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Abstract: Recently, weakly supervised object detection (WSOD) with image-level annotation has
attracted great attention in the field of computer vision. The problem is often formulated as multiple
instance learning in the existing studies, which are often trapped by discriminative object parts and
fail to localize the object boundary precisely. In this work, we alleviate this problem by exploiting
contextual information that may potentially increase object localization accuracy. Specifically, we
propose novel context proposal mining strategies and a Symmetry Context Module to leverage sur-
rounding contextual information of precomputed region proposals. Both naive and Gaussian-based
context proposal mining methods are adopted to yield informative context proposals symmetrically
surrounding region proposals. Then mined context proposals are fed into our Symmetry Context
Module to encourage the model to select proposals that contain the whole object, rather than the
most discriminative object parts. Experimental results show that the mean Average Precision (mAP)
of the proposed method achieves 52.4% on the PASCAL VOC 2007 dataset, outperforming the
state-of-the-art methods and demonstrating its effectiveness for weakly supervised object detection.

Keywords: weakly supervised object detection; multiple instance learning; context proposal mining

1. Introduction

Weakly supervised object detection (WSOD) aims to detect multiple object instances
in bounding boxes from a given image using only image-level supervision. Compared
with fully supervised object detection (FSOD), WSOD significantly reduces human labor
cost for instance-level annotation. Despite remarkable progress, WSOD remains as a
challenging task in computer vision due to problems such as discriminative region and
memory consumption. The performance of existing WSOD approaches [1,2] are still inferior
to the fully supervised counterpart [3,4].

Typical WSOD approaches [5,6] formulate the problem as a multiple instance learning
(MIL) problem (i.e., there is no negative instance in the negative bag and there is at least
one positive instance in the positive bag). Although most existing WSOD methods are
based on MIL [7,8], this strategy is known to suffer from the discriminative region problem
that tends to detect the most discriminative object parts rather than the whole object. In
FSOD approaches, contextual information around the object is widely exploited to facilitate
object recognition [9,10]. With such contextual cues, one can decrease the ambiguity when
recognizing the object of interest and enrich object local feature representations. This
can lead to more accurate object localization. For instance, a table is more likely to be
surrounded by chairs instead of bicycles. In WSOD, there are only a few studies [11,12]
utilizing contextual information to boost the localization accuracy. Tight box mining with
Surrounding Segmentation Context (TS2C) [11] uses segmentation context to suppress
low-quality candidates. ContextLocNet [12] proposes two context-aware guidance models
to enforce contextual supervisory, i.e., the external rectangle (context) and the internal
rectangle (frame) with a fixed ratio. Instead of simply using a rectangular shape to obtain
the surrounding contextual proposals, we seek more informative proposals in the spatial
symmetrical areas to diversify context proposal locations alleviating the discriminative
region problem when recognizing object instances under difficult circumstances.
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In this paper, following [7,13], we also formulate the WSOD problem as MIL and
propose a Symmetry Context Module (SCM) and two strategies for context proposal mining
capturing context appearance in different spatial areas surrounding an object. Specifically,
SCM encourages the detected region proposal to be compatible with its context regions.
This is achieved by encoding the region proposal score matrix and the maximum score
matrices of its context proposals. Different from other context-aware guidance models
such as [12], which adds or subtracts the score matrix of regions with its context or frame,
SCM aggregates more comprehensive parts of surrounding context regions than individual
spatial sides. Such a design yields an enriched object representation that is better able to
capture discriminative information. In order to efficiently select context candidates, we
propose two mining strategies for context proposals: 1) naive context proposal mining
that uses fixed regions adjacent to the object instance; 2) Gaussian-based context proposal
mining that samples context proposals with normal distribution. Our method incorporates
rich contextual information in the model that boosts object detection performance.

