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Abstract: The Guéant and Pu model of option pricing and hedging, which takes into account
transaction costs, and the impact of operations on the market is studied by group analysis methods.
The infinite-dimensional continuous group of equivalence transforms of the model is found. It is
applied to get the group classification of the model under consideration. In addition to the general
case, the classification contains three specifications of a free element in the equation, which correspond
to models with groups of symmetries of a special kind. Optimal systems of subalgebras for some
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1. Introduction

The classical Black–Scholes model [1,2] of option pricing dynamics is based on the
perfect market hypothesis. Under this hypothesis, there are no execution costs and market
participants use only the prevailing market prices and cannot influence the prices by their
operations. The Black–Scholes model gives useful results when the underlying asset is
liquid and the transaction amount is not too large for the market. However, the perfect
market hypothesis contradicts to the market practice in many aspects, this fact makes the
classical model too limited in application.

Last decades many researchers actively studied improvements of the classical Black–
Scholes model, which would take into account the market illiquidity and the impact of
transactions on prices. One may see works of Magill and Constantinides [3], Kyle [4],
Leland [5], Cvitanić and Karatzas [6], Barles and Soner [7], Grossman [8], Platen and
Schweizer [9], Sircar and Papanicolaou [10], Schönbucher and Wilmott [11], Bank and
Baum [12], Çetin, Jarrow and Protter ([13] Section 4), Çetin and Rogers ([14] Section 6),
Rogers and Singh [15].

New models proposed in these works have been investigated by many researchers both
numerically and analytically. The work of Ibragimov and Gazizov [16] contains the first an-
alytical investigation of the Black–Scholes equation by the group analysis methods [17,18].

Note that differential equations play a major role in solving problems of modeling
processes and phenomena of the surrounding world and their importance does not decrease
over the years (see, e. g., recent papers [19–21]). The group analysis (or symmetry analysis)
of differential equations is one of the few theories that provide methods for finding exact
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solutions to nonlinear differential equations and systems of equations of wide classes. Since
the middle of the 20th century, a huge number of results have been obtained on the group
structure and exact solutions of many equations and systems of equations encountered in
describing the dynamics of various physical processes, especially in gas dynamics, elasticity
theory, etc. (see [17,18,22,23] and the bibliographies therein).

Let us determine that, following the classical works [17,18], we call a symmetry group
of a differential equation a one-parameter group of transformations of independent and
dependent variables. After such transformations, the differential equation under study
does not change its form in the new variables. Each such group uniquely corresponds to a
first-order differential operator, and these operators form a Lie algebra of the differential
equation under consideration. The commutator is the Lie multiplication in such algebra.
Therefore, when talking about the symmetry groups of a differential equation or about
its group structure, at the same time we are talking about the Lie algebra of operators
of the mentioned kind for this equation. Strict definitions of the listed objects are very
cumbersome, they can be found by the reader in monographs [17,18] or in any other
monograph on group analysis of differential equations.

In the last decade, in the works of Bordag [24,25], of Dyshaev and Fedorov [26–32]
group properties of various nonlinear Black–Scholes type models were studied, and their
invariant solutions and submodels were calculated. In the papers of Dyshaev and Fe-
dorov, group classifications for various classes of nonlinear Black–Scholes type models
were obtained.

Guéant and Pu in [33,34] carried out an analysis of options pricing taking into account
transaction costs and the impact of operations on the market under the next assumptions:

(1) the risk-free rate r, the absolute risk aversion parameter γ and the volatility σ are constant;
(2) the process of market trading volume Vt is deterministic, non-negative, and bounded;
(3) there exists a maximum degree of participation ρm, i.e., processes ν are such that

|νt| ≤ ρmVt almost everywhere;
(4) the number of shares in the hedged portfolio is qt = q0 +

∫ t
0 νsds;

(5) the price process is modeled by the stochastic differential equation dSt = µdt + σdWt,
where µ is the expected return of the underlying asset;

(6) to model execution costs, a continuous, non-negative, even, strictly convex func-
tion L : R → R+ is used, which is increasing on R+, L(0) = 0, and coercive, i.e.,
limρ→+∞ L(ρ)/ρ = +∞;

(7) the dynamics of the account X is described by the equation dXt = rXtdt− νtStdt−
VtL(νt/Vt)dt.

As result, Guéant and Pu derived a differential equation

θt = rθ + (µ− rS)q− µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + VtH(θq), (1)

where H(p) = sup
|ρ|≤ρm

[pρ− L(ρ)]. It is a model of the dynamics of the indifference price

θ(t, S, q) for a call option. This price depends on time t, the price of the underlying asset S,
and the number of shares in the hedged portfolio q.

In [35], the group classification of the Guéant—Pu model (1) with a constant market
trading volume Vt is obtained, and for all specifications of the free element H from the
classification optimal systems of subalgebras of the Lie algebra is found, invariant solutions
and submodels for subalgebras from the optimal systems are derived.

In the present paper, the Guéant—Pu model

θt = rθ + (µ− rS)q− µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F(t, θq) (2)

is investigated. Here a free element F depends on t and θq, i.e., the market trading volume
Vt may depend on t, in contrast to the model, which is considered in [35]. In the Section 2,
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the continuous group of equivalence transformations of Equation (2) is calculated. It
correponds to an infinite-dimensional Lie algebra of the equation with three-dimensional
finite part and with two basis operators, which coefficients are defined by two arbitrary
functions of t and by their derivatives. In the Section 3 the search of the symmetry groups
for general Equation (2) started. The equivalence transformations are used in the Section 4
for the search of the specifications of the free element F, such that Fθqθq 6≡ 0, which
corresponds to equations of form (2) with different Lie algebras. The obtained theorem
on group classification is formulated in the Section 5. In the Section 6, optimal systems
of subalgebras are found for the Lie algebra of model (2) with a general function F(t, θq)
and with a specification F = ertΦ(θq), which were obtained in the group classification.
For every subalgebra from the optimal system, the invariant submodel of the Guéant—Pu
model is calculated, if it exists.

