants is m, the distance between node i and node j is dij, and
ηij(t) = 1/dij is the expected heuristic function. The concentration of the pheromone of the
node (i, j) at time t is τij(t), and the initial pheromone concentration is τij(0) = τ(0). ∆τij

represents the increment of pheromone from point i to point j. Moreover, pk
ij(t) denotes the
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probability that ant k moves from node i to node j, and it can be mathematically expressed
as follows:

pk
ij(t) =


τα

ij (t)η
β
ij (t)

Σ
s∈allowedk

τα
ij (t)η

β
ij (t)

, s ∈ allowedk

0, others
(11)

where α is the pheromone factor indicating the relative importance of the pheromone traces,
β denotes the expected heuristic factor reflecting the strength of the deterministic factor,
and allowedk is the matrix that ant k can access.

The pheromone concentration on the path is updated once for each cycle completed by
the ant, and ρ(0 < ρ ≤ 1) is the volatile factor of pheromone. The pheromone concentration
is updated as follows: {

τij(t + 1) = (1− ρ)τij(t) + ∆τij
∆τij = ∑m

k=1 ∆τk
ij

, 0 < ρ < 1 (12)

∆τk
ij =

{
Q
Lk

, (i, j) ∈ T

0, (i, j) /∈ T
(13)

where Q, T, and Lk denote the pheromone intensity, the path constructed by ant k, and the
path length, respectively.

3.2. Elite Smoothing Ant Colony Optimization

The conventional ant colony algorithm has a promising performance in solving path
optimization problems. However, it also has some drawbacks. In order to generate collision-
free paths in complex spaces, an elite smoothing ant colony (ESACO) algorithm is proposed.
In this algorithm, it is intended to improve the state transfer probability and pheromone
update model and optimize the trajectory using B-sample curves.

3.2.1. Improvement of State Transition Probability

In the ant colony algorithm, the ants calculate the next visited points according to
the state transition probability equation. In this regard, a decision factor ω is defined,
which reflects the importance of eliminating unnecessary search in probabilistic selection
by ants. Whenω0 ≤ ω, the probability of ants selecting the next node is only determined
by the inter-node path length, whenω0 > ω, this probability depends on the pheromone
concentration and the inter-node path length (0 ≤ ω0 ≤ 1). The improved probability
equation can be expressed as follows:

pk
ij(t) =



η
β
ij (t)

Σ
s∈allowedk

η
β
ij (t)

s ∈ allowedk,ω0 ≤ ω

τα
ij (t)η

β
ij (t)

Σ
s∈allowedk

τα
ij (t)η

β
ij (t)

s ∈ allowedk,ω0 > ω

0 s /∈ allowedk

(14)

The improved state transfer formula allows the ants to have multiple probabilis-
tic methods to select the next point, which counteracts the error caused by the positive
feedback system.

3.2.2. Optimization of the Pheromone Update Strategy

As time passes, the pheromone concentration on the optimal route increases gradually,
while the concentration on other routes will decrease. Therefore, its characteristics cannot
be fully played out. In the present study, the attenuation coefficient θ is introduced to
weaken the pheromone increment in the path finding, which reflects whether the global
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pheromone feedback can make the algorithm search for the optimal solution at a reasonable
evolutionary rate. The modified expression can be expressed as follows:{

τij(t + 1) = (1− ρ)τij(t) + (1− ρ)∆τij − θ2

Lk
∆τij = ∑m

k=1 ∆τk
ij

, 0 < ρ < 1 (15)

∆τk
ij =

{
Q
Lk

, (i, j) ∈ T

0, (i, j) /∈ T
(16)

The modified pheromone update equation gives the ants more reference information,
makes the algorithm less likely to fall into the local optima, and solves the problem of low
utilization of the cyclic information.