Due to our contextual mining strategies, our proposed method improves the localiza-
tion performance of WSOD. Our method performs favorably against some of the state-of-
the-art WSOD methods by achieving 52.4% mAP on the PASCAL VOC 2007 dataset. The
effectiveness and robustness of the proposed techniques are demonstrated in detailed abla-
tion studies and further qualitative results. The contributions of this work are summarized
as follows:

• Two context proposal mining strategies are proposed to better capture the diverse
discriminative information for objects of interest.

• A Symmetry Context Module (SCM) is introduced to improve the detection accuracy
of our two-stream neural network model.

• Experimental results on the popular PASCAL VOC 2007 and 2012 datasets demon-
strate that our method achieves better performance compared with other state-of-the-
art approaches.

2. Related Work
2.1. MIL and WSOD

MIL is a classical weakly supervised learning method, which arranges the training
data as bags where each bag contains a collection of instances. Supervision is only provided
for the entire bag. In other words, the individual label of each instance in the bag is not
known. Standard MIL assumes the following: (1) for a positive bag, there is at least one
positive instance in the bag; (2) for a negative bag, all its instances are negative. In recent
years, much work has adopted MIL approaches successfully in computer vision and other
areas [14,15], as MIL inherently targets weakly labeled data.

Different from FSOD, which uses instance-level annotation for training, WSOD only
requires image-level annotation, for which MIL fits naturally. In particular, when an image
I is annotated with class C, there is at least one positive instance of this object class in this
“bag”. In addition, this “bag” is negative for other object classes (there is no instances of
those classes in this image). Recently, deep neural networks and MIL were used together
to improve WSOD performance, such as in [16,17]. Bilen et al. [6] proposed the weakly
supervised deep detection network (WSDDN), the first end-to-end MIL based deep neural
network in WSOD consisting of predefined proposals, a backbone, and a detection head.
Predefined proposals are usually generated by proposal generation techniques such as
selective search [18] and edge boxes [19], aiming to cover all possible object locations. A
feature representation network pre-trained on large scale datasets (e.g., ImageNet [20]),
such as VGG16 [21] or ResNet [22], is used to obtain the feature maps. The predefined
proposals and feature maps are then fed into a spatial pyramid pooling (SPP) layer to
generate fixed-length feature vectors for each proposal. These feature vectors are then
forwarded into the detection head, which contains both detection and classification streams,
to locate and classify object instances.
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One of the drawbacks in WSDDN is that it tends to focus on the most discriminative
parts of the object. This is because the most discriminative regions of an object are more
likely to have the highest score compared with other regions that also cover the object
of interest. Several techniques are proposed to alleviate this problem. Online Instance
Classifier Refinement (OICR) [7] and Proposal Cluster Learning (PCL) [23] try to learn more
refined instance classifiers iteratively. Taking a multi-task strategy, Diba et al. [24] jointly
train a weakly supervised segmentation network and WSOD to filter object proposals
with the aid of a weakly supervised segmentation map. Incorporating low-level features is
another way to alleviate the discriminative region problem. For example, WSOD framework
with Objectness Distillation (WSOD2) [25] integrates bottom-up and top-down objectness
to distill box boundary knowledge. Object symmetry is also exploited in WSOD. For
example, posterior regularization is used to enforcethe object and its horizontal mirror
version having similar values [26]. Transfer learning is also adopted to leverage an auxiliary
dataset to improve WSOD networks [27,28]. Similarly, using contextual information is
another way to solve the problem. In this work, we leverage the contextual information in
a symmetric spatial area in localization stream in addition to the two stream CNN used in
WSDDN. We focus on a context-aware convolutional neural network (CNN) architecture
and proposal mining techniques to exploit the discriminative information surrounding the
predefined proposals.

2.2. Using Contextual Information in WSOD

Contextual information has been widely employed in object detection [29,30]. Re-
cently, many studies have started to use contextual information in weakly supervised or
unsupervised localizations. Hierarchical Context Embedding(HCE) [31] obtains hierarchi-
cal contextual region of interest (RoI) features by fusing instance-level and global-level
information. Ren et al. [8] use spatial dropout to alleviate part domination and encourage
the model to focus more on context. Wei et al. [11] utilize surrounding segmentation
context as references to mine high quality object candidates. ContextLocNet [12] proposes
additive and contrastive models to help RoI selection. Our context-aware CNN models are
inspired by these approaches. Different from ContextLocNet [12], which uses inner and
outer frame-shape region as context, we propose symmetry Gaussian-based sampling to
mine informative context proposals and devise a Symmetry Context Module to further
improve the detection performance.

