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Abstract: Type 2 diabetes mellitus is one of the most common diseases of the 21st century, caused
by a sedentary lifestyle, poor diet, high blood pressure, family history, and obesity. To date, there
are no known complete cures for type 2 diabetes. To identify bioactive natural products (NPs) to
manage type 2 diabetes, the NPs from the ZINC15 database (ZINC-NPs DB) were screened using a
3D shape similarity search, molecular docking approaches, and ADMETox approaches. Frequently,
in silico studies result in asymmetric structures as “hit” molecules. Therefore, the asymmetrical
FDA-approved diabetes drugs linagliptin (8-[(3R)-3-aminopiperidin-1-yl]-7-but-2-ynyl-3-methyl-1-[(4-
methylquinazolin-2-yl)methyl]purine-2,6-dione), sitagliptin ((3R)-3-amino-1-[3-(trifluoromethyl)-6,8-
dihydro-5H-[1,2,4]triazolo[4,3-a]pyrazin-7-yl]-4-(2,4,5-trifluorophenyl)butan-1-one), and alogliptin
(2-[[6-[(3R)-3-aminopiperidin-1-yl]-3-methyl-2,4-dioxopyrimidin-1-yl]methyl]benzonitrile) were used
as queries to virtually screen the ZINC-NPs DB and detect novel potential dipeptidyl peptidase-
4 (DPP-4) inhibitors. The most promising NPs, characterized by the best sets of similarity and
ADMETox features, were used during the molecular docking stage. The results highlight that
11 asymmetrical NPs out of 224,205 NPs are potential DPP-4 candidates from natural sources and
deserve consideration for further in vitro/in vivo tests.

Keywords: diabetes; ZINC-NPs DB; 3D shape similarity search; molecular docking

1. Introduction

Diabetes mellitus (DM) is a complex, fast-growing chronic metabolic disorder around
the world. The World Health Organization (WHO) reports that 442 million people world-
wide have diabetes [1], and International Diabetes Federation (IDF) has announced that
537 million adults aged between 20 and 79 years old live with diabetes, of which 61 million
are in Europe. Worldwide, every five seconds, there is a death caused by diabetes [2]. At
the end of 2021, 6.7 million deaths were reported. Two main types of DM are known: type
1 (T1DM), also known as insulin-dependent diabetes mellitus (IDDM), and type 2 (T2DM),
also known as non-insulin-dependent diabetes mellitus (NIDDM) [3]. In addition, a new
type of diabetes, named gestational diabetes, has been reported in pregnant women with
hyperglycemia [4]. Patients with T2DM represent over 90% of diabetes cases [5]. In the last
few decades, cases of type 2 diabetes have increased dramatically, and the estimation of the
IDF for 2030 and 2045 is 643 and 783 million people with diabetes, respectively [2]. Hence,
identifying bioactive compounds for T2DM management and treatment is a continuous
challenge [6,7]. Since the 2000s, the class of gliptins, as dipeptidyl peptidase-4 (DPP-4)
inhibitors, [8–10] has become of interest to the scientific community because it is involved in
improvements of glycemic control (without causing hypoglycemia) and, at the same time,
is very well tolerated [11,12]. For adults, the first drug of the gliptin class approved by the
FDA (October 2006) as a DPP-4 inhibitor, used in the management of T2MD, was sitagliptin
(Figure 1) [13]. Many treatment tests have exhibited a good efficacy of sitagliptin by improv-
ing glycemic control in those suffering from T2DM [14]. In 2008, the European Medicines
Agency (EMA) approved vildagliptin [15] for the treatment of T2MD as monotherapy or in
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combination with metformin. In July 2009, May 2011, and January 2013, the FDA approved
three new DPP-4 inhibitors to fight T2DM, named saxagliptin [16], linagliptin [17], and
alogliptin [18] (Figure 1). Linagliptin [19,20] and alogliptin [21,22] are considered highly
selective inhibitors that offer a potent inhibition for DPP-4 when used either alone or in
conjunction with other anti-diabetic drugs (e.g., metformin) [23,24]. According to differ-
ent investigational stages, numerous structures such as anagliptin [25], gemigliptin [26],
teneligliptin [27], evogliptin [28], omarigliptin [29], trelagliptin [30], and gosogliptin [31]
are expected to be annotated. During the treatment with different gliptins, several side
effects, such as pancreatitis, some kidney problems, hypersensitivity, etc., were observed.
Therefore, there is a need to find new DPP-4 inhibitors with improved pharmacological
profiles. Over the past few years, in silico techniques (Quantitative Structure–Activity
Relationship (QSAR) [32–35], ligand-based and structure-based virtual screening [36,37],
pharmacophore modeling [7,38,39], molecular docking [40–42], semiempirical/DFT calcu-
lations [43–46], molecular dynamics simulation [47,48], etc.) have been widely used in the
early phase of drug discovery due to their efficiency and low costs. Strategies for these
techniques can vary significantly depending on the availability of the target and ligand
information. The major advantages of them are: (i) they are very fast but depend on both
hardware and software components, (ii) they allow the optimization and identification
of new “hits”, and (iii) they eliminate compounds with undesirable physicochemical and
pharmacodynamic properties. In this light, in the present work, we exemplify a virtual
screening workflow involving 3D-shape similarity searches, followed by molecular docking
techniques and ADMET predictions, to identify novel NPs as potential DPP-4 inhibitors
that could be used in the management of T2DM. Nowadays, the management and preven-
tion of T2DM are big challenges; the aim is to control the complications (damage to the
nerves, cardiovascular, kidneys, bone fragility, etc.) caused by DM and to sustain quality
of life.
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2. Materials and Methods