2. Continuous Groups of Equivalence Transformations

Consider the Gueant—Pu Equation (2), where θ = θ(t, S, q), F(t, θq) is a free element.
Assume that rγσµ 6= 0, T > 0. For the search of continouos equivalence transformations
groups of Equation (2) we will consider the function F and all its derivatives as additional
variables. Generators of such groups have a form

Y = τ∂t + ξ∂S + α∂q + η∂θ + ζ∂F,

where τ, ξ, α, η depend on t, S, q, θ, and ζ depends on t, S, q, θ, F, θt, θS, θq. Hereafter
∂β := ∂

∂β is the partial derivative with respect to a variable β. Equation (2) with a new
variable F we will consider in the system with additional equations

θt = rθ + (µ− rS)q− µθS −
1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F, (3)

FS = 0, Fq = 0, Fθ = 0, Fθt = 0, FθS = 0, (4)

which show the dependence of F on t and θq only. System (3), (4) is considered as a manifold
M in the expanded space of the corresponding variables. Let us act by the prolongated
operator [17,18]

Y
2
= Y + ηt∂θt + ηS∂θS + ηq∂θq + ηSS∂θSS + ζt∂Ft + ζS∂FS + ζq∂Fq + ζθ∂Fθ

+

+ζθt ∂Fθt
+ ζθS ∂FθS

+ ζθq ∂Fθq

on the both sides of Equation (3). In order to use the geometric invariance criterion [17], we
restrict the result on the manifoldM and obtain the equation

ηt − rη − (µ− rS)α + rqξ + µηS + γσ2er(T−t)(θS − q)
(

ηS − α− r
2
(θS − q)τ

)
−

−ζ +
1
2

σ2ηSS|M = ηt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ − ζ +
1
2

σ2ηSS|M = 0.

(5)

The coefficients of the prolongated operator Y
2

are calculated using the total derivatives
operators

Dt =
∂

∂t
+ θt

∂

∂θ
+ . . . , DS =

∂

∂S
+ θS

∂

∂θ
+ θSS

∂

∂θS
+ . . . , Dq =

∂

∂q
+ θq

∂

∂θ
+ . . . ,

D̃t =
∂

∂t
+ Ft

∂

∂F
+ . . . , D̃S =

∂

∂S
+ FS

∂

∂F
+ . . . , D̃q =

∂

∂q
+ Fq

∂

∂F
+ . . . ,

D̃θ =
∂

∂θ
+ Fθ

∂

∂F
+ . . . , D̃θt =

∂

∂θt
+ Fθt

∂

∂F
+ . . . , D̃θS =

∂

∂θS
+ FθS

∂

∂F
+ . . .
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and the prolongation formulas (see detail in [17,18])

ηt = Dtη − θtDtτ − θSDtξ − θqDtα, ηS = DSη − θtDSτ − θSDSξ − θqDSα,

ηq = Dqη − θtDqτ − θSDqξ − θqDqα, ηSS = DSηS − θStDSτ − θSSDSξ − θSqDSα,

ζS = D̃Sζ − FtD̃Sτ − FSD̃Sξ − FqD̃Sα− Fθ D̃Sη − Fθt D̃Sηt − FθS D̃SηS − Fθq D̃Sηq,

ζq = D̃qζ − FtD̃qτ − FSD̃qξ − FqD̃qα− Fθ D̃qη − Fθt D̃qηt − FθS D̃qηS − Fθq D̃qηq,

ζθ = D̃θζ − FtD̃θτ − FSD̃θξ − FqD̃θα− Fθ D̃θη − Fθt D̃θηt − FθS D̃θηS − Fθq D̃θηq,

ζθt = D̃θt ζ − FtD̃θt τ − FSD̃θt ξ − FqD̃θt α− Fθ D̃θt η − Fθt D̃θt η
t − FθS D̃θt η

S − Fθq D̃θt η
q,

ζθS = D̃θS ζ − FtD̃θS τ − FSD̃θS ξ − FqD̃θS α− Fθ D̃θS η − Fθt D̃θS ηt − FθS D̃θS ηS − Fθq D̃θS ηq.

The result of the action of Y
2

on Equation (4) after restricting on the manifoldM gives

ζS|M = ζS − FtτS − Fθq η
q
S|M = ζS − FtτS − Fθq(ηSq + θqηSθ − θt(τSq + θqτSθ)−

−θS(ξSq + θqξSθ)− θq(αSq + θqαSθ))|M = 0,

ζq|M = ζq − Ftτq − Fθq η
q
q |M = ζq − Ftτq − Fθq(ηqq + θqηqθ − θt(τqq + θqτqθ)−

−θS(ξqq + θqξqθ)− θq(αqq + θqαqθ))|M = 0,

ζθ |M = ζθ − Ftτθ − Fθq η
q
θ |M = ζθ − Ftτθ − Fθq(ηqθ + θqηθθ − θt(τqθ + θqτθθ)−

−θS(ξqθ + θqξθθ)− θq(αqθ + θqαθθ))|M = 0

ζθt |M = ζθt − Fθq η
q
θt
|M = ζθt + Fθq(τq + θqτθ)|M = 0,

(6)

ζθS |M = ζθS − Fθq η
q
θS
|M = ζθS + Fθq(ξq + θqξθ)|M = 0.

The transition on the manifoldMmeans the substitution for θt the right-hand side of (3)
and vanishing of variables FS, Fq, Fθ , Fθt , FθS . It does not change the form of the last two
equations in (6). Therefore, the separation of variables Fθq and θq gives ζθt = 0, ζθS = 0,
τq = 0, τθ = 0, ξq = 0, ξθ = 0.

We substitute the prolongation formulas into Equation (5) and after the transition on
M equate the result to zero:

ηt − θSξt − θqαt − rη + rSα + rqξ − r
2

γσ2er(T−t)(θS − q)2τ − ζ+

+(µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − θq(αS + θSαθ)− α)+

+
1
2

σ2(ηSS + 2θSηSθ + θ2
Sηθθ − 2θStτS + θSS(ηθ − θqαθ − 2ξS)−

−2θSq(αS + θSαθ)− θSξSS − θq(αSS + 2θSαSθ + θ2
Sαθθ))+

+

(
rθ + (µ− rS)q− µθS −

1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F
)
×

×
(

ηθ − τt − θqαθ − (µ + γσ2er(T−t)(θS − q))τS −
σ2

2
τSS

)
= 0.

(7)

Since all the functions in (7) do not depend on θSt, θSq, equate to zero the coefficients in
Equation (7) at θSt, θSq and obtain the equalities τS = 0, αS + θSαθ = 0; since α and its
derivatives does not depend on θS, we have αS = αθ = 0. Thus,

τS = 0, τq = 0, τθ = 0, ξq = 0, ξθ = 0, αS = 0, αθ = 0, ζθt = 0, ζθS = 0. (8)
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The first 3 equations in (6) now have the form

ζS|M = ζS − Fθq(ηSq + θqηSθ) = 0, ζq|M = ζq − Fθq(ηqq + θqηqθ − θqαqq) = 0,

ζθ |M = ζθ − Fθq(ηqθ + θqηθθ) = 0.