3. Methodology
3.1. Overall Framework

The overview of our method is illustrated in Figure 1. Similar to many existing
studies [6,7,23], we adopt the idea of MIL by a two-stream weakly supervised object
detection network. Specifically, given an input image, we first generate object proposals
using selective search [18] and context proposals using our proposed context proposal
mining strategy; we then extract region features using convolutional layers, a RoI pooling
layer [32], and two fully connected layers. Next, the extracted features are branched into
our Symmetry Context Module, a context-aware two-stream module. This process encodes
the contextual information into the localization stream and obtains instance classifier
using weighted pooling strategy. Results of the base instance classifier is further refined
by an inter-stream self-training algorithm. The following depicts proposal generation,
convolutional and ROI pooling layers, and the detection head used in our framework.
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Figure 1. Our framework. The input image is passed through several convolutional layers (using
modified VGG-16 [21] architecture pre-trained on ImageNet [20]). The output feature maps, generated
region proposals and their corresponding context proposals are passed to RoI Pooling layer to
extract region-level feature vectors. The output of fully-connected layers is then branched into
several streams: one for our proposed Symmetry Context Module and others for multi-stage online
detector refinement.

Proposal generation: Given an input image I and its image label Y = [y1, y2, ..., yC]
T ∈

RC×1, where yc = 1 or 0 indicates the image with or without object c; the pre-computed
region proposals R are generated using selective search [18], where C denotes the number
of object classes. We obtain context proposals by exploiting the symmetrical property of
an object’s surrounding environment. We propose two methods to generate the context
proposals in Section 3.2, where the first strategy takes adjacent rectangular bounding boxes
of a region proposal in four spatial directions as its context proposals, and the second
strategy samples the context proposals using Gaussian distribution. We obtain the context
proposals P for all the pre-computed proposals R.

Convolutional and ROI pooling layers: Our framework contains 16 convolutional
layers from the VGG-16 model [21]. The original penultimate max-pooling layer and the
following three convolutional layers are replaced by the dilated convolutional layers [33]
to increase feature map size. In addition, we replace the last max-pooling layer by the
ROI pooling layer to extract region-level descriptors. The network first takes the entire
image I as input and applies a sequence of convolutional layers to obtain feature maps. The
precomputed proposals R, context proposals P, and features maps are then forwarded to the
ROI pooling layer to obtain the fix-sized feature vectors of proposals and context proposals.
Region-level features are further passed to two fully connected layers. We initialize the
network layers using the weights of ImageNet [20] pretrained VGG-16 model [21], which
is then fine-tuned during our training.

Detection head: We employ the two-stream architecture from Bilen and Vedaldi [6]
and propose a context-aware two-stream module. The feature vectors from context propos-
als and region proposals are branched into our Symmetry Context module to produce score
matrices xR. As explained in Section 3.3, we introduce different fully connected layers to
process features from context proposals and region proposals in the localization stream and
obtain xd by summing up the outputs. The classification stream feeds the features of region
proposals to a linear layer and outputs xc. The details of our Symmetry Context Module
are given in Section 3.3. The two matrices are then passed through two softmax layers, each
with different directions, as in WSDDN. The value of xc is normalized by a softmax layer
along the object class direction, and xd is passed through the other softmax layer along the
proposal direction. The proposal scores xR are calculated through element-wise product of
the two score matrices. The image score of a specific class φc is calculated by the sum over
all proposals. The basic instance classifier is trained using cross entropy loss is as follows:

Lb = −
C

∑
c=1
{yclogφc + (1− yc)log(1− φc)}. (1)
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Because the basic two-stream architecture design from WSDDN tends to converge to
the most discriminative part of an object, we adopt the online detector refinement (ODR)
approach for result refinement. The idea of ODR is a inter-stream self-training training
process in which the instances of the latter stream is supervised by the previous ones. Let
K be the number of refinement stages, each stage contains a single fully connected layer
followed by a softmax over category direction for classification. To improve the localization
results as in [7,25], we also use a fully connected layer for localization refinement. The
output score vector xRk

j of proposal j of the kth instance classifier is xRk
j ∈ R(C+1)×1.