3.2.3. Trajectory Optimization

The segmented B-spline curve has the advantages of continuity, locality, convexity,
and reasonable fitting in motion planning [35,36]. In this section, it is intended to use the B-
spline curve to smooth the avoidance path of the manipulator. This can be mathematically
expressed as follows:

C(u) = ∑n
i=0 PiNi,p(u), u ∈ [0, 1] (17)

where Pi and Ni,p(u) denote the i-th point and the B-spline based function defined by the
following DeBoor–Cox recursive equation, respectively [37,38].

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, others

(18)

Ni,p(u) =

{
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u
ui+p+1 − ui+1

Ni+1,p−1(u) (19)

Equations (17) and (18) define the recursive algorithm of base functions, where ui is
called the knot value. The first-order basis function is calculated by the corresponding
knot vector [ui, ui+1] and then recursively substituted into Equation (19) to calculate the
high-order basis function from 2 to p.

3.3. The Global Path Planning Process of the ESACO Algorithm

The steps of the improved algorithm for path planning are as follows:
Step 1. Establish the workspace of the manipulator and initialize the parameters. Then,

determine the starting and target position.
Step 2. Set all ants on the starting point. Select the transition probability of the next

path node according to Equation (14).
Step 3. Calculate the distance of each ant in the path node matrix.
Step 4. Calculate the fitness values of all ants and select the best ant as the next set

of solutions.
Step 5. Perform the global update of the pheromone concentration according to

Equations (15) and (16), and enter the next loop iteration.
Step 6. Determine whether the termination condition is satisfied. If it is satisfied,

output the optimal solution, or return to Step 2.
Step 7. Smoothing the optimal path by Equations (17)–(19).
Figure 3 shows the flowchart of the manipulator avoidance path planning based on

the ESACO algorithm.
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The pseudo-code of the ESACO-based path planning process is shown in Algorithm 1.
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Algorithm 1 Pseudo-code for ESACO-based path planning

1: procedure ESACO
2: Build environment model;
3: Set the size and location of obstacles, starting point S and ending point E;

4:
Initialize the number of ants m, the maximum number of iterations Nmax, weights

α,β, ρ, Q, and the new parametersω, θ;
5: for N = 1 to Nmax do
6: Put all ants into the S
7: while ant k does not reach E do
8: allowedk← the set of reachable grids for k
9: Select the next grid by Equation (14)

10: end while
11: if all ants have arrived E then
12: Lk← path length of ant k
13: Lbest← the best path in this iteration
14: Update the global pheromone by Equations (15) and (16)
15: if the fitness is optimal then
16: best-fitness←minimum fitness value
17: Best-Fitness← record the change of fitness values
18: end if
19: end if
20: end for
21: Output optimal path and optimal fitness values
22: Smoothing the optimal path by Equations (17)–(19)
23: end procedure

4. Simulations and Analysis

Three cubic obstacles with different sizes are established to test the obstacle avoidance per-
formance of the algorithm, the size of which is (4 cm× 4 cm× 8 cm), (4.5 cm× 4.5 cm× 5.5 cm),
and (6 cm × 6 cm × 6 cm). The coordinates of the starting and the target point are (1 cm,
10 cm, 1 cm) and (21 cm, 8 cm, 12 cm). By substituting the parameters of Table 1 into
Equation (10), the unique position and pose of the end-effector with respect to the base
coordinate system are obtained as follows:

Tstart =


−0.816 0.437 0.377 0.319
−0.541 −0.807 −0.236 −0.229
0.201 −0.397 0.896 −0.431

0 0 0 1



Tend =


0.885 0.414 0.215 −0.631
0.466 −0.778 −0.421 −0.506
−0.007 0.472 −0.881 −0.273

0 0 0 1





Symmetry 2022, 14, 1843 10 of 20

4.1. Simulation Results and Performance Comparison

In the present study, the elite formulation and smoothing method are used to op-
timize the algorithm twice. Therefore, the improved algorithms are called EACO and
ESACO. In order to ensure the accuracy of the experiment, the parameters of the three
algorithms are set uniformly. By referring to the parameter range in other citations,
considering other researchers’ settings, and trying a variety of combination simulations,
the parameter combination with the best experimental results is finally determined as:
m = 30, N = 50, α = 1, β = 3, ρ = 0.3, Q = 100, and the newly set parameters are taken
as follows:ω = 0.3, θ = 6. In addition, considering the randomness of the algorithm,
the three algorithms before and after the improvement are carried out 15 times for path
planning with obstacles in the scene to test the effectiveness of the algorithm. The following
indicators are used to evaluate the symmetry performance of ACO, EACO, and ESACO.
Table 4 presents the recorded results.

(1) Path length/cm: The path length directly affects the total energy consumption of the
mechanical arm and the best performance of the algorithm.

(2) Running time/s: The running time of the program is a prominent indicator of the
efficiency of the algorithm.

(3) Collision detection: The collision relationship between the path and the obstacles
determines whether the mechanical arm can continue moving. If there is a collision,
the path planning will be invalid. If there is no collision, the action can be followed up.

Table 4. Four kinds of the performance record table.

Number
ACO EACO ESACO

(1) (2) (3) (1) (2) (3) (1) (2) (3)

1 77.578 5.88 1 59.715 4.94 0 52.604 3.68 0
2 71.360 5.97 1 59.417 5.00 1 51.640 3.74 0
3 66.419 6.04 1 56.471 5.08 1 46.402 3.85 1
4 65.941 5.80 1 64.170 5.16 1 51.686 3.93 1
5 65.251 6.04 1 60.892 5.22 0 52.141 3.91 0
6 53.940 6.15 0 57.029 5.00 0 50.338 3.79 0
7 67.345 5.70 0 57.299 4.70 0 49.065 3.73 0
8 65.769 5.89 0 63.915 4.93 0 54.120 3.66 0
9 58.946 5.77 0 61.429 5.21 1 52.596 3.76 1

10 67.966 5.93 1 58.223 4.81 1 48.880 3.80 0
11 56.137 5.87 0 60.055 4.87 0 52.369 3.93 0
12 69.015 5.84 1 63.581 5.11 0 56.266 3.93 0
13 67.211 6.12 1 55.239 4.83 1 46.398 3.92 1
14 60.441 5.88 0 49.596 4.86 0 42.020 3.83 0
15 56.629 5.57 0 62.153 5.19 0 50.596 4.01 0

Figure 4 shows the path length trend diagram. It is observed that the overall trend
of each improved path is lower than the previous one. Table 5 shows the performance
comparison of different algorithms. It is observed that the shortest path length is reduced
from the original 53.940 cm to 49.596 cm to 42.020 cm, and the two improved shortest
path lengths are 8% and 22.1% lower than the original one. The average path length is
reduced from 64.663 cm to 59.279 cm to 50.475 cm, and the average path lengths after the
two improvements are 8.3% and 21.9% lower than the initial one. The standard deviation is
used to analyze the stability of the data with values of 6.133, 3.726, and 3.409, respectively.
The results indicate that the quality of the optimized paths is more stable than that before
optimization.
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Table 5. Comparison of the performance of ACO, EACO, and ESACO algorithms.

Method

Path Length Running Time

Min. Path
Length/cm

Average
Path

Length/cm

Standard
Deviation

Average
Running
Time/s

Standard
Deviation

ACO 53.940 64.663 6.133 5.897 0.150
EACO 49.596 59.279 3.726 4.994 0.158

ESACO 42.020 50.475 3.409 3.831 0.101

Figure 5 shows the trend of the running time, indicating shorter runtimes after each
improvement. Table 5 shows that the average running time is reduced from 5.897 s to
4.994 s to 3.831 s, and the optimized values are 15.3% and 35% shorter than the original one.
The standard deviations are 0.150, 0.158, and 0.101, respectively. The obtained results show
that the lowest value can be achieved using the ESACO algorithm.
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Furthermore, by analyzing Table 4 with and without collisions (0 represents no col-
lision, 1 represents collision), the original ACO has 7 collision-free times, EACO has
9 collision-free times, and ESACO has 11 collision-free times in the environment with ob-
stacles, which further illustrates the feasibility and superiority of the improved algorithm
in global obstacle avoidance.
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4.2. Analysis of the Best Simulation Results of Three Algorithms