The separation of the variables Fθq and θq here gives

ηSθ = 0, ηSq = 0, αqq = ηqθ = 0, ηqq = 0, ηθθ = 0,

ζS = 0, ζq = 0, ζθ = 0, ζθt = 0, ζθS = 0.
(9)

By substitution into Equation (7) equalities (8) and (9) we get

ηt − θSξt − θqαt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ − ζ +
1
2

σ2(ηSS + θSS(ηθ − 2ξS)− θSξSS)+

+(ηθ − τt)

(
rθ + (µ− rS)q− µθS −

1
2

σ2θSS −
1
2

γσ2er(T−t)(θS − q)2 + F
)
= 0.

We separate this equation by the variables θSS, θS, since ζ does not depend on them in view
of (9), and after a reduction we obtain

θSS : 2ξS = τt, θ2
S : ηθ − 2ξS − rτ + τt = 0, (10)

θS : γσ2er(T−t)(rqτ + qξS − α + ηS − qτt)− µξS + µτt − ξt −
σ2

2
ξSS = 0, (11)

1 : ηt − θqαt − rη + rSα + rqξ + (µ− γσ2er(T−t)q)(ηS − α)− r
2

γσ2er(T−t)q2τ−

−ζ +
σ2

2
ηSS + (ηθ − τt)

(
rθ + (µ− rS)q− 1

2
γσ2er(T−t)q2 + F

)
= 0.

(12)

From 2ξS = τt in (10) in view of τS = 0 due to (8) we get ξSS = 0. Substitution 2ξS = τt
from the first equation to the second one in (10) yields ηθ = rτ. Now we differentiate
(11) by q and using (8), (9) we get rτ + ξS − αq − τt = 0. Substitute ξS = τt/2 from (10),
then αq = rτ − τt/2. Next, by differentiating (11) by S and using (8) and (9), we obtain
γσ2er(T−t)ηSS − ξtS = 0, or γσ2er(T−t)ηSS = τtt/2. Therefore, ηSSS = 0. Thus,

ξSS = 0, αq = rτ − τt

2
, ηθ = rτ, ηSS =

er(t−T)

2γσ2 τtt, ηSSS = 0. (13)

The differentiation of Equation (12) by S twice with the substitution of the vanishing
functions from (8), (9) and (13) gives ηtSS − rηSS = 0. The substitution of ηSS from (13)
here leads to τttt = 0. By the differentiation of Equation (12) by θq we obtain αt + ζθq = 0.
The differentiation by q gives αtq = 0, i.e., due to (13) rτt − τtt/2 = 0. Since r 6= 0, this
differential equation implies the equality τtt = 0, hence τt = 0. Then due to (10), (13)

τt = 0, αq = rτ, ξS = 0, ηSS = 0. (14)

From (8), (9), (14) it follows that τ is a constant, ξ = ξ(t), α = rτq + A(t). Substituting
these equalities into (11) we get γσ2er(T−t)(ηS − A(t))− ξt = 0. Therefore, due to (9), (13),
(14) η = rτθ + B(t)q + (A(t) + er(t−T)ξ ′(t)/(γσ2))S + C(t). So,

ξ = ξ(t), α = rτq + A(t), η = rτθ + B(t)q +

(
A(t) +

er(t−T)ξ ′(t)
γσ2

)
S + C(t). (15)
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Note that arbitrary functions used to represent the solution of the considered system
of equations here and further we denote with capital letters A, B, C, etc. Substituting
equalities (15) into (12) and shortening we obtain

(B′ − rB + rξ − ξ ′)q + C′ − rC +
µ

γσ2 er(t−T)ξ ′+

+

(
A′ +

er(t−T)

γσ2 ξ ′′
)

S− A′θq − ζ + rτF = 0.
(16)

The differentiation by q of Equation (16) implies that B′ − rB + rξ − ξ ′ = 0, hence B(t) =
ξ(t) + Dert. Next, differentiate by S Equation (16) and obtain

B = ξ + Dert, A = − e−rT

γσ2

∫ t

t0

ersξ ′′(s)ds + c. (17)

We substitute (17) into (16) and (15) and get

ξ = ξ(t), α = rτq− e−rT

γσ2

∫ t

t0

ersξ ′′(s)ds + c,

η = rτθ + (ξ(t) + Dert)q +
e−rT

γσ2

(
ertξ ′(t)−

∫ t

t0

ersξ ′′(s)ds
)

S + cS + C(t),

ζ = C′(t)− rC(t) +
µ

γσ2 er(t−T)ξ ′(t) +
er(t−T)

γσ2 ξ ′′(t)θq + rτF.

We formulate this result in the form of a theorem. To do this, we fix alternately one of the
integration constants or an arbitrary function, equating the others to zero, and obtain the
corresponding basic operator of the resulting Lie algebra. By Yk we denote here these basis
operators. If coefficients of an operator are defined by a function and its derivatives, we
use this function denotation as the lower index for such operator.

Theorem 1. The Lie algebra of continuous equivalence transformations for Equation (2) is gener-
ated by the operators

Y1 := ertq∂θ , Y2 := ∂q + S∂θ , Y3 := ∂t + rq∂q + rθ∂θ + rF∂F,

Yφ := φ(t)∂θ + (φ′(t)− rφ(t))∂F, Yψ := ψ(t)∂S −
e−rT

γσ2

∫ t

t0

ersψ′′(s)ds∂q+

+

(
ψ(t)q +

e−rT

γσ2

(
ertψ′(t)−

∫ t

t0

ersψ′′(s)ds
)

S
)

∂θ+

+

(
µ

γσ2 er(t−T)ψ′(t) +
er(t−T)

γσ2 ψ′′(t)θq

)
∂F.

Solving the Lie equations for the obtained Lie algebras and taking the projections on
the variables t, θq, F we get

Y1 : θ̄q = θq + a1ert; Y3 : t̄ = t + a3, F̄ = era1 F;

Yφ : F̄ = F− rφ(t) + φ′(t); Yψ : θ̄q = θq + ψ(t),

F̄ = F +
µ

γσ2 er(t−T)ψ′(t) +
er(t−T)

2γσ2 ψ(t)ψ′′(t) +
er(t−T)

γσ2 ψ′′(t)θq.