Note that each instance classifier has C + 1 categories (the {C + 1}th dimension is for
background). To achieve inter-stream self-training progressively, the label for proposal
j is Yk

j = [yk
1j, yk

2j, ..., yk
(C+1)j]

T ∈ R(C+1)×1. The supervision of refinement stage k comes

from the last instance classifier output xR(k−1). An advanced pseudo groundtruth selection
algorithm MIST [8] is used in our experiment to generate diverse pseudo boxes for the
training. Pseudo labels are denoted by R̂. At each stage, if a region j is highly overlapped
with pseudo-box r̂ ∈ R̂ for ground-truth class c, we set the classification label yk

cj to 1 and

the regression target t̂k
j by the coordinates of r̂. Each refinement stage is trained to minimize

the following loss:

Lk
r =

1
|R|

|R|

∑
j=1

λj(−
C+1

∑
c=1

yk
cjlogxRk

cj + Lsmooth−L1(t̂k
j , tk

j )), (2)

where λj is a scalar per-region weight used in [7]; t̂k
j and tk

j are regression targets and
predicted coordinates of the jth box; respectively; and Lsmooth−L1 is a smooth-L1 regression
loss function. The overall loss to train our framework is:

L = Lb +
K

∑
k=1
Lk

r . (3)

3.2. Context Proposal Mining

During proposal generation, a set of region proposals with various sizes and aspect
ratios are generated. We observe that many proposals containing discriminative parts
of the object often only have high recognition scores, hence decreasing object detection
performance. Incorporating the contextual information can help by encouraging the model
to select region proposals that contains the whole object instead of discriminative parts only.
In this work, we mine additional proposals surrounding object region proposals, namely
context proposals, together with region proposals to detect and classify objects. Specifically,
we exploit two context proposal mining strategies: naive context proposal mining and
Gaussian-based context proposal mining.

3.2.1. Naive Context Proposal Mining

For a given region proposal j, we generate K context proposals. We fix the size of
context proposal as sc for simplicity. As shown in Figure 2a, we take a symmetric approach
by mining context proposals from four directions (up, down, left, right). Our naive context
proposal mining simply generates context proposals that are adjacent to j, hence K is set
to 4. We represent the region proposal by [xj, yj, w, h], where xj and yj are the coordinates
of the region center, and w and h are the width and height of the region. The four context
proposals of the region proposal j are generated as [(xj − (w + sc)/2, yj, sc, sc), (xj + (w +
sc)/2, yj, sc, sc), (xj, yj − (h + sc)/2, sc, sc), (xj, yj + (h + sc)/2, sc, sc)].

3.2.2. Gaussian-Based Context Proposal Mining

Although naive context proposal mining is very simple to implement, relatively fixed
context location may not always provide the best information surrounding the object.
We seek to further mine more informative context proposals by taking advantage of the
symmetrical property of Gaussian distribution. In particular, we sample context proposals
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from Gaussian distribution to diversify possible proposal locations. This idea is to mine
context proposals that are more informative during training, as those proposals semantically
align with object parts. Figure 2b shows example context proposals sampled from Gaussian
distribution. Note that we ensure there is no overlapping between the region proposal
and context proposals. In this way, contextual information surrounding the object can be
incorporated into the model for better performance.