In order to achieve our goals, the 3D-shape similarity and molecular docking studies
were performed using Rapid Overlay of Chemical Structures (ROCS) [49] and Fast Rigid
Exhaustive Docking (FRED) [50] tools from the OpenEye package (https://www.eyesopen.
com/). The crystal structures of human DPP-4 (PDB ID: 1X70, 2RGU, 2ONC, 3W2T, and
3BJM) connected to FDA-approved drugs (sitagliptin, linagliptin, alogliptin, vildagliptin,
and saxagliptin) were downloaded from the RCSB Protein Data Bank (PDB) (https://www.
rcsb.org, accessed on 14 April 2022). A BIOVIA Studio visualizer [51] was employed for
the visual check of the shape superposition and binding interactions. Additionally, the
physicochemical and pharmacokinetic properties were calculated with the help of the
SwissADME [52] (http://www.swissadme.ch/, accessed on 10 May 2022) and pkCSM [53]
(http://biosig.unimelb.edu.au/pkcsm/, accessed on 10 May 2022) online tools.

2.1. Data Set

Natural products (NPs) have been deemed the source of the most used active compo-
nents in medicine. Nowadays, the positive effects of NPs or their derivatives are mentioned
in the treatment of various types of diabetes, cardiovascular diseases, viral diseases, or
even cancers. The 224,205 natural products of the ZINC-NPs DB [54] were downloaded
from http://zinc15.docking.org/ (accessed on 8 January 2021) and further prepared [55]
for analysis using the LigPrep module [56] of the Schrödinger suite and Omega [57] from
the OpenEye package. The T2DM FDA-approved drugs: peptidomimetics (vildagliptin,
saxagliptin) and non-peptidomimetics (sitagliptin, alogliptin, and linagliptin) (Figure 1),
high selective DPP-4 inhibitors, were investigated. For the 3D-shape similarity search
and molecular docking approaches, peptidomimetics drugs were eliminated due to their
covalent bonds with the Ser630 residues of receptors (3W2T and 3BJM) that cannot be
reproduced with FRED software.

2.2. Shape-Based Similarity Search in a Chemical Database

ROCS is a recognized and widely used shape comparison application based on the
principle that similar molecules are those whose volumes overlap very well. For ROCS
analysis, the co-crystalized conformations of the ligands extracted from the crystal structure
of human DPP-4 were engaged as query molecules (Figures 1 and 2). For the 3D-shape
similarity search, Shape Tanimoto (ShT) (Equation (1)), Tanimoto Combo (TC), and Combo
Score (CS) as significant metric parameters were calculated between query molecules and
each of the 224,205 NPs from the ZINC-NPs DB. The ShT parameter includes shape alone
and has a value between 0 and 1, TC comprises both shape fit and color (Shape Tanimoto
is added to the Color Tanimoto) and has a value between 0 and 2, and CS contains both
shape fit and color (Shape Tanimoto is added to the Scaled Color) and has a value between
0 and 2.