(18)

Remark 1. A Lie algebra is called principal [17] for Equation (2), if it is admissible for (2) with
any specification of F. From (18) it follows that the principal Lie algebra of Equation (2) is generated
by Y2 and by Yφ at φ(t) = ert. Indeed, for such φ the group of transformations, which is generated
by Yφ, does not change t, θq and F.
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Remark 2. We see that the Lie algebra of continuous equivalence transformations for Equation (2)
is infinite-dimensional, since its operators depend on arbitrary functions φ and ψ. Note that such
equation with a function F depending on θq only has a 5-dimensional Lie algebra of continuous
equivalence transformations (see [35]). It generated by Y2, Y3, Yφ for φ(t) ≡ 1, Yφ for φ(t) = ert

and Yψ at ψ(t) ≡ 1.

3. Calculation of the Symmetry Groups in General Case

Our purpose is to obtain the so-called group classification [17] for equation

θt = rθ + (µ− rS)q− µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F(t, θq). (19)

For this aim, firstly we will search generators of the symmetry groups for the equation
under general assumptions.

On Equation (19) we act by the second prolongation X
2
= X + ηq∂θq + ηS∂θS + ηt∂θt +

ηSS∂θSS for a generator X = τ∂t + ξ∂S + α∂q + η∂θ of a continuous group of transformations,
where functions τ, ξ, α, η depend on t, S, q, θ. So,

ηt − rη + rSα + rqξ + (µ + γσ2er(T−t)(θS − q))(ηS − α)−

− r
2

γσ2er(T−t)(θS − q)2τ +
σ2

2
ηSS − Ftτ − Fθq ηq|M = 0.

(20)

After the substitution into (20) of the prolongation formulas and the restriction on the
manifoldM, using the Equation (19) for θt, we obtain(

rθ + (µ− rS)q− µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F
)
×

×
(

ηθ − τt − θSξθ − θqαθ − (µ + γσ2er(T−t)(θS − q))(τS + θSτθ)+

+ Fθq(τq + θqτθ)−
σ2

2
(θSSτθ + θSτSS + 2θSτSθ + θ2

Sτθθ)

)
−

−
(

rθ + (µ− rS)q− µθS −
σ2

2
θSS −

1
2

γσ2er(T−t)(θS − q)2 + F
)2

τθ+

+ηt − θSξt − θqαt − rη + rSα + rqξ+

(µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θS(ξS + θSξθ)− θq(αS + θSαθ)− α)−

− r
2

γσ2er(T−t)(θS − q)2τ − Ftτ − Fθq(ηq + θqηθ − θS(ξq + θqξθ)− θq(αq + θqαθ))+

+
σ2

2
(ηSS + 2θSηSθ + θ2

Sηθθ − 2θtS(τS + θSτθ) + θSS(ηθ − θqαθ − 2ξS − 3θSξθ)−

−2θSq(αS + θSαθ)− θS(ξSS + 2θSξSθ + θ2
Sξθθ)− θq(αSS + 2θSαSθ + θ2

Sαθθ)) = 0.

(21)

The differentiation of this equation by the variables θSq and θtS leads to the equations
τS = 0, τθ = 0, αS = 0, αθ = 0.

Equating the coefficient at θSS in (21) to zero, obtain ξθ = 0, τt − 2ξS − Fθq τq = 0,
and using the equality τS = 0 we get ξSS = 0. Therefore,

τS = 0, τθ = 0, αS = 0, αθ = 0, ξθ = 0, ξSS = 0, τt − 2ξS − Fθq τq = 0. (22)
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Applying these equalities in (21) we obtain the equality(
rθ + (µ− rS)q− µθS −

1
2

γσ2er(T−t)(θS − q)2 + F)(ηθ − τt + Fθq τq

)
+ ηt−

−θSξt − θqαt − rη + (µ + γσ2er(T−t)(θS − q))(ηS + θSηθ − θSξS − α)+

+rSα + rqξ − r
2

γσ2er(T−t)(θS − q)2τ − Ftτ − Fθq(ηq + θqηθ − θSξq − θqαq)+

+
1
2

σ2(ηSS + 2θSηSθ + θ2
Sηθθ) = 0.

We separate this equation by the variable θS taking into account the last equation from (22)
and get the equations

θ2
S : γer(T−t)(ηθ − rτ) + ηθθ = 0, (23)

θS : γσ2er(T−t)(−qξS + ηS − α + rqτ) + Fθq ξq + σ2ηSθ − ξt + 2µξS = 0, (24)

1 :
(

rθ + (µ− rS)q− γσ2

2
er(T−t)q2 + F

)
(ηθ − τt + Fθq τq) + ηt − θqαt − rη+

+rSα + rqξ + (µ− γσ2er(T−t)q)(ηS − α)− r
2

γσ2er(T−t)q2τ − Ftτ−

−Fθq(ηq + θqηθ − θqαq) +
σ2

2
ηSS = 0.

(25)

From (22) it follows that ξ = A(t, q)S + B(t, q), Equation (23) implies that ηθ =

rτ + C0(t, S, q)e−γer(T−t)θ . Therefore,

ξ = A(t, q)S + B(t, q), η = rθτ + C(t, S, q)e−γer(T−t)θ + D(t, S, q). (26)

Substitute these equalities into (24), (25) and get

γσ2er(T−t)(−qA + DS − α + rqτ)− AtS− Bt + Fθq(AqS + Bq) + 2µA = 0, (27)(
rθ + (µ− rS)q− γσ2

2
er(T−t)q2 + F

)
(rτ − γer(T−t)Ce−γer(T−t)θ − 2A)+

+rθτt + Cte−γer(T−t)θ + rγer(T−t)θCe−γer(T−t)θ + Dt − r2θτ − rCe−γer(T−t)θ − rD−

−θqαt + rSα + rq(AS + B) + (µ− γσ2er(T−t)q)(CSe−γer(T−t)θ + DS − α)−

− r
2

γσ2er(T−t)q2τ − Ftτ +
σ2

2
(CSSe−γer(T−t)θ + DSS)−

−Fθq(rθτq + Cqe−γer(T−t)θ + Dq + θq(rτ − γer(T−t)Ce−γer(T−t)θ)− θqαq) = 0.