The mean of the context proposal center coordinates for each direction is set slightly
away from the region proposal. For example, in our setup, for top and bottom, the mean of
the x-coordinate is the same as the x-coordinate of the center of the region proposal. The
mean of the y-coordinate is 0.2× h away from the top or bottom edge, respectively. The
standard deviation is set to h. Utilizing the symmetric property of surrounding, we do the
same for the left and right directions. Figure 3 illustrates the examples of Gaussian-based
context proposals. We can observe that the context proposals sampled by our method
capture object surroundings better in most cases.

(a) Naive context proposal mining (b) Gaussian-based context proposal mining

Figure 2. Illustration of context proposals mining strategies. (a) Naive context proposal mining: context
proposals adjacent to the region proposals are generated from four different directions. (b) Gaussian-
based context proposal mining: context proposals are sampled using Gaussian distribution.

Figure 3. Examples of proposals from Pascal VOC 2007 training set. Proposals with a solid line are
region proposals. Proposals with a dashed line are context proposals that share the same color with
their corresponding region proposal.
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3.3. Symmetry Context Module

Our Symmetry Context Module (SCM) is a context-aware two-stream detection mod-
ule incorporating contextual information during the detection process. Compared with the
detection module in WSDDN [6], our module consists of five different branches, FCdet and
FC1-FC4 for region proposals and its corresponding context proposals in four directions,
respectively. We use Gaussian-based context proposal mining to generate context proposals
in our experiment. The standard deviation of the context proposals’ distance to the region
proposal boundary is set to 20% of the respective region proposal size. It should be noted
that there is no overlapping area between region proposals and its corresponding context
proposals in all the experiment settings.

As shown in Figure 4, the feature vectors from context proposals Fcontext and region
proposals FRP are branched into SCM. The four branches for context proposals produce
four matrics xctx1, xctx2, xctx3, xctx4 ∈RC×|R|, each of which contains context proposal scores.
We then fuse these context scores into a single matrix xctx using the following:

xctx = max(xctx1, xctx2, xctx3, xctx4), (4)

where max(·) denotes element-wise max operator. To better illustrate, we show one nu-
merical example of fusion by element-wise max. Assuming C = 2 and |R| = 2, the score
matrices xctx1, xctx2, xctx3, xctx4 ∈ R2×2 are as follows:

xctx1 =

(
−0.4538 −2.0972
−1.4895 4.5304

)
, xctx2 =

(
−0.6994 −0.5498
1.7492 −0.5544

)
,

xctx3 =

(
−1.8248 −0.8432
0.9008 −0.8110

)
, xctx4 =

(
−4.0172 −1.8290
1.6335 3.9155

)
.

(5)

The final xctx can be obtained from fusion by element-wise max as follows:

xctx = max(xctx1, xctx2, xctx3, xctx4) =

(
−0.4538 −0.5498
1.7492 4.5304

)
. (6)

We then obtain the final detection matrix xd by element-wise summation over xctx and
xr (scores from region proposal). The classification stream takes the feature vector of region
proposals and passes to a fully connected layer obtain classification score matrix xc. Both
xd and xc are passed through the two softmax layers, each with different directions, as in
WSDDN. Proposal scores xR are calculated through the element-wise product of the two
score matrices.

Figure 4. Symmetry Context Module processes the feature maps of context proposals and region
proposals in two streams to produce scores for both detection and classification.
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4. Experiments
4.1. Datasets and Experimental Setup

We conduct our experiments on the Pascal VOC 2007 [34] and 2012 [35] datasets, the
most widely used benchmarks for WSOD. The VOC 2007 dataset has 20 object classes
and contains 2501 training images, 2510 validation images, and 4951 testing images. The
VOC 2012 dataset contains 5717 training images, 5823 validation images, and 10991 testing
images for the same 20 object categories. Following common practice [7,11,23], we use
training and validation images with image-level annotation to train our model and testing
images for the evaluation. We adopt mean average precision (IoU threshold at 0.5) to
evaluate our method, which follows the standard PASCAL VOC protocol [36].