ShT =
VXY

VXX + VYY −VXY
(1)

where

VXX and VYY are the self-overlap volumes of molecules X and Y;
VXY is the overlap volume between molecules X and Y.

https://www.eyesopen.com/
https://www.eyesopen.com/
https://www.rcsb.org
https://www.rcsb.org
http://www.swissadme.ch/
http://biosig.unimelb.edu.au/pkcsm/
http://zinc15.docking.org/
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2.3. Docking Study

The asymmetric positions of the RX crystallographic structures are the result of several
factors: (i) dimerization, (ii) crystal packing, (iii) flexibility, and (iv) ligand binding [58,59].
As the first step of our study, the X-ray crystal structures of DPP-4 in complex with
sitagliptin (PDB ID: 1X70) [60], linagliptin (PDB ID: 2RGU) [61], and alogliptin (PDB
ID: 2ONC) [62] were downloaded from RCSB PDB and analyzed. In RCSB PDB, 2RGU and
1X70 are crystallized as dimers with two chains (A and B), and 2ONC is crystallized as a
tetramer with four chains (A, B, C, and D). For all three X-ray crystal structures, chain A
was selected for further analysis (Figures 2 and 3).

For receptor preparation and refinement, the MakeReceptor [63] module from the
OpenEye package step was engaged. The conformations of NPs prepared for the 3D-shape
analysis stage were further utilized in the rigid docking investigation. Rigid ligand docking
protocol using FRED [50] of the OpenEye suite was applied for predicting DPP-4–NPs
binding modes and to rank-order NPs based on the Chemgauss4 scoring function (CG4).
Ten poses for each NP were generated, and the best one was selected by considering its
ligand–target interactions and CG4 docking scores. The molecular docking simulation was
confirmed by (i) re-docking the X-ray ligand structure onto its binding site and (ii) the RMSD
(root mean square deviation) calculation between the re-docked X-ray ligand structure and
its co-crystallized structure, employing the Maestro module of Schrödinger [64].
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binding sites (2D and 3D presentation). To facilitate the visualization, only essential amino acids
implicated in interactions with RX ligands are shown.

2.4. Bioavailability and In Silico ADME/T Screening for Drug-Likeness

The physicochemical and pharmacokinetic properties of T2DM FDA-approved drugs
and selected NPs were predicted using the pkCSM [53] and SwissADME [52] online tools.
The oral bioavailability properties were analyzed using Lipinski’s ‘Rule of Five’ [65]. The
rule is constructed on the observation that approved drugs have a molecular weight of a
maximum of 500, 10, or fewer hydrogen bond acceptor sites, 5 or fewer hydrogen bond
donor sites, and a LogP no higher than 5 [66]. Moreover, the absorption, distribution,
metabolism, excretion, and toxicity (ADME/T) properties prediction with pkCSM can
help us to prioritize, from a theoretical point of view, a compound as a drug candidate.
Furthermore, passive human gastrointestinal absorption (HIA) and blood–brain barrier
(BBB) permeation, as well as the rapid assessment of drug-likeness, were predicted using
BOILED-Egg and Bioavailability Radar, available on the SwissAdme platform.