In the last equation the variable θ is present explicitly, after the reduction of similar terms
the equation has a form a + beqθ = 0, q 6= 0. Hence a = b = 0 and we have the equations

a =

(
(µ− rS)q− γσ2

2
er(T−t)q2 + F

)
(rτ − 2A) + Dt − rD−

−θqαt + rSα + rq(AS + B) + (µ− γσ2er(T−t)q)(DS − α)−

− r
2

γσ2er(T−t)q2τ − Ftτ +
σ2

2
DSS − Fθq(Dq + rθqτ − θqαq) = 0,

(28)

b = −
(
(µ− rS)q− γσ2

2
er(T−t)q2 + F

)
γer(T−t)C + Ct − rC+

+(µ− γσ2er(T−t)q)CS +
σ2

2
CSS − Fθq(Cq − γer(T−t)Cθq) = 0.

(29)
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4. Calculation of the Group Classification in the Case Fθqθq 6= 0

Let us continue the calculations using the assumption Fθqθq 6= 0. Differentiating the
last equation in (22), (27) and (29) by θq, we obtain that τq = 0, Aq = 0, Bq = 0, C = 0.
Taking into account form (26) of ξ, we get A = τt/2. Hence

τq = 0, Aq = 0, A =
τt

2
, Bq = 0, C = 0. (30)

Differentiate (27) by S and due to (30) obtain the equality γσ2er(T−t)DSS = τtt/2, hence
DSSS = 0 and DSSq = 0. Therefore, the differentiation of Equation (28) twice by S gives
−rDSS + DtSS = 0 and substituting the expression for DSS we get τttt = 0.

Next, differentiating Equation (27) by q and Equation (28) by θq and S we obtain

−τt

2
+ DSq − αq + rτ = 0, DSq = 0, αq = rτ − τt

2
.

Differentiate (28) by S and q and get

−r(rτ − τt) + rαq + rA− γσ2er(T−t)DSS = rτt − τtt/2 = 0.

From this equation and the equality τttt = 0 it follows that τt = 0.
Therefore, τ is a constant, αq = rτ, α = rqτ + E(t). Substitute it in Equation (27) and

obtain γσ2er(T−t)(DS − E)− Bt = 0. Hence,

ξ = B(t), α = rqτ + E(t), D = G(t, q) + E(t)S +
er(t−T)

γσ2 B′(t)S. (31)

Substituting (31) into (28) and reducing we get

rτF + Gt + E′S +
er(t−T)

γσ2 B′′S− E′θq − rG + rBq + µ
er(t−T)

γσ2 B′ − B′q− τFt − GqFθq = 0. (32)

Differentiate (32) by θq and q and get Gqq = 0. Then G = H(t)q + J(t) and the separation
of Equation (32) by q and S gives

G = H(t)q + J(t), E′ +
er(t−T)

γσ2 B′′ = 0, H′ − rH + rB− B′ = 0,

rτF + J′ − E′θq − rJ + µ
er(t−T)

γσ2 B′ − τFt − HFθq = 0.

(33)

The third equation in (33) implies that B = H + Kert. Substitute this equality into the
second equation in (33), then

B(t) = H(t) + Kert, E(t) = −
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L. (34)

Now equalities (31) implies that

ξ = H(t) + Kert, α = rqτ −
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L,

η = rθτ +

(
−
∫ t

t0

er(s−T)

γσ2 (H′′(s) + r2Kers)ds + L

)
S+

+
er(t−T)

γσ2 (H′(t) + rKert)S + H(t)q + J(t).

(35)
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Substituting (34) into the last equation in (33) we get

rτF− τFt − HFθq + J′ − rJ +
er(t−T)

γσ2 (H′′ + r2Kert)θq + µ
er(t−T)

γσ2 (H′ + rKert) = 0. (36)

This equation has the form rτF − τFt − H(t)Fθq + u(t)θq + v(t) = 0. Consider possible
situations.

4.1. The Case τ = 0, H ≡ 0

If τ = 0, H ≡ 0, then K = 0, J′ − rJ = 0, J = J0ert. Due to (35) we get the generators of
symmetry groups X1 = ert∂θ , X2 = ∂q + S∂θ for arbitrary F, such that Fθqθq 6= 0.

4.2. The Case τ 6= 0, H ≡ 0

If τ 6= 0, H ≡ 0, then F = Φ1(θq)ert + b(t)θq + c(t). Using the equivalence transfor-
mation of the group, which is generated by Yφ (18) with φ, such that φ′ − rφ + c = 0, we
obtain F = Φ1(θq)ert + b(t)θq. Since Fθqθq 6≡ 0, then Φ′′1 6≡ 0. Substitute F in (36), then

rτbθq − τb′θq + J′ − rJ +
er(t−T)

γσ2 r2Kertθq + µ
er(t−T)

γσ2 rKert = 0.

Separating by the variable θq, obtain

b(t) = b0ert +
rKer(2t−T)

τγσ2 , J(t) = J0ert − µKer(2t−T)

γσ2 .

Denote Φ(θ) := Φ1(θq) + b0θq, then Φ′′ = Φ′′1 6≡ 0. Thus,

F = Φ(θq)ert + 2rbe2rtθq, Φ′′ 6= 0, b ∈ R,

τ = τ0, ξ = 2τγσ2ber(t+T), α = rqτ − rτbe2rt + L,

η = rθτ + rτbe2rtS + LS + J0ert − 2µτbe2rt.

Therefore, we obtained the specialization and the symmetry group, which is generated
by operators

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ∂t + 2γσ2b1er(t+T)∂S + (rq− rb1e2rt)∂q + (rθ + rb1e2rtS− 2µb1e2rt)∂θ .

4.3. The Case τ = 0, H 6≡ 0

If τ = 0, H 6≡ 0, then u 6≡ 0, otherwise, Fθqθq ≡ 0. Therefore, F = a(t)θ2
q + b(t)θq + c(t),

a 6≡ 0. We use the equivalence transformation of the group with the generator Yψ (18),
where ψ is a solution of the equation

ψ′′(t) + γσ2er(T−t)(2a(t)ψ(t) + b(t)) = 0,

and get F = a(t)θ2
q + c(t), then by a transformation with a generator Yφ we obtain the

equivalent function F = a(t)θ2
q . Then (36) implies the equation

J′ +
er(t−T)

γσ2 (H′′ + r2Kert)θq − rJ + µ
er(t−T)

γσ2 (H′ + rKert)− 2Haθq = 0.

Therefore,

H′′ = 2γσ2er(T−t)a(t)H − r2Kert, J′ − rJ + µ
er(t−T)

γσ2 (H′ + rKert) = 0. (37)



Symmetry 2022, 14, 1841 11 of 18

Solving the second equation in (37) we get

J = J0ert − µ
er(t−T)

γσ2 (H + Kert).