The path length is the most immediate and effective indicator to test algorithm im-
provement and mechanical arm obstacle avoidance. The performance comparison in Table 4
shows that the optimal path planned by ACO is 53.940 cm in Group 6, and the optimal
paths planned by EACO and ESACO are 49.596 cm and 42.020 cm respectively, both in
Group 14. Table 6 illustrates the optimal obstacle avoidance paths and iterative convergence
curves for the three algorithms. The comparative path plot shows that the path obtained by
ESACO is smoother than ACO and ESACO, where the path of ACO has reciprocal points
that increase the path length, and the path of EACO is close to the optimal value; however,
it is not smooth enough.

Table 6. Optimal obstacle avoidance paths and iterative convergence curves based on
three algorithms.

Method Optimal Obstacle Avoidance Path Convergence Curve

ACO
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The iterative convergence plots reveal that the fitness values of all three algorithms
decrease as the number of iterations increases, and the curves show a horizontal trend
when a certain optimal value is reached. Further analysis shows that the initial search
fitness of the ACO algorithm is less than 72, the best path is obtained at 30 iterations, and
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the curve decreases slowly. The initial search fitness of the EACO algorithm is less than
70, while it decreases slightly faster than that of the ACO and achieves the best fitness in
11 iterations. Moreover, the initial fitness of the ESACO algorithm is greater than 72, and
the correlation curve tends to decrease rapidly, reaching the best fitness value in 7 iterations.
The results show that the first two algorithms tend to converge prematurely and fall into
local optimum, while the improved ESACO algorithm converges faster and iterates better.

5. System Design and Experimental Discussions
5.1. System Design of the Gripping Mechanical Arm

Since the advent of embedded technology, this scheme has been widely used in ma-
nipulator control systems. It should be indicated that a dedicated microcomputer is an
essential and inseparable component of this technology. Currently, Raspberry Pi, Arduino,
and FPGA are the commonly used parts in the manipulator-embedded technology. Rasp-
berry Pi [39] is a complete core processing chip with strong comprehensive performance. It
has I/O ports that can expand external applications but cannot easily expand peripheral
hardware. On the other hand, Arduino [40] is a software and hardware development
platform that simplifies programming. It has a very strong, low-price, and expandable chip,
which is widely used in the control development of various devices. Moreover, FPGA [41]
is an integrated circuit that contains programmable logic elements. FPGA has an embedded
programmable unit and a very flexible function.

In this section, the Arduino Uno microcontroller is utilized to generate the dynamic
system of the manipulator. The control system of the grasping manipulator includes a
key module, a power module, a display module, and an Arduino control module. The
Arduino control board acts on the stepper motor drive module, which drives the steering
gear of the manipulator to form a closed control system. Finally, the multi-angle-free and
accurate movement of the manipulator is realized through system debugging. The structure
diagram of the control system is presented in Figure 6.
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Figure 6. Block diagram of the mechanical arm control system.

5.2. Experimental Verification

The experimental system is implemented on Windows 10 operating system using
RobotStudio 6.04 software, which is a computer application for robot off-line programming.
It uses graphical programming and debugging of the robot system to operate the robot. It is
unique in that it can simulate and optimize existing robot programs, and models according
to the real environment. In the experiment, the information of initial pose, target pose, and
obstacles are introduced into the algorithm module, then the mechanical arm performs
obstacle avoidance path planning and collision detection. Finally, the control motor drives
the manipulator to follow the planned trajectory. Figure 7 shows the working process of
obstacle avoidance path planning for the grasping manipulator.