3. Results

The workflow scheme (Figure 4) followed in this paper involves (1) a 3D-similarity
search, applying three FDA-approved drugs and the ZINC-NPs DB of 224,205 NPs; (2) a
molecular docking investigation, (3) ADMETox, and (4) an investigation of the results.
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The ROCS similarity analysis (Figure 5a–c) between the query molecules (linagliptin,
sitagliptin, and alogliptin) and the screened ZINC-NPs DB suggests that: (1) 218 NPs dis-
play TC > 1, 81 display ShT > 0.75, and 65 display CS > 1.2 towards linagliptin; (2) 848 NPs
display TC > 1, 1036 display ShT > 0.75, and 632 display CS > 1.2 towards sitagliptin;
and (3) 2178 NPs display TC > 1, 1152 display ShT > 0.75, and 1404 display CS > 1.2
towards alogliptin. Of these, 35 NPs linked to linagliptin, 147 NPs related to sitagliptin,
and 505 NPs connected to alogliptin satisfied all three criteria of TC > 1, ShT > 0.75, and
CS > 1.2 (Tables S1–S3, Figure 5d–f).
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NPs that simultaneously met all three similarity criteria (Tables S1–S3) were included in
molecular docking studies. The X-ray structures of the DPP-4 receptors co-crystallized with
linagliptin (PDB ID: 2RGU, resolution: 2.60 Å) [61], sitagliptin (PDB ID: 1X70, resolution:
2.10 Å) [60], and alogliptin (PDB ID: 2ONC, resolution: 2.55 Å) [62] were prepared for
docking by generating the actives sites with the outer contour of 495 Å3, 650 Å3, and 735 Å3,
respectively, using the MakeReceptor [63] module from the OpenEye suite with default
options. As asymmetrical molecules demand a comparatively large receptor binding site or
one with both polar and non-polar regions, the box volumes were set to 7114 Å3 for 2RGU,
5029 Å3 for 1X70, and 5716 Å3 for 2ONC. For each of the three receptors, the water molecules
involved in hydrogen bondings were preserved (Figure 3). The accuracy of the docking
protocol was checked by re-docking the co-crystallized ligands, linagliptin, sitagliptin,
and alogliptin into the active pockets of DPP-4 (2RGU, 1X70, and 2ONC, respectively).
Re-docking processes of the co-crystallized ligands showed the efficiency and validity of
the docking experiments through RMSD values of 1.076 between the re-docked poses of
linagliptin and the native ones (Figure 6a), 1.056 between the re-docked poses of sitagliptin
and the native ones (Figure 6b), and 0.388 between the re-docked poses of alogliptin and
the native ones (Figure 6c).
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Figure 6. The best re-docked pose (grey) of linagliptin and the co-crystallized (purple) one (a), the
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The good validation of the docking procedure allowed us to perform molecular studies
on the selected NPs to predict their binding modes and to rank-order them based on the
Chemgauss4 (CG4) scoring function (Tables 1 and S4–S8). Next, a visual inspection of the
2D- and 3D-binding interactions of the docked conformations was performed using BIOVIA
Discovery Studio [51]. The molecular docking analysis results revealed that thirty-two
NPs had the most favorable docking CG4 scores of −8.931 to −4.550 compared to −4.460
for linagliptin; five NPs had the most favorable docking CG4 scores of –10.551 to −9.138
compared to −8.859 for sitagliptin; and five NPs had the most favorable docking CG4
scores of −11.613 to −10.850 compared to −10.635 for alogliptin (Table S4). These results
indicate that the predicted NPs might have better inhibitory activity against DPP-4. To
estimate the safety and efficacy of selected NPs, physicochemical, pharmacokinetic, and
pharmacodynamic profiles were analyzed to predict their potential use in drug develop-
ment (Tables S5–S8). In the first step, the physicochemical properties and drug-likeness
results are checked (Table 1). The selected NPs displayed MW values less than 500 Da
(MW = 290.36 ÷ 478.40), logP values less than 5 (logP = 0.95 ÷ 4.24), and HBA values
less than 10 (with three exceptions: HBA = 11 for ZINC33833796 and ZINC85509222,
and HBA = 12 for ZINC84153787) (HBA = 1 ÷ 12), HBD less than 5 (HBD = 0 ÷ 7), and
TPSA less than 140 Å (TPSA = 41.03 Å ÷ 199.51 Å). These results show that the selected
NPs are very likely to be orally active, except for ZINC84153787, ZINC33833796, and
ZINC85509222, with two violations for the Lipinski rules, and ZINC33833997, with one
violation for the Lipinski rules (Table 1). These compounds were removed from further
analysis. Moreover, Bioavailability Radar (Figure 7), generated with the SwissAdme plat-
form, illustrates that except for INSATU, all predicted properties of the selected NPs are
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located in the pink area (LIPO, lipophilicity (XLOGP3 = 0.7 ÷ 5.0), SIZE, molecular weight
(MW = 150 ÷ 500 g/mol), POLAR, polarity (TPSA = 20 ÷ 130 Å2), INSOLU, insolubility
(log S < 6), INSATU, insaturation (fraction of carbons in the sp3 hybridization > 0.25), and
FLEX, flexibility (RBN < 9) and, thereby, support the NPs’ orally bioavailable character.

Table 1. Physicochemical properties and drug-likeness results for selected NPs.