Then (35) has the form

τ = 0, ξ = H(t) + Kert, α = −2
∫ t

t0

a(s)H(s)ds + L,

η =

(
−2

∫ t

t0

a(s)H(s)ds + L
)

S +
er(t−T)

γσ2 (H′(t) + rKert)S+

+H(t)q + J0ert − µ
er(t−T)

γσ2 (H(t) + Kert).

(38)

Let Ψ(t) is a partial solution of the first equation in (37) for K = 1, then a general
solution of the equation is H(t) = c1 ϕ1(t) + c2 ϕ2(t) + KΨ(t), where ϕ1 and ϕ2 are two
linearly independent solutions of the homogeneous equation H′′ = 2γσ2er(T−t)a(t)H.
Therefore, (38) implies that

X1 = ert∂θ , X2 = ∂q + S∂θ ,

X3 = ϕ1(t)∂S − 2
∫ t

t0

a(s)ϕ1(s)ds∂q+

+

(
er(t−T)ϕ′1(t)

γσ2 S− 2S
∫ t

t0

a(s)ϕ1(s)ds + ϕ1(t)q− µ
er(t−T)

γσ2 ϕ1(t)

)
∂θ ,

X4 = ϕ2(t)∂S − 2
∫ t

t0

a(s)ϕ2(s)ds∂q+

+

(
er(t−T)ϕ′2(t)

γσ2 S− 2S
∫ t

t0

a(s)ϕ2(s)ds + ϕ2(t)q− µ
er(t−T)

γσ2 ϕ2(t)

)
∂θ ,

X5 = (Ψ(t) + ert)∂S − 2
∫ t

t0

a(s)Ψ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S− 2S
∫ t

t0

a(s)Ψ(s)ds + Ψ(t)q− µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

4.4. The Case τ 6= 0, H 6≡ 0

For the case τ 6= 0, H 6≡ 0 make a replacement

F = ertΦ(t, θq) +
1
τ

ert
∫ t

t0

e−rsu(s)dsθq +
1
τ

ert
∫ t

t0

e−rsv(s)ds

and obtain the equation τΦt + H(t)Φθq = g(t) for some g. Therefore, we have F =

ertΦ(θq −
∫

H(t)dt/τ) + b1(t)θq + c1(t). After using the equivalence transformation of the
group for Yψ (18) with ψ =

∫
H(t)dt/τ we obtain F = ertΦ(θq) + b(t)θq + c(t), Φ′′ 6≡ 0.

Substitute the result in (36), then

rτbθq + rτc− τb′θq − τc′ − ertHΦ′ − Hb + J′ − rJ+

+
er(t−T)

γσ2 (H′′ + r2Kert)θq + µ
er(t−T)

γσ2 (H′ + rKert) = 0.

Hence Φ(θq) = a0 + a1θq + aθ2
q , by the equivalence transformation for Xψ, where

ψ′′(t) + γσ2er(T−t)(2aertψ(t) + a1 + b(t)) = 0,
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then by an equivalence transformation for a group with a generator Xφ obtain F = aertθ2
q

with a constant a 6= 0. So, we obtain a partial case to the previous one, but with a nonzero
τ, which gives additional symmetry. Thus,

X1 = ert∂θ , X2 = ∂q + S∂θ , X3 = ∂t + rq∂q + rθ∂θ ,

X4 = ϕ1(t)∂S − 2a
∫ t

t0

ers ϕ1(s)ds∂q+

+

(
er(t−T)ϕ′1(t)

γσ2 S− 2aS
∫ t

t0

ers ϕ1(s)ds + ϕ1(t)q− µ
er(t−T)

γσ2 ϕ1(t)

)
∂θ ,

X5 = ϕ2(t)∂S − 2a
∫ t

t0

ers ϕ2(s)ds∂q+

+

(
er(t−T)ϕ′2(t)

γσ2 S− 2aS
∫ t

t0

ers ϕ2(s)ds + ϕ2(t)q− µ
er(t−T)

γσ2 ϕ2(t)

)
∂θ ,

X6 = (Ψ(t) + ert)∂S − 2a
∫ t

t0

ersΨ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S− 2aS
∫ t

t0

ersΨ(s)ds + Ψ(t)q− µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

Instead of the first equation in (37), we have the equation with constant coefficients

H′′ − 2aγσ2erT H + r2Kert = 0.

Therefore, we can calculate a solution of this equation analitically. If aγ > 0, a 6= r2/2γσ2erT ,
then

ϕ1(t) = e
√

2aγσ2erT t, ϕ2(t) = e−
√

2aγσ2erT t, Ψ(t) =
r2Kert

r2 − 2aγσ2erT . (39)

For aγ > 0, a = r2/2γσ2erT we have

ϕ1(t) = e
√

2aγσ2erT t, ϕ2(t) = e−
√

2aγσ2erT t, Ψ(t) = − rKtert

2
. (40)

Finally, if aγ < 0, then

ϕ1(t) = sin
√
−2aγσ2erTt, ϕ2(t) = cos

√
−2aγσ2erTt, Ψ(t) =

r2Kert

r2 − 2aγσ2erT . (41)

The equality a = r2/2γσ2erT in this case is not possible.

5. Theorem on Group Classification

Let us formulate the results of calculations in the previous section as the following
theorem on group classification. We denote here by Xk obtained basis operators in the
corresponding Lie algebras.

Theorem 2. Let r, γ, σ, µ, T ∈ R.
1. The Lie algebra for the equation

θt = rθ + (µ− rS)q− µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + F(t, θq), (42)

where F is not equivalent to a(t)θ2
q or ertΦ(θq) + b0ertθq + b1e2rtθq, Fθqθq 6≡ 0, is generated by the

operators
X1 := ert∂θ , X2 := ∂q + S∂θ . (43)
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2. The Lie algebra for the equation

θt = rθ + (µ− rS)q− µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + ertΦ(θq) + be2rtθq, (44)

where b ∈ R, Φ is a nonlinear function, which is not equivalent to aθ2
q , is generated by the operators

X1 := ert∂θ , X2 := ∂q + S∂θ ,

X3 := ∂t + 2γσ2ber(t+T)∂S + (rq− rbe2rt)∂q + (rθ + rbe2rtS− 2µbe2rt)∂θ .
(45)