Symmetry 2022, 14, 1843 14 of 20

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 19 
 

 

accurate movement of the manipulator is realized through system debugging. The struc-

ture diagram of the control system is presented in Figure 6. 

Arduiuo UNO 

control board

Arduiuo 

expansion 

board

Upper 

computer

Keystroke 

module

Power 

Module

Isolation 

board

Stepper 

motor 

driver

Manipulator 

steering gear

Sensor module
Display 

module

Serial port

 

Figure 6. Block diagram of the mechanical arm control system. 

5.2. Experimental Verification 

The experimental system is implemented on Windows 10 operating system using 

RobotStudio 6.04 software, which is a computer application for robot off−line program-

ming. It uses graphical programming and debugging of the robot system to operate the 

robot. It is unique in that it can simulate and optimize existing robot programs, and mod-

els according to the real environment. In the experiment, the information of initial pose, 

target pose, and obstacles are introduced into the algorithm module, then the mechanical 

arm performs obstacle avoidance path planning and collision detection. Finally, the con-

trol motor drives the manipulator to follow the planned trajectory. Figure 7 shows the 

working process of obstacle avoidance path planning for the grasping manipulator. 

Description and definition of 

the problem

 Starting position and target position

Start

Manipulator and environment 

modeling

Planning the size and location 

of obstacles

Calculate the distance between the 

manipulator and obstacles

Yes

Algorithm improvement Generate the initial colony

Algorithm loops to find the 

optimal path

Calculate the fitness of each path

No

Obtain a collision-

free path

Yes

No

N paths are obtained

Record path values and 

fitness values

The performance of 

the improved algorithm is 

better than before

Obtained the optimal path

Smooth the path

Output joint angles

Control the rotation of the 

manipulator

End

Yes

No

Collision detection

 

Figure 7. Workflow diagram of the grasping manipulator. Figure 7. Workflow diagram of the grasping manipulator.

Figure 8 shows the experimental procedure using different algorithms. In the exper-
iments, the grasping manipulators safely avoided the obstacles and successfully guided
the end-effector to the target point. Ten repeated experiments were carried out for each
algorithm, in which the connecting rod and the end gripper of the manipulator avoided ob-
stacles, the planned paths are within the maximum operating range of the mechanical arm,
and the trajectory of each experiment is basically consistent with the simulation trajectory.

Inverse kinematics is the process of solving for all joint variables (θ1, θ2, θ3, θ4, θ5, θ6)
given the pose of the end of the manipulator. Figure 9 shows the variation of each joint
angle during obstacle avoidance for the three algorithms. It is observed that the variation
of each joint in the ACO and EACO algorithms is larger than that in the ESACO algorithm,
which indicates the relatively stable motion of the mechanical arm in the ESACO algorithm.

Figure 10 shows the total energy variation of the grasping mechanical arm, indicating
that the manipulator completes the path in 3.576 s with total motor energy of 524.998 J
when using the ACO algorithm, 2.784 s with total motor energy of 350.803 J when using the
EACO algorithm, and 2.664 s with total motor energy of 319.184 J when using the ESACO
algorithm. This shows that among the studied algorithms, ESACO can complete the path
in the shortest time and the least energy consumption during the assembly process with
good symmetry.
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5.3. Experiments in Different Scenarios

In order to further verify the effectiveness of the proposed algorithm for obstacle
avoidance path planning of the grasping manipulator, two scenarios with different shapes
and different obstacles are set up. Then each algorithm is tested 15 times. Figure 11a,b
shows the scenario with four and six obstacles, respectively. Table 7 shows the experimental
results for different scenarios.
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Table 7. Simulation results in different scenarios.