NPs ID CG4 MW HBA HBD RBN TPSA LogP Lipinski
#Violations

ZINC84153787 −8.931 478.40 12 7 5 199.51 2.11 2
ZINC33833997 −8.354 432.38 10 6 4 170.05 1.71 1
ZINC33833796 −8.209 446.36 11 6 4 187.12 1.15 2
ZINC8926342 −6.555 424.88 4 0 4 71.05 3.94 0
ZINC12296449 −6.354 393.40 5 1 5 103.53 2.98 0
ZINC8606274 −6.350 431.27 4 0 4 71.05 3.94 0
ZINC9601609 −6.208 445.30 4 0 4 71.05 4.24 0
ZINC8926323 −6.177 475.72 4 0 4 71.05 3.97 0
ZINC2488345 −6.005 414.82 5 0 4 71.05 3.75 0
ZINC9601596 −5.765 449.26 5 0 4 71.05 3.98 0
ZINC1094329 −5.719 436.33 3 0 3 65.06 4.07 0
ZINC8916385 −5.618 422.31 3 0 3 65.06 3.87 0
ZINC640985 −5.496 377.83 4 1 5 85.29 3.29 0
ZINC832612 −5.467 432.31 3 0 3 65.06 3.77 0
ZINC2334127 −5.462 446.34 3 0 3 65.06 3.88 0
ZINC838204 −5.433 377.83 4 2 5 94.08 2.98 0
ZINC838200 −5.433 377.83 4 2 5 94.08 3.00 0
ZINC6732655 −5.428 410.30 3 1 6 73.85 3.83 0
ZINC9601608 −5.385 461.30 5 0 5 80.28 4.09 0
ZINC838142 −5.353 385.44 4 0 3 65.06 3.70 0
ZINC1108640 −5.265 410.30 3 1 5 73.85 3.73 0
ZINC2488364 −5.058 377.83 4 1 6 83.08 3.40 0
ZINC9601615 −5.012 436.30 4 1 7 83.08 3.66 0
ZINC4147162 −4.938 420.30 3 1 6 73.85 3.73 0
ZINC1094334 −4.890 389.84 4 0 3 74.29 3.49 0
ZINC2488384 −4.883 422.28 4 1 6 83.08 3.58 0
ZINC789645 −4.880 371.41 4 0 3 65.06 3.62 0
ZINC8589983 −4.865 431.27 4 0 4 71.05 3.76 0
ZINC13512682 −4.767 412.27 4 1 6 83.08 3.60 0
ZINC13142224 −4.745 387.43 5 1 8 92.31 3.58 0
ZINC6565526 −4.550 407.83 5 0 3 74.29 3.27 0
Linagliptin −4.460 472.54 6 1 4 116.86 3.73 0
ZINC2508009 −10.551 290.36 2 2 4 55.12 2.44 0
ZINC85879571 −9.829 321.38 3 2 4 73.91 1.92 0
ZINC11692316 −9.682 363.41 3 3 4 85.43 1.81 0
ZINC96112842 −9.297 307.37 5 1 5 81.60 1.52 0
ZINC604405970 −9.149 335.44 1 1 6 41.03 3.10 0
ZINC12296782 −9.138 326.39 2 2 2 68.44 2.72 0
Sitagliptin −8.859 407.31 10 1 4 77.04 2.35 0

ZINC15674091 −11.613 360.41 5 2 4 78.18 2.58 0
ZINC524732009 −11.498 370.36 5 2 2 87.97 2.50 0
ZINC15830055 −11.158 365.47 5 3 3 68.09 3.47 0
ZINC3984976 −11.003 332.40 3 2 4 66.59 2.60 0
ZINC85509222 −10.850 450.39 11 7 3 186.37 0.95 2
Alogliptin −10.635 339.39 4 1 3 97.05 2.38 0
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The high water solubility observed for selected asymmetrical NPs raises the probability
of a significant number of interactions with the DPP-4 binding site and, in the same manner,
permits them to be largely distributed in the cellular medium (intra and extra) and to
penetrate biological membranes.

In the next step, the pharmacokinetic properties and toxicity were calculated and ana-
lyzed (Tables S5–S8). The predicted absorption parameters (Table S5) of Caco-2 (membrane
permeability indicated by colon cancer cell line), intestinal absorption, P-glycoprotein (Pgp)
substrate or inhibitor, and skin permeability levels show that only ten of thirty-nine NPs
displayed high Caco-2 cell permeability (Caco-2 > 0.90); all thirty-nine NPs indicate a good
intestinal absorption and skin permeability (HIA > 30%, and logKp > −2.5), twenty NPs
could be a substrate of Pgp, and fifteen and thirteen NPs are likely to be P-glycoprotein
I and II inhibitors. The predicted distribution parameters (Table S6) of VDss (volume of
distribution), BBB (brain–blood barrier) permeability, and CNS (central nervous system)
permeability show that twelve NPs are highly distributed (logVDss > 0.45), two NPs are
considered to be able to easily cross the BBB (logBB > 0.3), and twenty-nine NPs are con-
sidered to be able to penetrate the CNS (logPS > −2). In addition, BOILED-Egg from
SwissADME, illustrated in Figure 8, shows the human intestinal absorption (HIA) and
the brain access/penetration of NPs and the approved drug molecules by plotting the
graph WLOGP versus TPSA. The NPs situated in the white area and the yellow region
(yolk) present the highest expectation of being absorbed by the human gastrointestinal tract
and the highest chance of brain penetration, respectively. Furthermore, the NPs marked
with red and blue dots are supposed to be non-efflux from the CNS by Pgp (Pgp− (non-
substrates)) or efflux from the CNS by Pgp (Pgp+ (substrates)). The inhibitory or substrate
behavior of the cytochrome P450 enzymes (CYPs) was verified for all selected NPs. The
metabolism parameters based on the CYP models for substrate (CYP2D6, CYP3A4) or
inhibition (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) are presented in Table S7.
The excretion parameters (total clearance and renal organic cation transporter (OCT2) sub-
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strate) show that twenty-one NPs have good renal clearance. The hepatotoxicity parameter
(Table S8) indicates that twenty-eight out thirty-nine NPs could be harmful. The remaining
eleven NPs, predicted (Figures 8–10) as non-harmful, were subject to further investigation.
Among these eleven selected NPs, ten NPs possibly do not inhibit the hERG (human
ether-a-go-go-related gene) channel and may not have cardiotoxicity. Skin sensitization
was not observed for any of the eleven predicted NPs.