During training, we set batch size as 8 and maximum iteration to 30,000. We use
stochastic gradient descent (SGD) for optimization, with an initial learning rate of 0.01 and
a weight decay of 0.0001. For each image, 2000 region proposals are generated. For fair
comparison, we deploy the similar multi-scale training and testing strategy as in OICR [7]
(our baseline model). In particular, we use multiple scales (480, 576, 688, 864, 1000, 1200)
with respect to the original aspect ratio to resize the shorter side of each image and capped
the longer side to 2000 during training. During evaluation, the shorter side of input images
are augmented with scale 800. Horizontal flipping is also used for both training and
evaluation. The default p and IoU in MIST are set to 0.15 and 0.2. The total number of
refinement branches is set to 3. The mean output of these instance classifiers is used during
evaluation. All our experiments are run on a single Tesla V100-PCIE-32GB GPU. Please
check the released code for more details (https://github.com/sXZL/WSODSC (accessed
on 24 June 2022)).

4.2. Ablation Study

We first conduct an ablation study on the VOC 2007 dataset to demonstrate the
effectiveness of different components in our framework, including context proposal mining
and the Symmetry Context Module. Experimental results are reported in Tables 1–3.

Table 1. Ablation study of context proposal mining.

Context Proposal Mining Distance to Region Proposal
Boundary mAP

No context - 42.26

NCP 0 45.22
NCP 0.9 44.16

GCP 0.1 43.99
GCP 0.2 45.10

Table 2. Ablation study of the number of context proposals.

Context Proposal
Mining

Distance to Region
Proposal Boundary

Number of Context
Proposals per Side mAP

GCP 0.1 2 43.46
GCP 0.1 1 43.99

Table 3. Ablation study of different ways to fuse proposal scores.

Method Context Proposal
Mining

Distance to
Region Proposal

Boundary
Fusion Method mAP

OICR (+MIST + Reg.) No context - - 50.91

Ours GCP 0.2 mean 51.85
Ours GCP 0.2 max 52.38

https://github.com/sXZL/WSODSC
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4.2.1. Context Proposals Location

In order to investigate the influence of context proposal location, we evaluate the
performance of our framework using different configurations for both strategies. Table 1
shows the experimental results with different sizes and locations. In the table, we denote
naive context proposal mining method as NCP and Gaussian-based context proposal
mining as GCP. Note that, for naive context proposals, we test context proposals at various
distances to the region proposal boundary. For example, 0.9 means the distance is 90% of
the distance between the region proposal boundary and the respective image boundary.
For Gaussian-based context proposals, we test context proposals sampled using different
standard deviations. For example, 0.1 and 0.2 means the standard deviations used are 10%
and 20% of the respective region proposal size. We also carry out experiments with a fixed
distance to the region proposal boundary, obtaining 2.84% mAP improvement when the
distance is 32 pixels.

As shown in Table 1, we can observe that even the proposed naive mining strategies
can boost the performance a lot (achieving 1.9–2.96% mAP improvement compared with
one of our baseline OICR [7] with 42.3% mAP). This shows the effectiveness and robustness
of our context proposal mining. We obtain the best performance with 45.22% mAP when
context proposal is just adjacent to the region proposal for NCP. As for the best configuration
for GCP, the best configuration is 20% of the respective region proposal size as standard
deviation. Note that for this study we set context proposal size as 32.

4.2.2. Effect of Number of Context Proposals

We also study the influence of the number of context proposals for each direction.
We choose GCP with 10% as the standard deviation. Table 2 shows that both settings
outperform the baseline. Furthermore, single context proposal for each side outperforms
two context proposals. This may result from the unweighted fusion of region proposal and
context proposal scores. Thus, the contribution of context proposals may overwhelm the
corresponding region proposal when the total number of context proposals for each region
proposal is 8, as in this case.

In our Symmetry Context Module, four context proposals from one region proposal
use four different fully connected layers to generate proposal scores. We opt to conduct
experiments to analyze the effect of shared fully connected layers instead of unshared
ones. Using individual fully connected layers achieves 45.22% mAP with zero distance
in NCP and outperforms the shared version by 0.54% mAP. We also conduct experiments
to evaluate different ways to fuse proposal scores. We also add MIST [8] and regression
branches (denoted as w/ MIST Reg) for online instance classifier in OICR [7]. Table 3 shows
that fusion by element-wise max outperforms element-wise average.