3. The Lie algebra for the equation

θt = rθ + (µ− rS)q− µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + a(t)θ2

q ,

where a(t) is a nonzero function, which is not equivalent to a0ert, is generated by the operators

X1 := ert∂θ , X2 := ∂q + S∂θ ,

X3 := ϕ1(t)∂S − 2
∫ t

t0

a(s)ϕ1(s)ds∂q+

+

(
er(t−T)ϕ′1(t)

γσ2 S− 2S
∫ t

t0

a(s)ϕ1(s)ds + ϕ1(t)q− µ
er(t−T)

γσ2 ϕ1(t)

)
∂θ ,

X4 := ϕ2(t)∂S − 2
∫ t

t0

a(s)ϕ2(s)ds∂q+

+

(
er(t−T)ϕ′2(t)

γσ2 S− 2S
∫ t

t0

a(s)ϕ2(s)ds + ϕ2(t)q− µ
er(t−T)

γσ2 ϕ2(t)

)
∂θ ,

X5 := (Ψ(t) + ert)∂S − 2
∫ t

t0

a(s)Ψ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S− 2S
∫ t

t0

a(s)Ψ(s)ds + Ψ(t)q− µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ .

Here ϕ1, ϕ2 are linearly independent solutions of the equation H′′(t) = 2γσ2er(T−t)a(t)H(t), Ψ is
a partial solution of the equation H′′(t) = 2γσ2er(T−t)a(t)H(t)− r2ert.

4. The Lie algebra for the equation

θt = rθ + (µ− rS)q− µθS −
σ2

2
θSS −

γσ2

2
er(T−t)(θS − q)2 + aertθ2

q ,
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where a is a nonzero constant, is generated by the operators

X1 := ert∂θ , X2 := ∂q + S∂θ , X3 := ∂t + rq∂q + rθ∂θ ,

X4 := ϕ1(t)∂S − 2a
∫ t

t0

ers ϕ1(s)ds∂q+

+

(
er(t−T)ϕ′1(t)

γσ2 S− 2aS
∫ t

t0

ers ϕ1(s)ds + ϕ1(t)q− µ
er(t−T)

γσ2 ϕ1(t)

)
∂θ ,

X5 := ϕ2(t)∂S − 2a
∫ t

t0

ers ϕ2(s)ds∂q+

+

(
er(t−T)ϕ′2(t)

γσ2 S− 2aS
∫ t

t0

ers ϕ2(s)ds + ϕ2(t)q− µ
er(t−T)

γσ2 ϕ2(t)

)
∂θ ,

X6 := (Ψ(t) + ert)∂S − 2a
∫ t

t0

ersΨ(s)ds∂q+

+

(
er(t−T)

γσ2 (Ψ′(t) + rert)S− 2aS
∫ t

t0

ersΨ(s)ds + Ψ(t)q− µ
er(t−T)

γσ2 (Ψ(t) + ert)

)
∂θ ,

where ϕ1, ϕ2, Ψ are from (39), (40), or (41), depending on the sign of aγ and the value of a.

Remark 3. In the second part of this theorem at b = 0 and in the fourth one we have the market
trading volume Vt = aert with a constant a 6= 0, as multiplier at a function of θq in an expression
for F. If Φ ≡ 0 in the second part, then the market trading volume is Vt = be2rt. In the third part
of the theorem Vt = a(t).

Remark 4. A theorem on the group classification of Equation (2) with a free element F depending
on θq only is obtained in [35]. It contains the specifications F = eνθq and F = θ2

q , which correspond
to additional symmetries of the equation.

6. Application to the Search of Some Submodels

Using a symmetry group for a differential equation we can reduce the number of
variables on which an unknown function depends by the dimension of the considered
group. If the resulting equation can be integrated, we obtain an exact solution of the original
equation, invariant with respect to the group of symmetries under consideration. If the
resulting equation is not integrable, following L.V. Ovsyannikov [22], we will call such an
equation an invariant submodel of the initial equation (initial model).

In order to find invariant solutions or submodels that are not translated into each other
by transformations of variables, we must find the so-called optimal system of subalgebras
of the Lie algebra of the equation under study. To do this, the internal automorphisms
of this algebra are used, which can be found through nonzero structural constants of
the algebra. Below we will do this for the two simplest Lie algebras of the symmetry
groups generators obtained in Theorem 2 on the group classification. Invariant solutions or
invariant submodels for different subalgebras of the optimal system are not equivalent, i.e.,
they cannot be obtained from each other by replacing variables.

6.1. Optimal System of Subalgebras and Submodels for the General Case

Lie algebra L2 (43) is commutative, hence it has no continuous groups of inter-
nal automorphisms. Thus, its optimal system of one-dimensional subalgebras is Θ1 =
{〈X2〉, 〈X1 + cX2〉, c ∈ R}.
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The subalgebra 〈X2〉 has the invariants J1 = t, J2 = S, J3 = θ − qS. Writing J3 =
w(J1, J2) we obtain the form of the corresponding invariant solution θ = w(t, S) + Sq.
Substitute it into Equation (42) and obtain the submodel

wt = rw− µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F(t, S),

which is invariant for 〈X2〉. Analogously we get the invariants t, ert

c + S, θ − ert

c q− Sq for
the subalgebra 〈X1 + cX2〉, c 6= 0. The invariant submodel for it has the form

wt = rw− µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F
(

t,
ert

c
+ S

)
,

where θ = w(t, S) + ert

c q + Sq. If c = 0, then the subalgebra 〈X1〉 has no invariant submod-
els, since its invariants t, S, q do not depend on θ.

6.2. Optimal System of Subalgebras and Submodels for the Specification F = Φ(θq)ert

Nonzero structural constants for a Lie algebra with a basis {X1, X2, . . . , Xn} are coeffi-

cients ck
ij in the decomposition of a commutator [Xi, Xj] [17] by the basis: [Xi, Xj] =

n
∑

k=1
ck

ijXk.

Generators of continuous groups of internal automorphisms can be calculated by the for-

mula Ei =
n
∑

j,k=1
ck

ijej∂ek , where ej are coefficients in the decomposition of an element of the

Lie algebra by its basis, which depend on group parameters.
Consider the Lie algebra L3 with basis (45). For L3 we have c1

23 = −c1
32 = −2γσ2berT ,

c2
23 = −c2

32 = r. The integration of the Lie equations for the generators gives E2 : ē1 =

e1 − 2γσ2berTe3a2, ē2 = e2 + re3a2; E3 : ē1 = e1 − 2γσ2

r berTe2(1− e−ra3), ē2 = e−ra3 e2. Also,
we add a mirror automorphism E− : ē1 = −ē1, which does not change the commutators of
the basis operators of this Lie algebra L3.