Symmetry 2022, 14, x FOR PEER REVIEW 10 of 17 
 

 

substrate behavior of the cytochrome P450 enzymes (CYPs) was verified for all selected 
NPs. The metabolism parameters based on the CYP models for substrate (CYP2D6, 
CYP3A4) or inhibition (CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4) are pre-
sented in Table S7. The excretion parameters (total clearance and renal organic cation 
transporter (OCT2) substrate) show that twenty-one NPs have good renal clearance. The 
hepatotoxicity parameter (Table S8) indicates that twenty-eight out thirty-nine NPs could 
be harmful. The remaining eleven NPs, predicted (Figures 8–10) as non-harmful, were 
subject to further investigation. Among these eleven selected NPs, ten NPs possibly do 
not inhibit the hERG (human ether-a-go-go-related gene) channel and may not have car-
diotoxicity. Skin sensitization was not observed for any of the eleven predicted NPs. 

 
Figure 8. Boiled-EGG (WLOGP vs. TPSA) for the predicted NPs and approved drugs (for a good 
visualization, only the final eleven NPs and their query drugs are represented). 

Retrospective validation of in silico protocol and retrieval of “hits” in terms of the 
area under curve (AUC) metric [67] was assessed using the in-house developed program 
ETICI1.6 (Evaluation Tool In ChemInformatics) [68]; 50 decoys were generated [69,70] for 
each query molecule and were prepared for docking using the same protocol as the da-
taset. In the next step, the rank order of the decoys was evaluated considering their CG4 
docking scores in relation to the selected NPs. The results show significant values for the 
AUC parameter. The AUC value of 0.802 (±0.059) for 2RGU provides a very good number 
of NPs recovered at the top of the list, and the AUC value of 1.000 (±0.000) for 2ONC 
shows the perfect separation of the selected NPs at the top of the ranking list. In addition, 
the early enrichment [71] step was involved in order to prove the performance of the in 
silico protocol. The receiver operating characteristics (ROC) curve (Figure 9) is depicted 
by involving the two parameters of true positive rate (TPR) and false positive rate (FPR). 
The black line illustrates a random classifier, the green line shows a perfect classifier, and 
the blue line indicates the classifier results for our protocol. 

Figure 8. Boiled-EGG (WLOGP vs. TPSA) for the predicted NPs and approved drugs (for a good
visualization, only the final eleven NPs and their query drugs are represented).

Symmetry 2022, 14, x FOR PEER REVIEW 11 of 17 
 

 

 
Figure 9. ROC curve for NPs vs. generated decoys in the 2RGU binding site (a) and for NPs vs. 
generated decoys in the 2ONC binding site (b). TPR represents the fraction of correctly predicted 
actives; FPR indicates the ratio of the mispredicted inactives. 

The docking analysis results based on CG4 values and interactions comprising Con-
ventional Hydrogen Bond: CHB, Van der Waals: VdW, Water Hydrogen Bond: WHB, Pi-
Pi Stacked: Pi-Pi S, Carbon Hydrogen Bond: CaHB, Pi-Donor Hydrogen Bond: Pi-DHB; 
Alkyl: A; Pi-Alkyl: Pi-A; Halogen: X; an attractive charge/salt bridge; Pi-anion: Pi-a, Pi-
Sigma: Pi-s for NPs–2RGU and NPs–2ONC complexes are given in Figures 10 and 11 and 
Table S9. Visual analysis of each docked NP revealed that all poses are located within the 
DPP-4 receptor-binding cavity. The high affinity for a receptor is conditioned by the num-
ber of rotatable bonds (RBN), the polarity, and the length of the ligand [72]. The selected 
NPs, with the best CG4 docking scores, displayed the same or greater RBN except for 
ZINC524732009, a similar length/size, and lower polarity than diabetes-approved drugs 
(Table 1), which could favor a longer interaction with the receptor. Furthermore, asym-
metrical NP structures have numerous advantages because of their high affinity for re-
ceptor binding sites, which have both a non-polar region and a polar region, depicted in 
grey and red–blue, respectively (Figure 10). Hydrogen bonds with Ser630, Glu205, 
Glu206, Tyr631, Tyr547, HOH1041, and HOH 1020, hydrophobic interactions with Tyr547, 
Trp629, Phe357, Tyr666, and Tyr631, and electrostatic (Pi-anion) interactions with Glu206 
and Arg669 were observed for the selected NPs. 