4.3. Comparison with Other Baselines

To evaluate our framework, we compare our proposed method with several state-of-
the-art methods on VOC 2007 in addition to OICR, as shown in Table 4. It can be observed
that the proposed method is very effective and outperforms all the other baselines in most
of the categories, leading to a notable improvement on average. In particular, our method
performs much better than other baselines on category “Aero”, “Bike”, “Car”, “Train”, and
“TV”. Note that our method outperforms OICR + MIST + Reg. [8] (second best) by 1.5%.
We also conduct the experiments on the more challenging dataset VOC 2012, as shown in
Table 5. These results show that our proposed method achieves noticeable improvements
with other approaches, demonstrating its effectiveness and robustness.

Figures 5 and 6 shows some of our detection results compared with the best baseline
OICR + MIST + Reg. [8]. We can see that our method tends to locate the whole object
rather than the most discriminative parts. As shown in Figure 6, for animal and person
classes, our method is able to effectively locate the whole object thanks to the help of
contextual information, whereas the compared baseline results tend to focus on objects’
heads. The baseline method tend to ignore small parts of objects of interest such as arms and
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hands, leading to false positive results, as shown in Figure 5. We show that incorporating
contextual information as proposed in our method can alleviate such problems.

Figure 5. Detection results of our method and the best baseline (OICR + Reg + MIST). Green bounding
boxes indicate objects detected by our method, whereas red ones correspond to those detected by the
best baseline.

Figure 6. Additional detection results of our method and the best baseline (OICR + Reg + MIST).
Green bounding boxes indicate objects detected by our method, whereas red ones correspond to
those detected by the best baseline.
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Table 4. Comparison of our method on PASCAL VOC 2007 with different baselines (* our implementation).

Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow Table Dog Horse Mbike Persn Plant Sheep Sofa Train TV mAP

ContextLocNet [12] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
Bilen [6] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3
OICR [7] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
OICR ∗ [7] 56.1 72.7 40.9 26.7 25.7 66.6 67.1 13.0 24.2 48.4 39.5 16.4 20.3 69.4 8.1 23.9 49.2 47.5 63.9 65.8 42.3
Diba [24] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8
SGWSOD [37] 48.4 61.5 33.3 30.0 15.3 72.4 62.4 59.1 10.9 42.3 34.3 53.1 48.4 65.0 20.5 16.6 40.6 46.5 54.6 55.1 43.5
TS2C [11] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3
WSRPN [38] 57.9 70.5 37.8 5.7 21.0 66.1 69.2 59.4 3.4 57.1 57.3 35.2 64.2 68.6 32.8 28.6 50.8 49.5 41.1 30.0 45.3
PCL [23] 62.3 69.3 50.6 28.1 22.1 71.8 68.1 56.8 24.0 61.3 43.1 59.4 45.0 66.2 12.3 23.3 45.3 52.0 65.1 57.2 49.2
SDCN [39] 59.4 71.5 38.9 32.2 21.5 67.7 64.5 68.9 20.4 49.2 47.6 60.9 55.9 67.4 31.2 22.9 45.0 53.2 60.9 64.4 50.2
C-MIL [5] 62.5 58.4 49.5 32.1 19.8 70.5 66.1 63.4 20.0 60.5 52.9 53.5 57.4 68.9 8.4 24.6 51.8 58.7 66.7 63.5 50.5
Yang et al. [40] 57.6 70.8 50.7 28.3 27.2 72.5 69.1 65.0 26.9 64.5 47.4 47.7 53.5 66.9 13.7 29.3 56.0 54.9 63.4 65.2 51.5
OPG [41] 63.0 65.3 49.2 31.7 25.3 70.9 70.9 58.1 27.4 58.6 44.7 47.0 47.2 69.8 13.1 26.1 49.9 51.8 61.7 68.2 50.0
Jiang et al. [42] 60.1 74.5 51.9 29.6 30.2 68.8 72.6 44.6 19.8 66.0 48.8 43.7 63.2 68.2 17.7 25.1 53.7 60.8 56.1 63.1 50.9