Method Min. Path
Length/cm

Average
Running
Time/s

Successful
Times

Total
Energy/J

Scenario 1
ACO 67.354 8.012 11 726.298

EACO 52.681 6.584 12 668.594
ESACO 49.323 5.746 14 596.261

Scenario 2
ACO 89.252 8.623 12 823.154

EACO 80.541 7.258 13 769.329
ESACO 68.422 6.567 14 630.468

It is found that applying the ESACO algorithm reduces the shortest path length and
search time in Scenario 1 by 27% and 28%, respectively. In this case, the successful times
of experiments are 14, and the total energy consumption of the robotic arm is reduced by
20%. Moreover, the path length and search time in Scenario 2 under the ESACO algorithm
was reduced by 24% and 24%, respectively. In this scenario, the number of successful
experiments was 14, and the total energy consumption of the robotic arm was reduced
by 23%. The results show that the ESACO algorithm can effectively speed up the search
efficiency in different scenarios of obstacles, and the manipulator has high accuracy and
strong reliability during the experiments.

Modern optimization techniques such as genetic algorithm (GA), particle swarm
optimization (PSO), gray wolf optimization (GWO), and whale optimization algorithm
(WOA) are selected to compare with the algorithms proposed in this paper, and their
advantages and disadvantages are evaluated by optimization performance and robustness.
The optimization performance is calculated by Equation (20), and the closer the value is
to 0, the better the optimization performance. Robustness is calculated by Equation (21),
which measures how close the algorithm is to the optimal solution, and the smaller the
value, the higher the robustness.

Em = (La − Lmin)/La × 100% (20)
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where Lmin is the optimal path value for the simulation, and La is the average value of the
path obtained by running 15 times.

E f = (Ne × T)/Nmax × 100% (21)

where Ne is the number of iterations when the path is optimal, T is the running time, and
Nmax is the maximum number of iterations.

Simulation results for maps of Scenario 1 and Scenario 2 are shown in Table 8 below.
It can be seen that the ESACO algorithm and EACO algorithm have better optimization
performance than GA, PSO, GWO, and WAO. ESACO algorithm has the best performance
and can obtain the global optimal solution. The robustness of the ESACO algorithm is also
better than other algorithms, indicating that the algorithm has the best stability.

Table 8. Simulation results in different scenarios.

Method
Scenario 1 Scenario 2

Optimization
Performance Robustness Optimization

Performance Robustness

GA 0.169 2.943 0.203 2.477
PSO 0.198 1.781 0.192 1.449

GWO 0.122 1.154 0.216 2.396
WOA 0.167 1.352 0.178 2.134
EACO 0.017 1.069 0.141 1.022

ESACO 0.094 0.536 0.109 1.006

6. Conclusions

Based on the performed analyses, the main achievement and conclusions of the present
study can be summarized as follows.

(1) In this study, an elite smoothing ant colony algorithm is proposed to plan the
path of the grasping manipulator. Firstly, the probability transfer formula and pheromone
update strategy are improved to enhance the reliability of the algorithm and the flexibility
of the path. Then, the B-sample curve is designed to eliminate the fold points and gener-
ate collision-free smooth paths. The proposed algorithm improves the path quality and
planning efficiency.

(2) The different metrics of the three algorithms are analyzed and compared. The
results show that in the simple environment, the shortest path length is optimized by 22.1%,
the running time is shortened by 35%, and the collision-free number is increased by 4 times.
Similarly, in different obstacle scenarios, the path length and running time of the ESACO
algorithm are increased by more than 20%, and the number of successful experiments is
14 times, indicating the feasibility and symmetry of the ESACO algorithm.

(3) The experimental validation of the obstacle avoidance path of the grasping manipu-
lator is carried out. The results show that the ESACO algorithm can guide the manipulator
to avoid obstacles to reach the target point with minimal time and energy consumption,
which provides reliable support for the grasping mechanical arm to rapidly assemble equip-
ment in complex environments. In future work, the motion control of the manipulator
during the path tracking process will be investigated in detail to achieve higher accuracy.
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