Figure 9. ROC curve for NPs vs. generated decoys in the 2RGU binding site (a) and for NPs vs.
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actives; FPR indicates the ratio of the mispredicted inactives.

Retrospective validation of in silico protocol and retrieval of “hits” in terms of the
area under curve (AUC) metric [67] was assessed using the in-house developed program
ETICI1.6 (Evaluation Tool In ChemInformatics) [68]; 50 decoys were generated [69,70]
for each query molecule and were prepared for docking using the same protocol as the
dataset. In the next step, the rank order of the decoys was evaluated considering their
CG4 docking scores in relation to the selected NPs. The results show significant values
for the AUC parameter. The AUC value of 0.802 (±0.059) for 2RGU provides a very good
number of NPs recovered at the top of the list, and the AUC value of 1.000 (±0.000) for
2ONC shows the perfect separation of the selected NPs at the top of the ranking list. In
addition, the early enrichment [71] step was involved in order to prove the performance
of the in silico protocol. The receiver operating characteristics (ROC) curve (Figure 9) is
depicted by involving the two parameters of true positive rate (TPR) and false positive rate
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(FPR). The black line illustrates a random classifier, the green line shows a perfect classifier,
and the blue line indicates the classifier results for our protocol.
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Figure 10. The nine docked NPs in the 2RGU active sites, showing CG4 scores better than linagliptin.
Polar and non-polar regions of the binding site of 2RGU are illustrated by red–blue- and grey-colored
molecular surfaces, respectively.

The docking analysis results based on CG4 values and interactions comprising Con-
ventional Hydrogen Bond: CHB, Van der Waals: VdW, Water Hydrogen Bond: WHB, Pi-Pi
Stacked: Pi-Pi S, Carbon Hydrogen Bond: CaHB, Pi-Donor Hydrogen Bond: Pi-DHB; Alkyl:
A; Pi-Alkyl: Pi-A; Halogen: X; an attractive charge/salt bridge; Pi-anion: Pi-a, Pi-Sigma:
Pi-s for NPs–2RGU and NPs–2ONC complexes are given in Figures 10 and 11 and Table S9.
Visual analysis of each docked NP revealed that all poses are located within the DPP-4
receptor-binding cavity. The high affinity for a receptor is conditioned by the number
of rotatable bonds (RBN), the polarity, and the length of the ligand [72]. The selected
NPs, with the best CG4 docking scores, displayed the same or greater RBN except for
ZINC524732009, a similar length/size, and lower polarity than diabetes-approved drugs
(Table 1), which could favor a longer interaction with the receptor. Furthermore, asymmet-
rical NP structures have numerous advantages because of their high affinity for receptor
binding sites, which have both a non-polar region and a polar region, depicted in grey and
red–blue, respectively (Figure 10). Hydrogen bonds with Ser630, Glu205, Glu206, Tyr631,
Tyr547, HOH1041, and HOH 1020, hydrophobic interactions with Tyr547, Trp629, Phe357,
Tyr666, and Tyr631, and electrostatic (Pi-anion) interactions with Glu206 and Arg669 were
observed for the selected NPs.
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To sum up all docking observations (Figures 10 and 11 and Table S9), we can conclude
that Glu205, Glu206, Tyr547, Ser630, Tyr 631, Tyr662, and Tyr666 are essential amino acid
residues implicated in NPs–DPP-4 hydrogen bonding interactions. Likewise, hydrogen
bonds with Arg358 and Asn710 for the ZINC12296449 NP were noticed. Moreover, all
selected NPs were stabilized at the receptor-binding site by a considerable number of
hydrophobic interactions, such as: Amide-Pi Stacked (Ser630, Tyr631), Pi-Alkyl (Phe357,
Trp629, Tyr547, Tyr631, Tyr662, Try666, Val656), Pi-Pi Stacked (Phe357, Trp629, Tyr547,
Tyr662, Tyr666), Pi-Pi T-shaped (Phe357, Tyr547, Tyr666), Pi-Sigma (Phe357, Trp629), Halogen
(Glu206), and electrostatic interactions: Attractive Charge (Arg358), Pi-Anion (Glu206), Salt
Bridge (Glue206, Arg358, Arg669). Together, these types of interactions (hydrogen bonds
(CHB, WHB, CaHB, etc.), electrostatic, hydrophobic (Pi-Pi S, Pi-a, Pi-A, Pi-s, etc.)) play a
crucial role in strengthening NPs–2RGU and NPs–2ONC complexes. The results presented
in this paper are in accord with previously published papers [73–76].