Let b 6= 0, for e3 6= 0 by the internal automorphism E2 obtain e2 = 0, then we have
(e1, e2, e3) = (c, 0, 1) after scaling, i.e., we get cX1 + X3, c ∈ R. If e3 = 0, e2 6= 0, then by E3
get e1 = 0, (e1, e2, e3) = (0, 1, 0), if we take

a3 = −1
r

ln
(

1− re−rTe1

2γσ2be2

)

in the case re−rTe1
2γσ2be2

< 1. If re−rTe1
2γσ2be2

≥ 1, we will use E− to go to the previous case. For

e2 = e3 = 0 we have (e1, e2, e3) = (1, 0, 0). Thus, Θ1
1 = {〈X1〉, 〈X2〉, 〈cX1 + X3〉, c ∈ R}.

Let us search for a system of two-dimensional subalgebras for L3 with b 6= 0. For the
basis vector X1 of the one-dimensional subalgebra 〈X1〉, consider the second basis vector
in the form αX2 + βX3, then the commutator has the form [X1, αX2 + βX3] = 0. We get
subalgebras 〈X1, X2〉 for e3 = 0, 〈X1, X3〉 for e3 6= 0, if we use E2.

For the basis vector X2, consider the second basis vector in the form αX1 + βX3. Their
commutator is [X2, αX1 + βX3] = rβX2 − 2βγσ2berTX1. Therefore, a subalgebra is formed
at β = 0, which is already found in the form 〈X1, X2〉.

For cX1 + X3, consider the second basis vector in the form αX1 + βX2. Then we have [cX1 +
X3, αX1 + βX2] = 2βγσ2berTX1− rβX2 and get the subalgebra 〈cX1 +X3, 2γσ2berTX1− rX2〉.
By E3 and E− reduce it to 〈cX1 + X3, X2〉.

Thus, we proved the optimal systems of one-dimensional and two-dimensional subal-
gebras of the Lie algebra under consideration.
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Lemma 1. Optimal systems of one-dimensional and two-dimensional subalgebras of Lie algebra L3
(45) with b 6= 0 are

Θ1
1 = {〈X1〉, 〈X2〉, 〈cX1 + X3〉, c ∈ R}, Θ1

2 = {〈X1, X2〉, 〈X1, X3〉, 〈cX1 + X3, X2〉, c ∈ R}.

Here a denotation Θj
k is used for the optimal system of k-dimensional subalgebras in

the j-th case.
In the case b = 0, for e3 6= 0 we obtain the vector (c, 0, 1), c ∈ R, using E2. If e3 = 0,

then using E3, E− we get (1, 1, 0), (1, 0, 0), (0, 1, 0). So, Θ2
1 = {〈X1〉, 〈X2〉, 〈X1 + X2〉, 〈cX1 +

X3〉, c ∈ R}. In this case, we have two-dimensional subalgebras 〈X1, X2〉, 〈X1, X3〉 also.
Moreover, [X2, αX1 + βX3] = rβX2, and we have the subalgebra 〈X2, αX1 + βX3〉 for any
α, β ∈ R. If β = 0, it will be a partial case of 〈X1, X2〉, for β 6= 0 we obtain the subalgebra
〈cX1 + X3, X2〉. Since [cX1 + X3, αX1 + βX2] = −rβX2, we obtain another subalgebra
〈cX1 + X3, X1〉.

Lemma 2. The optimal system of one-dimensional and two-dimensional subalgebras of Lie al-
gebra L3 (45) with b1 = 0 are Θ2

1 = {〈X1〉, 〈X2〉, 〈X1 + X2〉, 〈cX1 + X3〉, c ∈ R} and Θ2
2 =

{〈X1, X2〉, 〈cX1 + X3, X1〉, 〈cX1 + X3, X2〉, c ∈ R}.

The subalgebras 〈X1〉, 〈X1, X2〉, 〈X1, X3〉 do not have invariant submodels, since 〈X1〉
does not have invariants depending on θ.

Consider the case b = 0, then the subalgebra 〈X1 + X2〉 has invariants t, S, θ− (ert + S)q,
therefore, an invariant solution has the form θ = w(t, S) + (ert + S)q and the invariant
submodel is

wt = rw− µwS −
σ2

2
wSS −

γσ2

2
er(T−t)w2

S + F(t, ert + S).

The subalgebra 〈cX1 + X3〉 has invariants x := qe−rt, S, θe−rt − ct, hence we will look
for an invariant solution in the form θ = ctert + ertw(qe−rt, S), where w is a function of two
variables. Substitute it into (44) and obtain the invariant for 〈cX1 + X3〉 submodel

Φ(wx) + rxwx =
σ2

2
wSS + µwS +

γσ2

2
erT(wS − x)2 + (rS− µ)x + c.

The subalgebra 〈cX1 + X3, X1〉 has no invariants depending on θ and, therefore, in-
variant submodels. Let us find the invariant submodel with respect to 〈cX1 + X3, X2〉.
Consider a function G = G(x, S, y), where x := qe−rt, y := θe−rt − ct are invariants for the
subalgebra 〈cX1 + X3〉. Then X2G = e−rtGx + Se−rtGy and invariants of the subalgebra
〈cX1 + X3, X2〉 are S and y− Sx = (θ− Sq)e−rt − ct. Therefore, we will search an invariant
solution for this subalgebra in the form θ = ctert + Sq + ertw(S). The invariant submodel
will have the form

w′′(S) +
2µ

σ2 w′(S) + γerTw′(S)2 − 2
σ2 Φ(S) +

2c
σ2 = 0.

7. Conclusions

In this paper, we develop a theorem on group classification of the Guéant and Pu model
of the option pricing taking into account transaction costs and the impact of operations on
the market. For this aim, the Lie algebra of generators of continuous groups of equivalence
transformations is calculated. For the general case, and for the case of the equation with the
right-hand side F = ertΦ(θq), optimal systems of subalgebras and corresponding invariant
submodels are derived. The results of this work will be applied to the analogous research
into the Guéant and Pu model with the specifications F = ertΦ(θq) + be2rt, F = a(t)θ2

q ,
F = aertθ2

q , which is presented in the obtained theorem on group classification. The
knowledge of the group structure of the studied models obtained in this way will make it
possible to calculate their exact solutions and conservation laws.
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