OICR + MIST + Reg. [8] 67.9 78.6 55.6 25.6 29.1 69.8 75.4 50.3 27.6 67.2 39.6 28.2 50.2 72.0 15.7 26.1 62.7 52.2 68.0 56.7 50.9
Ours 71.4 79.2 55.5 31.6 22.6 71.5 75.5 52.3 20.4 64.8 44.9 35.2 49.8 71.8 22.3 27.9 59.6 52.3 70.6 68.3 52.4
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Table 5. Comparison of our method on PASCAL VOC 2012 with different baselines.

Method mAP

OICR [7] 37.9
PCL [23] 40.6

SDCN [39] 43.5
Yang et al. [40] 45.6

C-MIL [5] 46.7
OPG [41] 46.2

Jiang et al. [42] 43.8
OICR + MIST + Reg. [8] 47.7

Ours 48.3

5. Discussion and Conclusions

In order to further improve object detection accuracy, in this paper we proposed
two context proposal mining approaches and a Symmetry Context Module to incorporate
contextual information into the overall WSOD framework. Extensive experiments were
conducted on the benchmark datasets Pascal VOC 2007 [36] and Pascal VOC 2012 [35]. We
carry out ablation study on the context proposal location for both context mining strategies,
achieving 2.9% and 1.95% mAP improvement with fixed distance to the region proposal
boundary for NCP and GCP respectively. Experimental results show that the performance
can improve further with distance depending on the repective region proposal, demonstrat-
ing the generalization ability of our proposed context proposal mining strategies. For fair
comparison, we also conducted experiments on different baselines to eliminate the effect of
other implementation tricks, achieving 0.9–3.0% overall mAP improvements. Fusing con-
textual information of symmetrical spatial areas with region proposal scores is effective to
increase the object localization accuracy. Fusion with element-wise max of contextual score
matrices performs slightly better than fusion by element-wise average, due to covering
more discriminative contextual information. The Gaussian-based context proposal mining
was more robust at capturing contextual information, further improving the localization
accuracy. We also evaluated the effect of the number of context proposals and showed that
increasing the number of context proposals may not help the overall performance. Due to
the fact that our contextual mining strategies and SCM well exploit and utilize informative
contextual information from the surrounding areas of objects, our method has distinct
advantages for those categories whose objects have similar surroundings, such as ”Aero”,
”Bike”, ”TV”, etc. Our qualitative results comparing our method with the best performing
baseline show more insights on the advantage of our method.

Our future work may consider adjusting SCM to mine more useful information among
context proposals. Furthermore, introducing segmentation map as a guidance to mine
context proposals online could be another possible improvement. This way could reduce
the memory consumption due to a multiple-stream approach.
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Abbreviations and Notation Description

Abbreviations and Notation used most frequently in this manuscript:

Abbreviations / Notation Description
CNN Convolutional Neural Networks
WSOD Weakly Supervised Object Detection
FSOD Fully Supervised Object Detection
MIL Multiple Instance Learning
WSDDN Weakly Supervised Deep Detection Network
OICR Online Instance Classifier Refinement
mAP Mean Average Precision
MIST Multiple Instance Self-Training
I input image
Y = [y1, y2, ..., yC]

T ∈ RC×1 image labels
xc, xd ∈ RC×|R| score matrix of localization stream and detection stream in SCM
xctx ∈ RC×|R| fused context proposal score matrix of localization stream
C number of object classes
K the number of refinement stages
FRP feature vectors of region proposals
Fcontext feature vectors of context proposals
φc image score of a specific class c
xRk

j ∈ R(C+1)×1 output score vector of proposal j of the kth instance classifier

Yk
j ∈ R(C+1)×1 label for proposal j of the kth instance classifier
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