Looking ahead, the NPs’ docked poses were visualized with the CoSyM online tool
(https://csm.ouproj.org.il/, accessed on 14 August 2022), and their continuous symmetry
measurements (CSMs) were calculated (Table S10, Figure 12). The CSM delivers the distance
of a structure from its perfect symmetry [77,78]. The delivered results give us information
about how much symmetry is in a non-symmetric configuration (a value of zero of CSM
represents perfect symmetry/achirality for a compound). The values greater than zero for
Cn (the deviation from the nearest structure with rotational symmetry of order n (n = 2,
3, 4, . . . , 20)) and Sn (the deviation from the nearest structure with improper rotational
symmetry of order n (n = 4, 6, 8, . . . , 20)) (Table S10) show the distance from their perfect
symmetry for each docked pose of the NPs. The (x, y, z) values of the direction vector that
describes the rotation axis on a reflection plane are also displayed in Table S10. In addition,
the dipole moment (µ) for each NP was calculated using the density functional theory
(DFT) with the Becke, three-parameter Lee–Yang–Parr (B3LYP) functional, and 6–31 G(d,
p) basis sets, employing the Jaguar module of the Schrödinger package [79]. The values
that are not zero for the dipole moment (Figure 12, Table S10) for each docked pose of the
NPs are caused by their asymmetric structure [80] because the bond dipole moments do
not cancel each other out [81].

https://csm.ouproj.org.il/
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The number of asymmetrical compounds exceeds the number of symmetrical ones,
and their advantages or disadvantages in being used as active ingredients depend on the
receptor pocket and possible interactions with it [82]. In general, asymmetrical molecules
show a higher water solubility [83,84], which allows them to penetrate biological mem-
branes and expand the chance to interact with the biological target. Therefore, asymmetrical
compounds are interesting in terms of their structure, configuration, and bioavailability na-
ture and deserve to be seen as an important “ingredient” in drug design and development.

4. Conclusions

DPP-4 is one of the essential targets to fight T2DM, with the gliptins class changing
the idea of diabetes control for healthcare diabetes experts. Based on these realities, in
silico scenarios involving 3D-shape virtual screening, molecular docking, and ADMETox
predictions were performed to identify potential asymmetrical NPs from the ZINC-NPs DB
that would be able to inhibit the DPP-4 target. Eleven asymmetrical NPs were demonstrated
to be the most promising candidates in terms of both drug metabolism and safety profile.
The molecular docking simulation revealed the binding modes of asymmetrical NPs in
the active site of DPP-4. The present in silico outcomes strengthen the way of designing
promising DPP-4 inhibitors from natural sources. To ensure the natural DPP-4 inhibitors’
success, additional in vitro/in vivo experiments are required.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/sym14091842/s1, Table S1: The selected NPs by best 3D-similarity
coefficients vs. linagliptin (Tanimoto Combo, TC > 1, ShapeTanimoto, ShT > 0.75, and Combo Score,
CS > 1.2); Table S2: The selected NPs by best 3D-similarity coefficients vs. sitagliptin (Tanimoto
Combo, TC > 1, ShapeTanimoto, ShT > 0.75, and Combo Score, CS > 1.2); Table S3: The selected NPs
by best 3D-similarity coefficients vs. alogliptin (Tanimoto Combo, TC > 1, ShapeTanimoto, ShT > 0.75,
and Combo Score, CS > 1.2); Table S4: 2D structures of selected NPs and docking score values;
Table S5: Absorption parameters for selected NPs and drugs (pkCSM online tool was engaged);
Table S6: Distribution parameters parameters for selected NPs and drugs (pkCSM online tool was
engaged); Table S7: Metabolism and excretion parameters for selected NPs and drugs (pkCSM online
tool was engaged); Table S8: Toxicity parameters for selected NPs and drugs (pkCSM online tool
was engaged); Table S9: Docked interaction analysis of selected NP compounds with target proteins
2RGU and 2ONC; Table S10: The CSM values for the docked pose of each NP.
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